Современная электронная библиотека ModernLib.Net

Знаете ли вы физику?

ModernLib.Net / Детская образовательная / Яков Перельман / Знаете ли вы физику? - Чтение (Ознакомительный отрывок) (стр. 3)
Автор: Яков Перельман
Жанр: Детская образовательная

 

 


2. Железная палочка притягивает стальную иглу. Значит ли это, что палочка была первоначально намагничена? А если иголка от палочки отталкивается?

<p>206</p>

Как приблизительно велика электроемкость человеческого тела?

<p>207</p>

Электрическое сопротивление нити накала в нагретом состоянии иное, чем в холодном. Как велика эта разница, например, для 50-ваттной пустотной лампы?

<p>208</p>

Проводит ли стекло электрический ток?

<p>209</p>

Для некоторых родов электрических лампочек вредно частое выключение. Почему?

<p>210</p>

Какой силы свет дает газополная электрическая лампа в 50 ватт?

<p>211</p>

Нити накала электрической лампочки, когда она не под током, настолько тонки, что едва различаются невооруженным глазом (рис. 53). Почему же заметно утолщаются они под током?

Рис. 53. Толщина нитей накала В по сравнению с толщиной человеческого волоса А и нити паутины С (в мм)

<p>212</p>

Какой примерно длины молния?

<p>213</p>

Отрезок был измерен дважды. В первый раз для его длины получено было значение 42,27 мм, во второй С 42,29 мм.

Какова истинная длина отрезка?

<p>214</p>

Эскалатор Московского метрополитена на станции «Мясницкая»[3] поднимается от уровня станции до входа в течение 1 мин. 20 с. Пассажир, взбираясь по ступеням неподвижного эскалатора, может пройти тот же путь в 4 минуты.

Во сколько времени поднимется от станции до входа пассажир, если будет взбираться по ступеням поднимающегося эскалатора?

<p>215</p>

Для чего поют «Дубинушку» при работе на ручном копре (рис. 54)? Какая опасность угрожала бы рабочим, если бы при копре (старого устройства) они работали молча?

Рис. 54. Для чего при работе на копре поют «Дубинушку»?

<p>216</p>

Из викторины Эдисона:

«Два города, расположенные на разных берегах реки в миле (1,6 км) друг от друга, остались после стихийного бедствия без взаимного сообщения. Как установили бы связь между этими городами, не пользуясь услугами электричества? Переправиться через эту реку для человека невозможно»

<p>217</p>

На глубине 1 км затонула в море незакупоренная бутылка. Как изменится вместимость бутылки под давлением воды С увеличится или уменьшится?

<p>218</p>

Для точных измерений употребляются в технике стальные бруски, называемые «плитками Иогансона» Приложенные друг к другу, плитки эти, хотя не намагничены и ничем не скреплены (рис. 55), держатся вместе очень прочно.

Почему?

Рис. 55. Почему плитки Иогансона держатся вместе?

<p>219</p>

Вот заимствованное из иностранного детского журнала описание простого опыта, цель которого С демонстрировать атмосферное давление:

«Горящий огарок свечи укрепляют на дне стеклянной банки и, когда пламя погорит некоторое время, накрывают банку крышкой, проложив между ними увлажненное резиновое кольцо. Пламя тускнеет и вскоре гаснет (рис. 56). Попробуйте тогда оторвать крышку от банки С это удастся вам лишь при значительном усилии.

Причину явления легко понять. Пламя потребляет кислород, запас которого в герметически закрытой банке ограничен. Когда он расходуется весь, пламя гаснет. Оставшаяся часть воздуха, заняв больший объем, разрежается и давит слабее. Избыток наружного давления и прижимает так сильно крышку к банке»

Рис. 56. Опыт со свечой в банке


Находите ли вы это объяснение правильным?

<p>220</p>

Какой термометр появился раньше: Цельсия, Фаренгейта или Реомюра?

<p>221</p>

Какой национальности были Цельсий, Реомюр и Фаренгейт?

