Современная электронная библиотека ModernLib.Net

Знаете ли вы физику?

ModernLib.Net / Детская образовательная / Яков Перельман / Знаете ли вы физику? - Чтение (Ознакомительный отрывок) (стр. 5)
Автор: Яков Перельман
Жанр: Детская образовательная

 

 


Для парашютиста это наступает тогда, когда его вес (вместе с парашютом) сделается равным 0,03v2; принимая вес снаряженного парашютиста в 90 кг, имеем уравнение


0,03v2 = 90,


откуда v = 55 м/с.

Итак, парашютист падает ускоренно лишь до тех пор, пока не накопит скорости 55 м/с. Это наибольшая скорость, с какою он опускается, в дальнейшем скорость уже не возрастает. Определим – опять приближенно – сколько секунд употребил парашютист для достижения этой максимальной скорости. Примем во внимание, что в самом начале падения, пока скорость мала, сопротивление воздуха ничтожно, и тело падает как свободное, т. е. с ускорением 9,8 м/с. К концу же интервала ускоренного движения, когда устанавливается равномерное падение, ускорение равно нулю. Для нашего приближенного расчета можно допустить, что ускорение в среднем равнялось

Если принять таким образом, что секундная скорость нарастала на 4,9 м в секунду, то она достигает величины 55 м по истечении

55: 4,9 = 11 с.


Путь 5, проходимый телом в 11 секунд такого ускоренного движения, равен

Теперь выясняется подлинная картина падения Евдокимова. Первые 11 с он падал с постепенно уменьшающимся ускорением, пока не накопил скорости 55 м/с, приблизительно на 300-м метре пути. Остальной путь затяжного прыжка он проходил равномерным движением со скоростью 55 м/с. Равномерное движение, согласно нашему приближенному расчету, длилось

а весь затяжной прыжок

11 + 138 = 149 с,


что мало отличается от действительной продолжительности (142 с).

Сделанный нами элементарный расчет надо рассматривать лишь как первое приближение к действительности, так как он основан на ряде упрощающих допущений.

Приведем для сравнения данные, полученные путем опыта: при весе снаряженного парашютиста 82 кг максимальная скорость устанавливается на 12-й секунде, когда парашют опускается на 425–460 м (Забелин, М. Прыжок с парашютом. М., 1933).

<p>39. Куда бросить бутылку?</p>

Так как мы привыкли к тому, что прыгать из движущегося вагона безопаснее вперед по направлению движения, то может казаться, что бутылка ударится о землю слабее, если ее кинуть вперед. Это неверно: вещи надо бросать назад, против движения поезда. Тогда скорость, сообщенная бутылке бросанием, будет отниматься от той, какую бутылка имеет вследствие инерции: в итоге бутылка встретит землю с меньшей скоростью. При бросании вперед произошло бы обратное: скорости сложились бы, и удар получился бы сильнее.

То, что для человека безопаснее все же прыгать вперед, а не назад, объясняется совсем другими причинами: падая вперед, мы меньше расшибаемся, чем при падении назад[10].

<p>40. Из вагона</p>

Тело, брошенное с некоторою начальною скоростью, – безразлично, в каком направлении, – подвержено той же силе тяжести, какая увлекает и тело, уроненное без начальной скорости. Ускорение падения для обоих тел одинаково, поэтому они достигнут земли одновременно. Значит, вещь, брошенная из движущегося вагона, достигает земли в такой же промежуток времени, как и брошенная из вагона неподвижного.

<p>41. Три снаряда</p>

Рисунок 14 ошибочен. Дальность полета снарядов, брошенных под углами в 30° и в 60°, должна быть одинакова (как и вообще для всяких углов, дополняющих друг друга до 90°). На рис. 14 это не соблюдено.

Что касается снаряда, брошенного под углом в 45°, то на рис. 14 правильно показано, что дальность его наибольшая. Эта максимальная дальность должна вчетверо превышать подъем самой высокой точки траектории, – это на рис. 14 также соблюдено (приблизительно). Правильный чертеж приложен (рис. 74).

