Современная электронная библиотека ModernLib.Net

Поиски истины

ModernLib.Net / Физика и астрономия / Мигдал А. / Поиски истины - Чтение (стр. 3)
Автор: Мигдал А.
Жанр: Физика и астрономия

 

 


Именно поэтому так мало серьезных ученых, занимающихся поисками крайне неожиданных явлений вроде телепатии. Неразумно прилагать большие усилия, если согласно интуитивной оценке вероятность удачи ничтожно мала. Ведь пока нет сколько-нибудь убедительных для ученого теоретических или экспериментальных указаний на само существование телепатии. Зато после первого же научного результата в эту область устремились бы громадные силы. Так и должна развиваться наука. Мы сознательно проходим мимо мест, где, может быть, и можно найти клад, и направляемся туда, где вероятность найти его, по нашей оценке, наибольшая. Иначе не хватит сил на продвижение вперед.
      Интуитивная оценка вероятности успеха всегда субъективна и требует научного опыта. К сожалению, ничего лучшего для выбора разумного направления поисков, чем научные конференции, семинары и обсуждения со специалистами, придумать пока не удалось.
      Вот краткое заключение наших рассуждений о научном методе исследования: схема научного познания выглядит так: эксперимент, правдоподобные предположения, гипотезы, теория - эксперимент - уточнение, проверка границ применимости теории, возникновение парадоксов, теория, интуиция, озарение - скачок - новые гипотезы и новая теория - и снова эксперимент-Научный метод, в основе которого лежит объективность, воспроизводимость, открытость новому, - великое завоевание человеческого разума. Этот метод развивался и совершенствовался и был отобран как самый рациональный - из требования минимума потерь времени и идей. Уже более трех веков наука руководствуется им, и при этом ничего не было загублено.
      Неизбежный элемент любого развития - заблуждения, но научный метод придает науке устойчивость, заблуждения быстро устраняются силами самой науки.
      Критики научного метода любят приводить исторические примеры заблуждений и давать рецепты, как можно было бы их избежать. Они уподобляются жене из старой одесской поговорки: «Я хотел бы быть таким умным, как моя жена потом».
      Какими инструментами пользуется наука в процессе познания? Разумеется, прежде всего здравым смыслом и законами логики. Но, кроме вытекающих из этого и общих для всех сфер исследования методов, в естественных науках были развиты и проверены на опыте принципы, позволяющие избегать ошибок и быстрее приходить к цели. Некоторые из них мы уже упоминали, поговорим о них более подробно.

ИНСТРУМЕНТЫ ПОЗНАНИЯ

 
      …красота - не прихоть полубога, А хищный глазомер простого столяра.
      О. Мандельштам
      Принцип причинности: причина предшествует следствию. Мы увидим, что причинность физических явлении действительно может быть проверена на опыте.
      Любая теория должна удовлетворять принципу соответствия: переходить в предшествующую, менее общую теорию в тех условиях, в которых эта предшествующая была установлена. Этот принцип отражает преемственность науки, мы обсуждали его в предыдущем разделе.
      Принцип наблюдаемости, который сыграл такую важную роль в становлении физики XX века: в науку должны вводиться только те утверждения, которые могут быть хотя бы мысленно, хотя бы в принципе проверены на опыте. Впрочем, как станет ясно, это требование нельзя применять без оговорок.
      В трудный период становления квантовой механики, период мучительных споров, вызванных противоречием между вероятностным характером предсказаний новой теории и однозначной причинностью классической физики, Нильс Бор ввел принцип дополнительности, согласно которому некоторые понятия несовместимы и должны восприниматься только как дополняющие друг друга. Так, измерение координаты частицы делает неопределенным понятие скорости. Идея дополнительности позволяет понять и примирить такие противоположности, как физическая закономерность и целенаправленное развитие живых объектов.
      Древние говорили: «Natura поп fecit saltis» («Природа не делает скачков»). Это означает, что величины, встречающиеся в природе, - непрерывные функции других величин. Скачки, которые возникают в теориях, - результат разумной идеализации процессов, в реальности скачки хоть мало, но заглажены. С этим характером физических функций связана целая область теоретической физики, которая изучает так называемые «аналитические свойства» физических величин.