<p>222</p>

Из популярно-научной книжки:

«На основании некоторых измерений ученые узнали, что плотность всего земного шара равна приблизительно 51/2; объем же его известен, так как измерена величина его поперечника. Умножая этот объем на 51/2, ученые и нашли, чему равна масса Земли».

Правильно ли указан здесь путь, каким определена была масса земного шара?

<p>223</p>

В одном из сборников физических задач имеется следующая:

«Астрономы считают, что наша Солнечная система летит со скоростью около 17 км/с по направлению к созвездию Лиры. Какие явления можно было бы заметить на Земле, если бы это движение было не равномерным, а ускоренным или замедленным?» Дайте ответ.

<p>224</p>

После прочтения мною доклада о будущих ракетных полетах в мировом пространстве, мне сделано было одним астрономом такое возражение:

«Вы упускаете из виду существенное обстоятельство, делающее достижение Луны в ракетном корабле совершенно безнадежным предприятием. Масса ракеты С по сравнению с массою небесных тел С исчезающе мала, а ничтожные массы получают огромные ускорения под действием сравнительно малых сил, которыми при других условиях можно было бы пренебречь. Я имею в виду притяжение планет С Венеры, Марса, Юпитера. Оно, конечно, крайне невелико, но ведь масса ракеты практически равна нулю, и для такой ничтожной массы действие даже небольших сил должно быть чрезвычайно ощутительно. Они породят огромные ускорения С ракета будет метаться в мировом пространстве по самым фантастическим путям, откликаясь на притяжение каждого сколько-нибудь массивного тела, и в своем блуждании никогда на Луну не набредет» Ваше мнение, читатель?

<p>225</p>

Вот еще одно возражение против осуществимости межпланетных перелетов. Астроном, разбирая (в сборнике «Успехи и достижения современной науки и техники») условия пребывания человека в среде без тяжести, высказал следующее соображение:

«Наш организм очень чутко реагирует на всякое нарушение в этом отношении. Попробуйте побывать некоторое время с опущенной головой или с поднятыми вверх ногами. Наступающие расстройства кровообращения бывают очень серьезны. Если так действует изменение направления силы тяжести, то как же должно действовать ее отсутствие!» Что скажете вы о логической силе этого довода?

<p>226</p>

Третий закон Кеплера формулируется в разных руководствах различно. В одних утверждается, что квадраты времен обращения планет и комет относятся как кубы их средних расстояний от Солнца. В других С что они относятся как кубы больших полуосей их орбит.

Какая формулировка правильна?

<p>227</p>

Если бы планеты обращались вокруг Солнца по строго круговым орбитам, они не совершали бы, очевидно, никакой механической работы, так как не удалялись бы от притягивающего их тела. Дело не меняется и для эллиптической орбиты, например для случая обращения Земли вокруг Солнца. Действительно, переходя из точек эллипса, близких к Солнцу, к точкам, более удаленным от него, Земля затрачивает энергию на преодоление притяжения Солнца; но расход этот возвращается полностью, когда Земля приходит в прежнее место. В итоге, кружась около Солнца, Земля не расходует энергии, и такое движение может длиться неопределенно долго.

Мы приходим к заключению, что обращение планет представляет собой пример подлинно вечного движения.

Но если так, то почему же физика утверждает, что вечное движение невозможно?

<p>228</p>

Укажите основания, дающие право рассматривать живой человеческий организм как тепловую машину.

<p>229</p>

Почему светятся метеоры?

<p>230</p>

В фабрично-заводских районах туманы бывают чаще, чем в окружающих лесистых или земледельческих местностях. Лондонские туманы вошли в поговорку.

Чем это объяснить?

<p>231</p>

Какая разница между туманом, дымом и пылью?

<p>232</p>

Существует народное поверье, что легкие облака тают в лучах Луны. Летом это поверье часто оправдывается. Как объяснить подобное действие лунного света?

<p>233</p>

Где молекулы обладают большею кинетической энергией: в водяном паре при 0 °C, в жидкой воде при 0 °C или во льду при 0 °C?