Рис. 74. К ответу на вопрос 41

<p>42. Путь брошенного тела</p>

В большинстве учебных книг утверждается без оговорок, что тело, брошенное в пустоте под углом к горизонту, движется по параболе. Весьма редко делается при этом замечание, что дуга параболы является только приближенным изображением истинной траектории тела; оно верно лишь при небольших начальных скоростях брошенного тела, т. е. пока тело не слишком удаляется от земной поверхности и, следовательно, пока можно пренебречь уменьшением силы тяжести. Если бы брошенное тело двигалось в пространстве, где сила тяжести постоянна, путь его был бы строго параболический. В реальных же условиях, когда сила притяжения убывает с расстоянием по закону обратных квадратов, брошенное тело должно подчиняться 1–му закону Кеплера и, следовательно, двигаться по эллипсу, фокус которого находится в центре Земли.

Поэтому, строго говоря, каждое тело, брошенное на земной поверхности под углом к горизонту, должно в пустоте двигаться не по дуге параболы, а по дуге эллипса. При современных артиллерийских скоростях различие между обеими траекториями весьма незначительно.

Но в будущем, когда технике придется иметь дело со скоростями крупных жидкостных ракет, летящих в несопротивляющейся среде, нельзя будет даже приближенно принимать путь ракеты выше пределов атмосферы за параболический.

Рис. 75. Тело, брошенное наклонно к горизонту, должно в пустоте двигаться по дуге эллипса, фокус которого F в центре планеты

<p>43. Наибольшая скорость артиллерийского снаряда</p>

Скорость артиллерийского снаряда должна возрастать все время, пока давление на него пороховых газов сзади превосходит сопротивление воздуха спереди. Давление же пороховых газов не прекращается в момент выхода снаряда из канала орудия: газы продолжают давить на снаряд и вне орудия с силою, которая в первые мгновения превосходит сопротивление воздуха; следовательно, скорость снаряда должна еще в течение некоторого времени расти. Только тогда, когда расширение газов в свободном пространстве уменьшит их давление до того, что оно станет слабее сопротивления воздуха, снаряд будет подвержен спереди большему напору, чем сзади, и скорость его станет уменьшаться.

Итак, максимальной своей скорости снаряд действительно должен достигать не внутри орудия, а вне его, на некотором расстоянии от жерла, т. е. спустя короткий промежуток после того, как он уже покинул ствол орудия.

<p>44. Прыжки в воду</p>

Опасность прыжка в воду с значительной высоты состоит, главным образом, в том, что накопленная при падении скорость сводится к нулю на слишком коротком пути. Если, например, пловец бросается с высоты 10 м и погружается в воду на глубину 1 м, то скорость, накопленная на пути 10 м свободного падения, уничтожается на участке в 1 м. Отрицательное ускорение при погружении в воду должно быть в 10 раз больше ускорения свободно падающего тела. При погружении в воду пловец испытывает поэтому давление снизу, в данном случае вдесятеро превосходящее обычное давление, порождаемое весом. Иными словами, тело пловца становится словно в 10 раз тяжелее С вместо 70 кг весит 700 кг. Такой непомерный груз, действуя даже короткое время (пока длится погружение), может вызвать в организме серьезные расстройства.

Отсюда следует, между прочим, что вредные последствия прыжка смягчаются при возможно более глубоком погружении в воду; накопленная при падении скорость поглощается тогда на более длинном пути, и ускорение (отрицательное) становится меньше.

<p>45. На краю стола</p>

Если плоскость стола перпендикулярна к отвесной линии, проходящей через ее середину, то края стола расположены, очевидно, дальше от центра Земли, т. е. выше, чем середина (практически на весьма незначительную величину). При полном отсутствии трения и при идеально плоской поверхности шар должен поэтому скатиться с края стола к его середине. Здесь, однако, он не может остановиться С накопленная кинетическая энергия увлечет его далее до точки, находящейся на одном уровне с начальной, т. е. до противоположного края.

Рис. 76. При взгляде на этот рисунок, не у всех явится мысль, что шар должен скатиться к середине стола

77. Но из этого чертежа ясно, что шар не может оставаться в покое (при отсутствии трения)


Оттуда шар снова откатится в первоначальное положение и т. д. Короче говоря, при отсутствии трения о плоскость стола и сопротивления воздуха, шар, положенный на край идеально плоского стола, пришел бы в нескончаемое движение.