      Требование красоты научной теории, как мы увидим, также есть один из принципов познания. Одно из проявлений красоты в физике - свойства симметрии законов природы, например, неизменность уравнений электродинамики при переходе к движущейся системе координат или при изменении знака времени. Свойствам симметрии будет посвящена целая глава; мы увидим, что каждому типу симметрии соответствует свой закон сохранения.
      Законы сохранения дают нам в руки могучий способ проверки правильности результатов - достаточно увидеть, что в предлагаемой теории нарушается хорошо установленная симметрия, как это тут же послужит основанием для серьезных сомнений в правильности теории. Так, закон сохранения энергии - следствие однородности времени - есть хорошо проверенное на опыте очень общее свойство природы. Когда мы сталкиваемся с нарушением закона сохранения энергии в какой-либо теоретической конструкции, мы считаем ее неверной. Это дало право Французской академии наук принять решение не рассматривать никаких проектов «вечного двигателя». В следующей главе в разделе «Секреты ремесла» мы увидим, как, пользуясь симметрией, можно сразу же обнаружить ошибку в рассуждениях.
      Обсудим более внимательно принципы причинности, наблюдаемости и дополнительности.
      Яйцо из курицы или курица из яйца?
      Что раньше - причина или следствие? Наш повседневный опыт дает однозначный ответ на этот вопрос,
      но можно ли этому доверять? Как сделать строгую проверку? Как ни странно на первый взгляд, сомнение правомерно и проверка может быть сделана. Причина действительно предшествует следствию. А на вопрос, поставленный в заглавии, ответить нельзя.
      Если свет рассеивается на каком-нибудь теле, то, конечно, рассеянная волна вызвана падающей. Если падающая волна имеет вид короткого импульса, то и рассеянная волна будет иметь похожий вид. Если есть причинность, следствие должно быть после причины, и всплеск рассеянной волны должен быть сдвинут относительно падающего всплеска. Отсюда уже строго математически выводят, что интенсивность рассеянной волны должна быть связана простым соотношением с поглощающей способностью рассеивателя. Такая связь называется «дисперсионным соотношением». Вместо того чтобы проверять сдвиг всплеска, можно проверить выполнимость этого соотношения. И эта связь действительно проверялась на опыте. В пределах ошибок эксперимента не обнаружилось нарушения причинности: следствие возникает после причины. Тот факт, что проверка могла быть сделана, и показывает логическую оправданность сомнения. Всякое содержательное утверждение может быть подтверждено или опровергнуто, в этом доказательство его содержательности. То, что не требует проверки, относится к тривиальным истинам.
      Существует еще одна проверка, тоже на первый взгляд ненужная. Если какое-либо событие с той или иной вероятностью приводит к нескольким следствиям, то сумма всех вероятностей должна равняться единице, то есть хоть что-нибудь, да непременно произойдет. В квантовой механике данное утверждение выглядит немного сложнее. Там складываются не вероятности, а амплитуды волновой функции, квадрат которой дает вероятность. Грубо говоря, складываются корни из вероятностей. Но и в этом случае должно соблюдаться требование, чтобы полная вероятность всех событий равнялась единице. Отсюда вытекает определенное соотношение между наблюдаемыми величинами, и оно может быть проверено на опыте. Называется такое свойство «унитарность» (единичность). Если бы условие унитарности нарушалось, это означало бы либо несостоятельность теории, либо необходимость углубления понятия вероятности. Пока мы не сталкивались с нарушением унитарности.
      Не насиловать природу, а спрашивать ее
      Опасность введения предвзятых понятий, основанных на повседневном опыте, была ясна уже Галилею, который в «Разговорах» призывает к «меньшей доверчивости к тому, что на первый взгляд представляют нам чувства, способные нас легко обмануть… Лучше… постараться посредством рассуждения или подтвердить реальность предположения, или разоблачить его обманчивость».