<p>234</p>

Какова приблизительно скорость теплового движения молекул водорода при минус 273 j С?

<p>235</p>

Достижим ли абсолютный нуль?

<p>236</p>

Что такое вакуум?

<p>237</p>

Какова по приблизительной оценке средняя температура вещества во всем мире?

<p>238</p>

Можно ли видеть невооруженным глазом одну 10-миллионную долю грамма вещества?

<p>239</p>

Если взять какое-либо вещество в количестве одной «граммолекуль» т. е. такое число его граммов, которое равно молекулярному весу этого вещества (например, 2 г водорода или 32 г кислорода), то во взятой порции всегда окажется одно и то же число молекул, именно 66 с 22 нулями (66 · 1022). Число это носит в физике название «числа Авогадро» Вообразите, что имеется такое число не молекул, а булавочных головок. Вы желаете заказать ящик для вмещения этой огромной кучи головок. Высота ящика назначена вами в 1 км. Каковы приблизительно будут размеры его основания? Поместился ли бы такой ящик в пределах Москвы или Ленинграда?

<p>240</p>

Если в океан вылить литр спирта, то молекулы спирта распределятся через некоторое время равномерно по всей водной массе Мирового океана.

Сколько приблизительно понадобится зачерпнуть в океане литров воды, чтобы выловить одну молекулу спирта?

<p>241</p>

Во сколько приблизительно раз среднее расстояние между молекулами водорода, при 0 °C и нормальном давлении, больше поперечника газовой молекулы?

<p>242</p>

Укажите «на глаз» как велик неизвестный член пропорции:

<p>243</p>

Какой приблизительно величины были бы молекулы, если бы все тела на Земле увеличились линейно в миллион раз?

<p>244</p>

Чему приблизительно равен х в пропорции:

<p>245</p>

1. Если бы мельчайшая бактерия увеличилась до размеров земного шара, какой приблизительно величины оказались бы электрон и протон?

2. Если бы электрон сделался толщиной с волос, какой толщины оказался бы волос?

3. Если бы диаметр орбиты Нептуна был уменьшен до диаметра Земли, какой величины оказалась бы Земля?

4. Если бы диаметр Земли уменьшился до 1 мм; как велико оказалось бы (при пропорциональном уменьшении) расстояние до Сириуса?

5. Если бы вся Солнечная система уменьшилась в диаметре до толщины волоса, каково оказалось бы в соответствующем уменьшении расстояние до туманности Андромеды?

<p>246</p>

Как надо понимать утверждение новейшей физики, что энергия обладает массой и имеет вес?

<p>247</p>

Как надо смотреть на классическую механику в свете современного учения об относительности? Остается ли она в силе?

Ответы

I. Механика

<p>1. Меры крупнее метра</p>

У нас узаконена только одна метрическая мера крупнее метра: километр. Декаметр, гектометр, мириаметр в нашем стандарте отсутствуют.

<p>2. Литр и кубический дециметр</p>

Убеждение, будто литр и кубический дециметр одно и то же, С ошибочно. Они весьма близки по величине, однако не тождественны. Узаконенный литр современной системы мер производится не от куб. дециметра, а от килограмма, и представляет собою объем килограмма чистой воды при температуре ее наибольшей плотности. Объем этот больше куб. дециметра на 27 мм3.

Итак, литр несколько больше куб. дециметра.

<p>3. Мельчайшая мера длины</p>

Тысячная доля миллиметра – микрон – далеко не является самой маленькой мерой длины, употребляемой в современной науке[4]. Ее давно уже превзошли в малости сначала миллионная доля миллиметра С нанометр, затем десятимиллионная доля миллиметра С так называемый ангстрем (Е) С ныне не применяемая единица. На сегодняшний день самая малая мера длины С это нанометр. Ранее применялась сейчас уже отмененная единица «икс» (Х), представляющая собою X = 1,00206 · 10Р13 м ? 0,0001 нм. В природе, впрочем, существуют тела, для которых даже «икс» мера слишком крупная. Таков электрон, поперечник которого измеряется сотыми долями икса[5], и протон, диаметр которого, вероятно, в 2000 раз меньше.