Один американец предлагал устроить на этом принципе вечное движение. Проект его, изображенный на рис. 78, по идее совершенно правилен и осуществил бы вечное движение, если бы возможно было избавиться от трения. Впрочем, то же самое можно осуществить и проще С с помощью груза, качающегося на нити: при отсутствии трения в точке привеса (и сопротивления воздуха) такой груз должен качаться вечно[11]. Производить работу подобные приспособления, однако, не способны.

В заключение поучительно остановиться на возражении, сделанном одним из читателей, который утверждает, что в приведенном рассуждении смешиваются две точки зрения – геометрическая и физическая. Геометрически, – поясняет читатель, – мы считаем лучи Солнца сходящимися на его поверхности, физически же признаем их параллельными. Подобно этому, в нашей задаче две отвесные линии, проведенные на Земле в расстоянии 1 м, геометрически пересекаются в центре земного шара, но физически должны считаться параллельными. А потому сила, увлекающая шар с края стола к середине, физически равна нулю; никакого скатывания наблюдаться не может.

Рис. 78. Один из проектов «вечного движения»


Возражение ошибочно. Нетрудно убедиться расчетом, что отвесные линии, проведенные на Земле в расстоянии 1 м одна от другой, составляют между собою угол, который в 23 000 раз больше, чем угол между лучами Солнца, направленными к тем же точкам. Что касается величины силы, побуждающей шар скатываться с края стола, длиною в 1 м, то она составляет примерно одну 10–миллионную долю веса шара. В условиях нашей задачи, т. е. при полном отсутствии сопротивлений, всякая сколь угодно малая сила должна привести тело в движение, как бы велика ни была его масса. В данном случае, впрочем, сила не так уж мала: она одного порядка величины с тою силою, которая порождает океанские приливы; последняя сила даже и в реальных условиях (т. е. при наличии сопротивлений) ощутительно проявляет свое действие.

<p>46. На наклонной плоскости</p>

Не следует думать, что в положении А брусок, оказывая на опорную плоскость большее удельное давление, испытывает и большее трение. Величина трения не зависит от размеров трущихся поверхностей. Поэтому если брусок скользил, преодолевая трение, в положении В, то он будет скользить и в положении А.

<p>47. Два шара</p>

1. При решении этой задачи нередко делают существенную ошибку: не принимают во внимание, что отвесно падающий шар движется только поступательно, между тем как шар, скатывающийся по плоскости, совершает, кроме поступательного движения, также и вращательное. Не свободны от этого недосмотра даже некоторые школьные учебники.

Какое влияние оказывает отмеченное обстоятельство на скорость скатывающегося тела, видно из следующего вычисления.

Потенциальная энергия шара, обусловленная его положением вверху наклонной плоскости, превращается при отвесном падении целиком в энергию поступательного движения, и из уравнения

или (после замены веса р шара произведением его массы m на ускорение g тяжести) из равенства

легко получается скорость v такого шара в конце пути

где h – высота наклонной плоскости.

Иначе обстоит дело с шаром, скатывающимся по наклонной плоскости. В этом случае та же потенциальная энергия ph преобразуется в сумму двух кинетических энергий – в энергию поступательного движения со скоростью v1 и вращательного – с угловою скоростью ?. Величина первой энергии равна

Вторая равна полупроизведению момента инерции K шара на квадрат его угловой скорости ?:

Имеем, следовательно, уравнение:

Из курса механики известно, что момент инерции K однородного шара массы т и радиуса r относительно оси, проходящей через центр, равен 2/5 тr2. Далее, легко сообразить, что угловая скорость ? этого шара, катящегося с поступательною скоростью v1, равна . Поэтому энергия вращательного движения

Заменив в нашем уравнении, кроме того, вес р шара равным ему выражением mg, получаем:

или, после упрощения,

gh = 0,7v12.