      В начале XX века этот призыв превратился в требование наблюдаемости вводимых понятий. В 1905 году Эйнштейн, создавая теорию относительности, начал
      с анализа понятия одновременности. Это понятие раньше вводилось в науку интуитивно без указаний на какой-либо, хотя бы принципиально, возможный способ проверки. Эйнштейн задался целью выяснить, является ли понятие одновременности относительным, то есть изменяется ли оно при переходе к движущейся системе координат. Совпадает ли понятие одновременности для наблюдателя, стоящего на земле, и наблюдателя, равномерно движущегося относительно нее?
      Чтобы ответить на этот вопрос, нужно было дать способ физического определения одновременности. Эйнштейн предложил следующее: две вспышки света в точках А и В считаются одновременными, если свет от них приходит в точку, лежащую посередине, одновременно. Из этого определения немедленно вытекает, что события, одновременные для неподвижного наблюдателя, не одновременны для наблюдателя, движущегося относительно платформы, на которой выбраны точки А и В. Действительно, пусть платформа проносится мимо нас в сторону от А к В. Если в средней точке платформы обе вспышки были получены одновременно, то наблюдатель на платформе скажет, что вспышки в А и В произошли одновременно, тогда как неподвижный наблюдатель будет считать, что одна вспышка произошла позже - ведь средняя точка движется навстречу свету, и вспышке от В до середины приходится пройти меньшее расстояние, чем вспышке от А.
      Итак, одновременность оказывается понятием относительным. Но если так, то и длина, скажем, какого-нибудь стержня тоже оказывается относительной, ведь для того, чтобы установить ее, нужно одновременно измерить положение левого и правого концов. Когда такое измерение будет делать физик, находящийся на платформе, неподвижный наблюдатель увидит, что он измеряет левый и правый концы не одновременно. Правильное, с точки зрения неподвижного наблюдателя, значение будет отличаться от значения, определенного движущимся наблюдателем.
      По существу, вся частная теория относительности возникает как следствие последовательно проведенного принципа наблюдаемости. Единственное, на чем мы основывали рассуждения, - независимость скорости света от движения источника, а это следует из уравнений Максвелла и с большой точностью было проверено на опыте Альбертом Майкельсоном в 1881 году. Простые алгебраические вычисления привели Эйнштейна к объяснению лоренцова сокращения: длина движущегося со скоростью v предмета / сокращается в направлении движения по сравнению с длиной неподвижного /0:/=/0]/1-v2/c2. У Лоренца это сокращение получалось из сложного расчета электродинамических сил, действующих между движущимися зарядами, а эйнштейновский результат - всеобщий, не зависящий от устройства тел, он является следствием свойств пространства и времени, общих для всех явлений. Аналогично интервал времени t в движущейся системе удлиняется по сравнению с интервалом t0 между теми же событиями, измеренными в неподвижной системе t=t0/sqrt(l-v2/c2). Эта формула с большой точностью проверена на опыте. Время распада быстродвижущегося пиона оказывается большим, чем время жизни неподвижного.
      Для тел, движущихся со скоростями, малыми по сравнению со скоростью света, поправки, вызываемые этими соотношениями, ничтожно малы. Из приведенных выражений видно, что скорость материальных тел не может превысить скорость света.
      В ньютоновой механике считалось, что время течет одинаково для всех наблюдателей. Связь координаты и времени движущегося и неподвижного наблюдателей имела вид: х'= x+vt; t'=t. Эту связь мы должны будем теперь изменить: x'=/gamma(x+vt), где /gamma - множитель, который стремится к единице при малых скоростях. Так как оба наблюдателя отличаются друг от друга только знаком скорости, то должно быть аналогичное равенство: х = /gamma (х' - vt'). Величина /gamma сразу получится из требования, чтобы скорость света была одинакова в той и в другой системах, то есть чтобы при x = ct получалось х' = ct'. Отсюда сразу же следует, что Y=l//sqrt(l-v2/с2) и, кроме того, вытекают те соотношения для сокращения длины и удлинения времени, которые мы уже приводили. Предлагаю читателям самим получить эти результаты.
      Часто приходится слышать, что все гениальное просто. К сожалению, это далеко не так. Частная теория относительности - единственная из теорий XX века, обладающая простотой технических средств. Все трудности ее заключены в основной идее. Последующие теорий не только сложны идейно, но и требуют для своей формулировки сложного математического аппарата. Так, общая теория относительности, квантовая механика, квантовая электродинамика, теория элементарных частиц не подпадают под характеристику «все гениальное просто».