Перечисленные малые меры длины сопоставлены ниже:

микрон 10Р6 м

нанометр 10159 м

ангстрем 10Р10м (отменена)

икс 10Р13м (отменена)

Формально, согласно системе СИ, можно использовать производные от метра величины: пикометр (10Р12 м), фемтометр (10Р15 м) и аттометр (10Р18 м), но фактически наименования величин менее нанометра не применяются.

<p>4. Наибольшая мера длины</p>

Еще не так давно наибольшей мерой длины, с какой имеет дело наука, считался «световой год» – годичный путь светового луча в пустоте. В нем 9,5 биллиона километров (9,5·1012 км). В научных сочинениях эта мера постепенно вытеснена другой, в три с лишком раза более крупной – «парсеком». Парсек (сокращение от слов «параллакс» и «секунда») равен 31 биллиону километров – 31·1012 км. Но и эта исполинская мера оказалась чересчур мелкой для промеров глубин мироздания. Астрономам пришлось ввести сначала килопарсек, заключающий 1000 парсеков, а затем и мегапарсек – миллион парсеков, побивающий в настоящее время ре – корд протяжения среди мер длины.

Его соперник – мера, называемая астрономами «единица А» и содержащая миллион световых лет, – раза в три меньше мегапарсека. Мегапарсеками измеряются расстояния до спиральных туманностей.

Рис. 57. Что такое «парсек»


Сопоставим эти огромные меры длины:

Интересно, какой длины средняя величина между самой большой и самой мелкой мерами – между мегапарсеком и иксом. Мы имеем здесь в виду, конечно, не среднеарифметическую (которая составляет, очевидно, половину мегапарсека), а среднегеометрическую. Превратив икс в километры, имеем


Х = 10–10 мм = 10–16 км.


Следовательно, среднегеометрическая между мегапарсеком и иксом равна

Наибольшая мера длины во столько же раз больше 56 км, во сколько раз 56 км больше самой мелкой меры.

<p>5. Легкие металлы. Металлы легче воды</p>

Когда заходит речь о легком металле, называют обычно алюминий. Однако он занимает далеко не первое место в ряду легких металлов: существует несколько металлов, которые легче его. Ниже приведен их перечень с указанием удельного веса (плотности) каждого:

Рекорд легкости побивает, как видим, литий[6] – металл, который легче многих пород дерева и плавает в керосине, погружаясь до половины. Он в сорок раз легче самого тяжелого металла – осмия.

Рис. 58. Призмы равного веса из некоторых легких металлов


Из сплавов, применяемых в современной промышленности, выделяются своей легкостью следующие (французские инженеры, занимающие одно из первых мест в производстве высококачественных легких сплавов, называют «легкими» все сплавы с плотностью меньше 3):

1) дюралюминий и кольчугалюминий С сплавы алюминия с небольшим количеством меди и магния; при плотности 2,6 они втрое легче железа, будучи прочнее его в полтора раза;

2) дюрбериллий – сплав бериллия с медью и никелем; он легче дюралюминия на 25 % и прочнее на 40 %;

3) электрон (не смешивать с элементарным количеством отрицательного электричества)[7] – сплав магния, алюминия и др.; почти не уступая в прочности дюралюминию, электрон легче его на 30 % (плотность 1,84).

Мы не останавливаемся здесь на ряде таких легких алюминиевых сплавов, как лоталь, силумин, склерон, конструкталь, магналий (предшественник электрона), употребляемых на Западе.

