Современная электронная библиотека ModernLib.Net

Эйнштейн (Жизнь, Смерть, Бессмертие)

ModernLib.Net / История / Кузнецов Б. / Эйнштейн (Жизнь, Смерть, Бессмертие) - Чтение (стр. 24)
Автор: Кузнецов Б.
Жанр: История

 

 


      347
      Но Эйнштейн понимал, что дело не только в последующей математической разработке физической теории, в последующем преодолении математических трудностей и получении численных решений уравнений поля. Для Эйнштейна теория но имеет права называться физической, если она по включает физической идеи, допускающей сопоставление с наблюдениями.
      Подобная идея была тесно связана с тем или иным отношением к теории микромира. Эйнштейн думал, что единая теория поля позволит вывести квантово-статистические закономерности микромира из нестатистических (управляющих не вероятностями, а самими фактами), более глубоких и общих закономерностей бытия. Тем самым были бы устранены и некоторые позитивистские тенденции в физике.
      "Я работаю, - писал Эйнштейн Соловину в 1938 г., - со своими молодыми людьми над чрезвычайно интересной теорией, которая, надеюсь, поможет преодолеть современную мистику вероятности и отход от понятия реальности в физике..." [3]
      В письме к Соловину через двенадцать лет Эйнштейн признает, что единая теория поля еще не может быть проверена, так как математические трудности не позволяют придать ей вид, допускающий однозначную оценку. Общие, философские и логические аргументы не убеждают физиков.
      "Единая теория поля теперь уже закончена... Несмотря на весь затраченный труд, я не могу ее проверить каким-либо способом. Такое положение сохранится на долгие годы, тем более что физики не воспринимают логических и философских аргументов" [4].
      3 Lettres a Solovine, 75.
      4 Ibid., 107.
      Неужели беспримерное напряжение всех сил гениального мыслителя, продолжавшееся почти тридцать лет, было бесплодным?
      Попытке ответа на этот вопрос должно предшествовать изложение другой линии развития физики в тридцатые - пятидесятые годы.
      348
      Квантовая механика, созданная в 1924-1926 гг., была нерелятивистской теорией. В ней не учитывались процессы, предсказанные теорией относительности, например изменение массы электрона в зависимости от его скорости. В 1929 г. Дирак написал релятивистское волновое уравнение, которому подчинено движение электрона. В нем учитывались такие релятивистские поправки, как изменение массы электрона. Уравнение Дирака точнее описывало движение электрона, обладающего большой энергией, движущегося с очень большой скоростью. Но при этом у Дирака в его расчетах появились отрицательные значения энергии электрона. Этот физически неприемлемый вывод заставил Дирака предположить, что найденное им релятивистское волновое уравнение описывает не только поведение электрона, но и поведение другой частицы, которая отличается от электрона только зарядом - она имеет не отрицательный, как электрон, а положительный электрический заряд. Такая частица была экспериментально найдена и получила название позитрона.
      Оказалось, что электрон и позитрон могут слиться и превратиться в два или три фотона. Со своей стороны, фотоны могут превращаться в электронно-позитронные пары. Понятие превращения частиц, их трансмутации, уничтожения одних и порождения других частиц было совершенно новым понятием для "классического идеала" в целом. Классическая наука сталкивалась с качественными превращениями вещества, но сводила такие превращения к перегруппировке атомов, т.е. к движению неуничтожаемых, не превращающихся в другие, тождественных себе атомов. Когда были обнаружены превращения элементов один в другой, это объясняли перегруппировкой составных частей атомов и атомных ядер, т.е. электронов, протонов и нейтронов. Но в случае трансмутации элементарных частиц за ними не стоят перегруппировки и вообще движения каких-то еще меньших субчастиц. В современной научной картине мира трансмутация рассматривается как процесс, который не сводится к перемещению, хотя, может быть, неотделим от перемещения.
      Элементарные трансмутации как будто стоят вне тех процессов, которые описывает теория относительности. Здесь нет движения в механическом смысле, т.е. перемещения, смены положения в пространстве с течением времени. Следовательно, здесь теряют смысл, по крайней
      349
      мере на первый взгляд, понятия скорости частицы и другие понятия механики. Нет смысла говорить об относительности движения в смысле перемещения, если нет самою движения. С другой стороны, трансмутации элементарных частиц являются процессами, возможность которых вытекает из теории относительности. Когда электроны и позитроны превращаются в фотоны, исчезает масса покоя этих частиц. Фотон не обладает массой покоя. Превращение фотонов в электроны и позитроны означает возникновение массы покоя из массы движения. Это чрезвычайно общая и фундаментальная закономерность. При быстрых движениях тел, сопоставимых по скорости с распространением света, становится существенным возрастание массы частицы по сравнению с массой покоя. В случая превращения электронов и позитронов в фотоны масса покоя полностью переходит в массу движения. Такие эффекты следует назвать уже не релятивистскими, а ультрарелятивистскими.
      Здесь мы подошли к очень существенному пункту - существенному для оценки творческого пути Эйнштейна во второй половине его жизни. Основной стержень творчества и жизни Эйнштейна - кристаллизация результатов творчества, выходящих за рамки личного. В автобиографических заметках, письмах и беседах Эйнштейна с друзьями тридцать - сорок лет, отданных единой теории поля и выступлениям против официальной квантовой механики, рисуются как очень значительный с этой точки зрения период. Эйнштейн считал его периодом, когда он приблизился к единой концепции, охватывающей все мироздание, к теории, более широкой, чем общая теория относительности. Для Эйнштейна идеи, занимавшие его почти целиком в тридцатые - пятидесятые годы, были итогом творческой жизни, обобщением всего, о чем он размышлял с юности.