      Принцип наблюдаемости сыграл огромную роль в создании квантовой механики, особенно при анализе ее физического смысла. Вернер Гейзенберг проверил на наблюдаемость такие понятия, как координата и скорость, проделывая мысленные эксперименты по их определению. Выяснилась принципиальная невозможность одновременного точного измерения координаты и скорости: любой мыслимый акт измерения координаты вносит непредсказуемую отдачу и делает неопределенным значение импульса частицы (см. с. 165).
      Нужно ли требовать, чтобы в науку входили только непосредственно наблюдаемые величины? Этим требованием руководствовался Гейзенберг при создании матричной механики (1925 г.). Другой метод подхода - волновая механика Шрёдингера (1925 г.), где не ставилось такой задачи; в теорию вводилась волновая функция, не измеряемая непосредственно на опыте, и даже содержащая неизмеримые характеристики. В 1926 году Эрвин Шрёдингер показал эквивалентность обоих подходов. Более того, форма квантовой механики Шрёдингера оказалась гораздо более удобной. Подобная ситуация возникала уже в классической физике: уравнения электродинамики удобнее решать, вводя векторные потенциалы, не измеряемые на опыте.
      Дальнейшее развитие теоретической физики показало принципиальное преимущество некоторой свободы во введении понятий.
      Поучительна история так называемой S-матрицы, или матрицы рассеяния. Это способ, предложенный Гейзен-бергом в 1943 году, записать в компактной форме все результаты возможных экспериментов по изучению системы. Для изучения любой системы необходимо найти амплитуды рассеяния всех возможных частиц, взаимодействующих с системой. Все эти амплитуды содержатся в S-матрице. Введение S-матрицы позволило получить много важных соотношений. Успех этого метода привел в 50-х годах к идее получить замкнутые уравнения для матрицы рассеяния, связывающие между собой все возможные амплитуды рассеяния, и таким образом построить теорию элементарных частиц, не обращаясь к их внутреннему устройству, связывая непосредственно данные эксперимента.
      Если позволительно применить к разумной на первый взгляд физической идее эпитет «вредная», то он здесь вполне уместен. Эта идея отвлекла многих талантливых людей от более плодотворных направлений. Впрочем, издержки неизбежны, наука не развивается по прямой.
      Поскольку S-матрица имеет дело только с поведением частиц, разведенных на большие расстояния, где их можно наблюдать изолированно, то, разумеется, в ней теряются такие частицы, как кварки (см. с. 141), которые не существуют в изолированном виде.
      Без вхождения в механизм взаимодействия элементарных частиц и полей на малых расстояниях невозможно построить разумную теорию. Поэтому попытки построить замкнутую систему уравнений для матрицы рассеяния оказались безнадежными. Успехи последнего времени в теоретической физике элементарных частиц покоятся на квантовой теории поля, изучающей взаимодействия полей и частиц как на малых, так и на больших расстояниях.
      Требование буквальной наблюдаемости оказалось слишком стеснительным для современной физики.
      «Только полнота порождает ясность, но истина скрывается в бездне» (Ф. Шиллер)
      На Нильса Бора, по словам его близкого сотрудника Леона Розенфельда, большое влияние оказал мало известный у нас датский писатель и философ Серен Кьер-кегор. Может быть, в этом истоки той неожиданной формы диалектики, которая характерна для Нильса Бора. Так, он говорил: «Каждое высказанное мною суждение надо понимать не как утверждение, а как вопрос». Или: «Есть два вида истины - тривиальная, которую отрицать нелепо, и глубокая, для которой обратное утверждение - тоже глубокая истина». Можно сформулировать эту мысль более мягко: содержательность утверждения проверяется тем, что оно может быть опровергнуто.
      Принцип дополнительности, о котором пойдет речь, - вершина боровской диалектики.
      В начале 1927 года произошли два важных события: Вернер Гейзенберг получил соотношение неопределенности, а Нильс Бор сформулировал принцип дополнительности.