<p>6. Вещество наибольшей плотности</p>

Осмий, иридий, платина– вещества, которые принято считать самыми плотными – оказываются ничтожно плотными по сравнению с веществом некоторых звезд. Величайшей плотностью отличается материя так называемой звезды ван-Манэна, принадлежащей к зодиакальному созвездию Рыб. В 1 куб. см этой звезды (по геометрическим размерам не превышающей нашу Землю) заключается в среднем около 400 кг массы. Следовательно, вещество это в 400 000 раз плотнее воды и приблизительно в 20 000 раз плотнее платины. Мельчайшая дробинка из такого вещества (№ 12, диаметр 1,25 мм) весила бы на поверхности Земли 400 г С целый фунт! Вес той же дробинки на поверхности самой звезды ван-Манэна поистине чудовищен: 30 тонн!

Рис. 59. Немного вещества звезды ван – Манэна, объемом в четверть спичечного коробка, могло бы уравновесить три десятка взрослых людей

Рис. 60. Опрокидывание Эдисоновой стены

<p>7. На необитаемом острове</p>

«Растут ли хоть деревья на этом тропическом острове?» – спрашивает автор немецкой книжки, посвящен – ной разбору Эдисоновой викторины. Вопрос праздный, потому что для опрокидывания скалы никаких деревьев не понадобится: это можно сделать буквально голыми руками. Рассчитаем, какова толщина скалы, подозрительно не упомянутая в задаче, и дело сразу разъяснится.

При общей массе скалы 3 т и при плотности гранита 3, соображаем, что объем скалы равен 1 м3. А так как дли – на скалы 30 м (100 футов), высота около 5 м (15 футов), то толщина ее

1: (30 · 5) ? 0,007 м,

т. е. 7 мм. На острове возвышалась тонкая стена, всего в 7 мм толщины.

Чтобы подобную стену опрокинуть (если только она не врылась глубоко в почву), достаточно упереться в нее руками или плечом. Вычислим величину нужной для 78 этого силы, обозначив ее через х; на рис. 60 она изображена вектором Ах. Точка А приложения этой силы находится на высоте плеч человека (1,5 м). Сила стремится повернуть стену вокруг оси О. Момент этой силы равен

Мом. х = 1,5х.

Опрокидывающему усилию противодействует вес скалы Р, приложенный в центре ее тяжести С и стремящийся отвести поворачиваемую стену в прежнее положение. Момент силы веса относительно той же оси О равен

Мом. Р = Р · т = 3000 · 0,0035 = 10,5.

Величина силы х определяется из уравнения:

1,5х = 10,5,

откуда х = 7 кг.

Значит, напирая на стену с силою всего 7 кг, человек опрокинет скалу.

Невероятно, чтобы подобная каменная стена вообще могла удержаться в отвесном положении: самый слабый, неощутимый для нас ветерок должен был бы ее опрокинуть. Легко рассчитать указанным сейчас приемом, что для опрокидывания этой стены ветром (который можно рассматривать как силу, приложенную на половине высоты стены) достаточно общее давление ветра всего в 11/2 кг/кв. м. Между тем даже так называемый «легкий» ветер с силою давления 1 кг на 1 кв. м оказывал бы на стену давление в 150 кг.

<p>8. Вес паутинной нити</p>

Не сделав расчета, трудно дать правдоподобный ответ на этот вопрос. Расчет несложен: при диаметре паутинной нити 0,0005 см и плотности = 1 (г/см2), километр ее должен весить

а нить в 400 000 км (округленное расстояние от Земли до Луны) —

0,02 · 400 000 = 8 кг.

Такой груз можно удержать в руках.

<p>9. Модель Эйфелевой башни</p>

9. Модель Эйфелевой башни Задача эта – скорее геометрическая, чем физическая, – представляет интерес главным образом для физики, так как в физике приходится нередко сопоставлять массы геометрически подобных тел. В данном случае вопрос сводится к определению отношения массы двух подобных тел, линейные размеры одного из которых в 1000 раз меньше, чем другого. Грубой ошибкой было бы думать, что уменьшенная в такой пропорции модель Эйфелевой башни весит не 9000 т, а 9 т, т. е. всего в тысячу раз меньше. Объемы, а следовательно, и массы геометрически подобных тел относятся, как кубы их линейных размеров. Значит, модель башни должна иметь массу меньше натуры в 10003, т. е. в миллиард раз:

9 000 000 000: 1 000 000 000 = 9 г,

– масса, крайне ничтожная для железного изделия вы – сотою 30 см. Это будет казаться, однако, не столь странным, если сообразим, какой толщины оказались бы брусья нашей модели: в тысячу раз тоньше натуры, они должны быть тонки, как нитки: модель окажется словно сотканной из тончайшей проволоки[8], так что удивляться ее незначительной массе не приходится.