Отсюда поступательная скорость

Сопоставляя эту скорость со скоростью в конце отвесного падения (), видим, что они заметно различаются: скатившийся шар (любого радиуса и любой массы) в конце пути, да и в каждой его точке, движется вперед со скоростью на 16 % меньшею, чем шар, свободно упавший с той же высоты.

Сравнивая шар, скатывающийся по наклонной плоскости, с телом, скользящим по той же плоскости с равной высоты, легко установить, что скорость первого в каждой точке пути на 16 % меньше скорости второго.

Скользящий шар при отсутствии трения достигает конца наклонного пути раньше (на 16 %), нежели катящийся. То же верно и для тела, падающего отвесно: оно должно опередить скатывающийся шар на 16 %.

Кто знаком с историей физики, тому известно, что Галилей установил законы падения тел, производя опыты с шарами, которые он пускал по наклонному желобу (длина – 12 локтей, возвышение одного конца 1–2 локтя). После сказанного выше может возникнуть сомнение в правильности пути, избранного Галилеем. Сомнение, однако, отпадает, если вспомним, что скатывающийся шар в своем поступательном перемещении движется равноускоренно, так как в каждой точке наклонного желоба скорость его составляет одну и ту же долю (0,84) скорости отвесно падающего шара на том же уровне. Форма зависимости между пройденным путем и временем остается та же, что и для тела, свободно падающего. Поэтому Галилей и мог правильно установить законы падения тел в результате своих опытов с наклонным желобом.

Примечания

1

За два года до смерти американский изобретатель пожелал поощрить стипендией наиболее сметливого юношу Соединенных Штатов. С разных концов республики направлены были к нему одареннейшие школьники, по одному из каждого штата, и Эдисон, во главе особой, учрежденной им комиссии, подверг молодых людей испытанию, предложив ответить письменно на 57 вопросов из физики, химии, математики и общего характера. Победителем в состязании оказался 16-летний Вильбер Хастон из Детройта. Правда, выдающимся изобретателем этот юноша так и не стал.

2

Сиракузский правитель, по преданию С родственник Архимеда. (Не смешивать с ученым-механиком древности Героном.)

3

Ныне – «Чистые пруды»

4

Микрон становится уже довольно крупной единицей длины и для современной техники: массовое производство сложных машин, возможное лишь при полной взаимозаменяемости частей, ввело в производственную практику употребление измерительных приборов, улавливающих десятые доли микрона (см. ответ на вопрос 218).

5

Строго говоря, о диаметре электрона можно говорить лишь условно. «Если сделать предположение, – пишет проф. Дж. П. Томсон, – что электрон подчиняется тем же самым законам, каким следует в лаборатории заряженный металлический шар, то можно подсчитать и «диаметр» электрона; для него получится значение 3,7·10–13 см. Но этот результат не удалось еще проверить никаким опытом».

6

Литий находит себе применение для изготовления красных сигнальных ракет, в стекольной промышленности (изготовление молочного стекла), в металлопромышленности (для придания твердости сплавам) и др.

7

Название сплава – «электрон» – произошло от наименования фирмы, на предприятиях которой он впервые был изготовлен. Советский самолет «Серго Орджоникидзе» был целиком построен из электрона отечественного изготовления.

8

70-тонные брусья Эйфелевой башни заменились бы в модели проволочками, весящими 0,07 г.

9

Подробнее об этом см. мою «Занимательную механику» главу первую.

10

Всего безопаснее, впрочем, прыгать не вперед, а назад, но лицом вперед. Подробнее об этом см. «Занимательная физика»

11

В Парижской обсерватории был произведен (Борда) опыт с маятником, качающимся в безвоздушном пространстве при минимально уменьшенном трении в точке привеса: маятник качался 30 часов. Интересно, как затухают постепенно колебания 98-метрового маятника, подвешенного в здании Исаакиевского собора.

Первоначально 12-метровые размахи спустя 3 часа уменьшаются в 10 раз. Через 6 часов от начала наблюдений размахи сокращаются до 6 см, через 9 часов – до 6 мм. Спустя 12 часов от начала наблюдений размахи делаются незаметными для невооруженного глаза.

Конец бесплатного ознакомительного фрагмента.

  • Страницы:
    1, 2, 3, 4, 5