      Анализируя все возможные мысленные эксперименты по измерению координаты и скорости частицы, Гейзенберг пришел к заключению, что одновременное их измерение ограничено в своих возможностях: чем точнее мы измеряем координату электрона, например, освещая его светом короткой волны, тем менее определенной делается скорость электрона из-за неопределенной отдачи, которую он получает при взаимодействии с волной. Формула, полученная Гейзенбергом, так проста, что ее стоит здесь написать: /del q /del p›=h. В правой части стоит постоянная Планка, а слева - неопределенность координаты, помноженная на неопределенность импульса (количества движения) частицы. Мы недаром употребили слово «неопределенность». Не ошибка, не незнание, а именно неопределенность. Ведь принципиальная невозможность измерить означает согласно принципу наблюдаемости неопределенность самого понятия.
      Точное определение координаты делает полно~тью неопределенным импульс. Эти два понятия ограничивают и дополняют друг друга. Согласно Бору соотношение неопределенности Гейзенберга есть проявление принципа дополнительности (см. с. 165).
      Слова Гегеля о единстве и борьбе противоположностей, как и всякое слишком общее суждение, от частого повторения могут показаться тривиальными. Боровская идея дополнительности понятий дает мысли Гегеля новое воплощение. Именно понятие дополнительности позволяет примирить, казалось бы, непримиримое: ведь электрон проявляет себя в различных экспериментах то как частица, то как волна.
      Частица-волна - две дополнительные стороны единой сущности. Нельзя подчеркивать одну из этих сторон в ущерб другой. Квантовая механика осуществляет синтез этих понятий, поскольку она позволяет предсказать исход любого опыта, в котором проявляются как корпускулярные, так и волновые свойства частиц.
      Идею дополнительности Нильс Бор иллюстрировал и применял во многих областях.
      Сводятся ли биологические закономерности к физико-химическим процессам? Казалось бы, все биологические процессы определяются движением частиц, составляющих живую материю. Предельное выражение этой точки зрения: «Физиология - это физическая химия азотсодержащих коллоидов». Но ведь ясно, что такая точка зрения, которую часто называют «механистической», отражает только одну сторону дела. Другая сторона, более важная, - это закономерности живой материи, которая хотя и определяется законами физики и химии, но не сводится к ним. Для биологических процессов характерна финалистическая закономерность. Она отвечает на вопрос «зачем», физика же отвечает на вопрос «почему».
      Существует и другая крайность: виталисты считают существенной только биологическую закономерность, отрицая и игнорируя физико-химическую сторону биологических процессов. Правильное понимание биологии возможно только на основе дополнительности физико-химической причинности и биологической целенаправленности. По мнению Дж. Холтона, Нильс Бор, размышляя об этом, как бы выполнял сыновний долг: его отец, физиолог Христиан Бор, стоял на точке зрения витализма. Понятие дополнительности показывает односторонность обеих точек зрения и позволяет строить описание живых процессов на основе взаимодополняющих подходов.
      Полнота описания природы только в понимании дополнительности понятий. Можно привести много примеров дополнительности - так, физическая картина явления и его математическое описание дополнительны. Создание физической картины требует пренебрежения деталями и уводит от математической точности. И наоборот- попытка точного математического описания явлений затрудняет ясное понимание.
      Вот еще пример. С. Аверинцев пишет в статье, помещенной в энциклопедии «Мифы народов мира»: «Сатана противостоит богу… как падшее творение бога и мятежный подданный его державы, который только и может, что обращать против бога силу, полученную от него же, и против собственной воли в конечном счете содействовать выполнению божьего замысла…» Мефистофель у Гёте говорит: «Я тот, кто вечно хочет зла и вечно совершает благо…»
      Бор однажды сказал: «Нельзя одновременно смотреть глазами любви и справедливости», - он понял, что не способен наказать провинившегося сына. На вопрос «Что дополнительно понятию истины?» Бор ответил: «Ясность».
      Именно в этом смысл слов Шиллера, которые стоят в заглавии.

ЗАБЛУЖДЕНИЯ

      Я предпочитаю вредную истину полезной ошибке, истина сама исцеляет зло, которое причинила.