<p>10. Тысяча атмосфер под пальцем</p>

Для многих будет, вероятно, полной неожиданностью утверждение, что, втыкая пальцем острую иглу или булавку в ткань, мы производим давление порядка 1000 ат. В этом нетрудно, однако, убедиться. Измерив – например, с помощью весов для писем – силу, с какой палец напирает на втыкаемую булавку, получим около 300 г, или 0,3 кг. Диаметр кружка, на который давление это распространяется (острие булавки), – примерно 0,1 мм, или 0,01 см; площадь такого кружка равна около

3 · 0,012 = 0,0003 см2.

Отсюда давление на 1 cм2 составляет

0,3: 0,0003 = 1000 кг.

Так как техническая атмосфера равна давлению 1 кг/см2, то, втыкая булавку, мы производим давление в 1000 технических атмосфер. Рабочее давление пара в цилиндре паровой машины в сотню раз меньше.

Портной, работая иглой, поминутно пользуется давлением в сотни атмосфер, сам не подозревая, что развивает пальцами руки такое чудовищное давление. Не задумывается над этим и парикмахер, срезая волосы ост – рой бритвой. Бритва напирает на волос с силою, правда, 1 70–тонные брусья Эйфелевой башни заменились бы в модели проволочками, весящими 0,07 г. 81 всего нескольких граммов; но острие ее имеет в толщину не более 0,0001 cм, диаметр же волоса менее 0,01 см; площадь, на которую распространяется давление бритвы, равна в данном случае величине порядка

0,0001 · 0,01 = 0,000 001 cм2.

Удельное давление силы в 1 г на такую ничтожную площадь составляет

1: 0,000 001 = 1 000 000 г/см2 = 1000 кг/см2,

т. е. опять-таки 1000 ат.

Так как рука напирает на бритву с силою большею 1 г, то давление бритвы на волос достигает десятков тысяч атмосфер.

<p>11. Сто тысяч атмосфер силою насекомого</p>

Сила насекомых так мала по абсолютной величине, что возможность для них производить давление в сто тысяч атмосфер представляется невероятной. Между тем существуют насекомые, способные производить даже еще большие давления. Оса вонзает жало в тело жертвы с силою всего 1 мг или около того. Но острота осиного жала превосходит все, что может быть достигнуто средствами нашей изощренной техники; даже так называемые микрохирургические инструменты гораздо тупее осиного жала. Микроскоп при самом сильном увеличении не обнаруживает на острие осиного жала никакого уплощения. Взглянув же в «сверхмикроскоп» на кончик иглы, мы увидели бы картину вроде той, какая изображена на рис. 61: подобие горной вершины.

Рис. 61. Острие иглы при чрезвычайно сильном увеличении походило бы на горную вершину


Лезвие ножа, если бы на него взглянуть в такой микроскоп, похоже было бы скорее на пилу или, если угодно, на горную цепь (рис. 62). Жало осы, пожалуй, самая острая вещь в при – роде: радиус закругления ее острия не превышает 0,00001 мм, в то время как у хорошо отточенной бритвы он не менее 0,0001 мм и достигает 0,001 мм.

Рис. 62. Лезвие ножа при сильном увеличении походило бы на горную цепь Вычислим площадь, по какой распределяется сила осы в 0,001 г, т. е. площадь кружка радиусом 0,00001 мм.


Принимая ради простоты ? = 3, имеем, что площадь это – го кружка в кв. сантиметрах:

S = 3 · 0,000 0012 см2 = 0,000 000 000 003 см2.

Сила, действующая на эту площадь в первый момент прокалывания, равна 0,001 г. = 0,000 001 кг. Давление получается равным

(Возможно, впрочем, что в действительности дело обстоит иначе: прокалываемый материал уступает раньше, чем давление достигнет такой чудовищной степени. Это значит, что осе не приходится развивать силы в 1 мг, – она прилагает к жалу гораздо меньшее усилие, в зависимости от прочности прокалываемого материала.)

<p>12. Гребец на реке</p>

Даже люди, занимающиеся водным спортом, дают часто неправильный ответ на поставленный в задаче вопрос: им кажется, что грести против течения труднее, чем по течению, и, следовательно, перегнать щепку легче, чем отстать от нее.

Безусловно верно, что пристать к какому-нибудь пункту берега, гребя против течения, труднее, чем гребя по течению. Но если пункт, которого вы желаете достигнуть, плывет вместе с вами, как щепка на реке, – дело существенно меняется. Надо иметь в виду, что лодка, движимая течением, находится по отношению к несущей ее воде в покое. Сидя в такой лодке, гребец работает веслами совершенно так же, как в неподвижной воде озера. На озере одинаково легко грести в любом направлении; то же самое будет и в текущей воде при наших условиях.

Итак, от гребца потребуется одинаковая затрата работы, безразлично – стремится ли он обогнать плывущую щепку или отстать от нее на такое же расстояние.

<p>13. Флаги аэростата</p>

Если аэростат несется течением воздуха, то скорость обоих одинакова: аэростат и окружающий его воздух находятся в покое один относительно другого. Значит, флаги должны свисать отвесно, как в неподвижном воздухе, т. е. в безветренную погоду. Люди в гондоле такого аэростата не ощущают ни малейшего ветра, хотя бы их мчал ураган.

Изложенные сейчас соображения, при всей своей простоте, представляются многим почему-то парадоксальными; следствия из них не сразу воспринимаются. Одного автора ряда книг по авиации и воздухоплаванию мне удалось убедить в их правильности только после продолжительной беседы.

<p>14. Круги на воде</p>

Если не найти сразу правильного подхода к этой задаче, то легко запутаться в рассуждениях и прийти к выводу, что в текущей воде волны должны вытянуться в форме не то эллипса, не то овала, притупленного навстречу течению. Между тем, внимательно наблюдая за волнами, разбегающимися от брошенного в реку камня, мы не заметим никакого отступления от круговой формы, как бы быстро ни было течение.

Здесь нет ничего неожиданного. Простое рассуждение приведет нас к выводу, что волны от брошенного камня должны быть круговые и в стоячей и в текущей воде. Будем рассматривать движение частиц волнующейся воды как составное из двух движений: радиального – от центра колебаний, и переносного, направленно – го по течению реки. Тело, участвующее в нескольких движениях, в конечном итоге перемещается туда, где очутилось бы оно, если бы совершало все составляющие движения последовательно, одно за другим. Поэтому до – пустим сначала, что камень брошен в неподвижную воду. В таком случае волны, конечно, получатся круговые.

Представим себе теперь, что вода передвигается, – безразлично с какой скоростью, равномерно или неравно – мерно, лишь бы движение это было поступательное. Что произойдет с круговыми волнами? Они передвинутся параллельным перемещением, не претерпевая никакого искажения, т. е. формы останутся круговыми.

<p>15. Бутылки и пароходы</p>

Ответ на оба вопроса задачи одинаков: пароходы вернутся к бутылкам одновременно.

Решая задачу, надо прежде всего принять в соображение, что река несет на себе бутылки и пароходы с одной и той же скоростью и что, следовательно, течение нисколько не изменяет их относительного расположения. Можно принять поэтому, что скорость течения равна нулю. А при таком условии, т. е. в стоячей воде, каждый пароход подойдет к бутылке спустя столько же времени (после поворота), сколько прошло с тех пор, как он ее кинул, т. е. через четверть часа.

<p>16. Закон инерции и живые существа</p>

  • Страницы:
    1, 2, 3, 4, 5