      И.-В. Гёте
      Когда система заблуждений преподносится под видом научной теории, ее называют лженаукой. К сожалению, это слово часто употребляли лжеученые, порочившие подлинные научные достижения, пытавшиеся привесить ярлык лженауки кибернетике, молекулярной биологии, генетике, теории относительности, но другого слова не придумано, и - хочешь не хочешь - придется пользоваться этим.
      Как установить, где наука и где лженаука, особенно если речь идет об истинах, еще не установленных окончательно? Ведь истина одна, а заблуждений неисчислимое множество. Классифицировать все разновидности лженауки трудно и неинтересно, достаточно провести границу, отделяющую ее от науки, и перечислить главные признаки.
      «Незнание не довод, невежество не аргумент»
      (Спиноза)
      Что такое лженаука? Может быть, это то, что противоречит представлениям науки сегодняшнего дня? Ни в коем случае! Именно работы, убедительно доказывающие противоречивость принятых моделей, могут привести к научной революции. Даже незаконченные работы такого рода вызывают дискуссии и побуждают к дальнейшим исследованиям.
      Так, закон зеркальной симметрии явлений природы подтверждался многими опытами и прочно вошел в представления физиков. Но опыты по проверке этого, казалось бы, точного закона, разумеется, никто не отнес к области лженауки, и результатом явилось важнейшее открытие - оказалось, что закон зеркальной симметрии нарушается при радиоактивном распаде.
      Нужно ли считать лженаучными работы, основанные на предположениях, которые, как выясняется потом, в результате исследований оказываются неверными? Раз-
      умеется, не нужно. Подтверждение предположений не единственный критерий научной ценности работы. И отрицательный результат дает важную информацию - исключается одна из возможностей.
      Лженаука - это попытка доказать утверждение, пользуясь ненаучными методами, прежде всего выводя заключение из неповторяемого неоднозначного эксперимента или делая предположения, противоречащие хорошо установленным фактам.
      А куда отнести незаконченные научные работы, не устанавливающие истину, а только намекающие на ее существование? Они требуют дальнейшей проверки научными методами. Если такую проверку не сделают и объявят без основания работу законченной, она может перейти в разряд лженауки.
      Непонимание того, какой мучительный творческий процесс отделяет научный результат от первоначальной идеи, преувеличение ценности неоконченных работ, стремление заменить недоделанное догадками - все это в конечном счете приводит к лженауке.
      Аристотель утверждал, что тяжелые тела падают быстрее, чем легкие. Он считал это очевидным и не требующим проверки. Авторитет же его был так велик, что прошло более пятнадцати столетий, прежде чем это утверждение было опровергнуто. Галилей проанализировал свои опыты по движению тел по наклонной плоскости и пришел к заключению, что все тела на поверхности Земли должны падать с одинаковым ускорением.
      Опыты, опровергнувшие Аристотеля, были актом не только научного, но и гражданского мужества - авторитет Аристотеля строго охранялся церковью. Окончательным судьей истины стал эксперимент.
      Навязывание природе умозрительных идей - один из источников заблуждений.
      Это те редкие случаи, когда наука соприкасается с лженаукой. Обычно дело обстоит грубее и проще - смутная идея объявляется достоверной истиной; то, что противоречит ей, замалчивается, а то, что подтверждает, громко рекламируется.
      Вот описание эксперимента в работе, доказывающей самозарождение жизни и возведенной лжеучеными на уровень мирового открытия: «…методика заключалась в том, что 20 гидр растирались в ступке, затем к этой кашице прибавлялось 8 капель водопроводной воды, насыщенной путем встряхивания воздухом… Через час появляются мельчайшие блестящие точки величиной с укол булавки… из них развиваются шарообразные тельца - коацерваты… Поведение шариков, их развитие свидетельствуют об их жизнедеятельности. Они живые». Примечаний не требуется.
      Вот еще один пример, взятый со страниц - увы! - научно-популярного журнала: «…триста лет тому назад любили физику выводить из биологии (считали, например, что кристалл растет из семени). Сейчас этот настрой мысли возрождается: кое-кто среди физиков говорит о прапсихике атома».
      Насколько мне известно, ни о прапсихике атома, ни о сексуальности двухатомных молекул, ни о шизофрении распадающихся ядер физики с нормальной психикой, занимающиеся наукой, не говорят.
      Разговоры о превращении лженауки в науку и обратно возникают из смешения понятий - словом «лженаука» часто обозначают либо заблуждения, либо поиски неожиданного. Заблуждения неизбежны в науке, но заблуждения не есть лженаука, так же как и неудавшиеся поиски неожиданного, если они возникают и устраняются научными методами в процессе познания.
      По нашему определению даже поиски «философского камня», превращающего все металлы в золото, нельзя безоговорочно отнести к лженауке - эта идея не противоречила научным фактам средневековья. Те алхимики, что ставили воспроизводимые эксперименты, внесли свой вклад в познание природы.
      «- Трудно представить себе, чтобы на коне жили мыши, - сказала Алиса. - Трудно, - ответил Белый Рыцарь, - но можно»
      (Л. Кэрролл)
      К сожалению, случается, что ученые догматического склада объявляют лженаукой добросовестные научные поиски неожиданных явлений, то есть таких, которые противоречат принятым представлениям (но не установленным фактам!).
      Было бы очень хорошо, если бы серьезные экспериментаторы непредвзято изучали явления такого рода, как телепатия. Исследуйте, ставьте эксперименты, только эксперименты научные, по правилам, принятым в науке со времен Фрэнсиса Бэкона. Толчок для рождения идеи могут дать и рассказы очевидцев, и поверья, и слухи, и неожиданные ассоциации, но от идеи до истины так далеко, что из сотен идей едва ли выживает одна.
      Разумеется, одного только желания доказать невероятное недостаточно. Необходимо сначала сформулировать исследовательскую задачу, найти и разработать достаточно убедительный метод исследования, который позволил бы установить явление.
      Вокруг живых организмов существуют физические поля - электрическое, световое, звуковое, и они довольно хорошо изучены. Так, измеряя электрическое поле, меняющееся в ритме сердца, можно снимать кардиограмму, не касаясь тела. Поля эти быстро убывают с расстоянием и уже в нескольких метрах неотличимы от случайных «шумовых» полей. Физические поля, излучаемые человеком, не могут объяснить таких явлений, как передача мыслей или изображений на большие расстояния. Нельзя ли предположить, что, кроме известных, есть еще необнаруженные физические поля?
      В интересующей нас области энергий и частот все сколько-нибудь заметные поля, действующие на физические приборы, исчерпывающе изучены. Если бы, скажем, на электрон, движущийся в ускорителе, действовало бы еще какое-то поле, то движение отличалось бы от расчетного, чего не происходит на опыте. Вероятность обнаружить физическое поле новой, еще неизвестной природы в макроскопической области настолько мала, что с ней вряд ли следует считаться.
      А нет ли каких-нибудь нефизических полей, которые испускаются и принимаются живыми существами и дают право на существование такому чудесному явлению, как телепатия? Нет ли вокруг организмов особого «биополя»? Конечно, это биополе не могло бы объяснить перемещения неодушевленных предметов силой духа или уменьшения силы тяжести - такие явления прямо противоречат хорошо установленным физическим законам. Ведь ни в одном добросовестном физическом эксперименте желание экспериментатора не влияло на результат измерений, хотя физикам приходится иметь дело с необычайно легкими и легко перемещающимися предметами. Даже самые слабые способности к изменению веса сделали бы невозможным такое простое измерение, как взвешивание на аналитических весах - при равном весе одна из чашек по желанию экспериментатора делалась бы тяжелее. Как могло бы случиться, что физики, измерявшие силу тяжести с точностью до миллиардной доли грамма, не обнаружили бы грубого нарушения законов тяготения? Тщательный анализ выигрышей в рулетку не показывает отклонений от теории вероятности. А ведь стоило бы экстрасенсу заняться перемещением шарика, как все расчеты вероятности выигрыша были бы нарушены.
      Мы оставляем в стороне возможные чисто физические причины перемещения легких предметов, которые всегда учитываются в физических экспериментах, например, давлением ультразвука, испускаемого живым объектом. Такие явления относятся к биофизике и не имеют ничего общего с тем миром сверхъестественного, который так волнует людей, далеких от естественных наук.

  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15