      Напротив, в большинстве биографий и в большинстве оценок со стороны принстонский период рассматривается как период бесплодных поисков и положительные итоги этого периода сводятся к выводу уравнений движения из уравнений поля. Из таких оценок иногда выводится и освещение самой жизни Эйнштейна. Его одиночество, которое по отношению к периоду создания теории относительности рассматривается как одиночество мыслителя, ушедшего вперед, применительно к позднейшему периоду считается одиночеством ученого, заблудившегося и отставшего от общего движения науки.
      350
      Новейшие успехи изучения ультрарелятивистских эффектов меняют оценку творчества и жизни Эйнштейна в тридцатые - пятидесятые годы, а значит, и итоговую оценку творчества и жизни в целом. Для Эйнштейна единственная существенная оценка состоит в ответе на вопрос, что в его личных переживаниях, мыслях, результатах стало "надличным" содержанием научного прогресса. Чтобы ответить на этот вопрос, нужно определить, в чем состоял действительный прогресс научных знаний, а это обычно можно сделать лишь ретроспективно, с позиций более общей и точной теории.
      Эйнштейн почти не принимал участия в конкретных исследованиях, постепенно увеличивавших сведения об элементарных частицах и их превращениях. Теория и эксперимент должны были пройти большой путь, на котором мыслителю, стремящемуся к внутреннему совершенству, нечего было, как казалось Эйнштейну, делать. В этот период внешнее оправдание физических теорий стало чрезвычайно импозантным. В квантовой электродинамике теоретические расчеты оправдывались экспериментом до девятого знака. Но это не мешало теоретическим конструкциям быстро исчезать и уступать место новым, также недолговечным. Они конструировались ad hoc. При этом искусственность большинства теорий была настолько явной, что она начала играть очень своеобразную роль, концентрируя внимание па необходимости не наспех, ad hoc придуманной, а естественной, обладающей внутренним совершенством общей теории элементарных частиц. Все это можно проиллюстрировать на примере проблемы бесконечной энергии электронов и позитронов.
      Фотоны представляют собой частицы электромагнитного излучения. Они могут излучаться и поглощаться системами заряженных частиц. Но и в вакууме, в отсутствие других частиц, заряженная частица излучает и поглощает так называемые виртуальные фотоны. Они вносят свой вклад в энергию и, следовательно, в массу электрона. Чем меньше интервалы между излучениями и поглощениями виртуальных фотонов, тем больше их вклад в энергию электрона. Время, прошедшее между излучением виртуального фотона и его поглощением, может быть сколь угодно мало и соответственно может быть сколь угодно мал пройденный им путь (он равен времени существования фотона, умноженному на скорость света).
      351
      Виртуальные фотоны и вообще виртуальные частицы противопоставляются "реальным". Значит ли это, что они лишены объективной реальности, что они являются субъективной конструкцией разума? Нет, они существуют, обнаруживают свое существование в эксперименте, участвуют в игре физических сил и приводят к наблюдаемым макроскопическим событиям. Вакуум, в котором заряженная частица излучает и поглощает виртуальные фотоны, взаимодействует с частицей и меняет ее энергию, массу, заряд. Но к вакуумным процессам непосредственно неприменимо пространственно-временное представление. Что здесь означает этот термин?
      Исходное понятие, связанное с пространственно-временным представлением, - это понятие тождественной себе частицы. Тождественной себе не в тривиальном смысле: тождественная себе частица, взятая в данной точке в данный момент. Имеется в виду нетривиальная тождественность: частица существует в различные моменты времени и пребывает в различных точках, оставаясь тождественной самой себе. Гарантия подобной себетождественности состоит в непрерывной мировой линии частицы: в каждый момент и в каждой точке она в принципе может быть обнаружена. В такой возможности, в существовании непрерывной мировой линии - совокупности пространственно-временных локализаций частицы - состоит пространственно-временное представление о физических процессах.
      В вакууме нет непрерывных мировых линий тождественных себе частиц, нет даже несколько размытых линий, фигурирующих в квантовой механике. Мы не можем проследить пространственно-временную локализацию виртуальной частицы. И все же, если бы мы на этом основании отказали ей в реальном бытии, мы, по-видимому, не могли бы присвоить предикат бытия и "реальной" частице, и ее мировой линии. Мировая линия должна быть заполнена какими-то событиями, несводимыми к простому пребыванию частицы, иначе само это пребывание теряет физический смысл и мировая линия становится не физическим, а чисто геометрическим понятием.
      352
      Современная ситуация в физике позволяет думать, что именно виртуальные процессы, излучение и поглощение виртуальных фотонов и других частиц, делают мировую линию частицы заполненной, физически существующей, обладающей физическим бытием.
      Как уже говорилось, время, прошедшее между излучением виртуального фотона и его поглощением, может быть сколь угодно мало и соответственно вклад виртуального фотона в энергию электрона может быть сколь угодно велик. Расчеты, учитывающие взаимодействие электрона с его собственным излучением, приводят к бесконечным значениям энергии и соответственно массы электрона.
      Вывод этот физически абсурден. Предположение о бесконечной энергии и массе частиц противоречит всему, что нам известно о физических явлениях. Поэтому бесконечные значения энергии и массы устраняются из расчетов. Делается это с помощью различных приемов и некоторых концепций, авторы которых не скрывают, а, напротив, подчеркивают чисто рецептурный характер этих приемов и концепций. Разрыв между "внешним оправданием" и "внутренним совершенством" физической теории сейчас принял весьма своеобразную форму. Существует много способов избавиться от бесконечных значений энергии и массы частицы. Они состоят в отбрасывании виртуальных фотонов с очень большой энергией, вносящих большой вклад в собственную энергию частицы. Такие фотоны игнорируются. Почему? Это делают "в кредит" в расчете на то, что будущая теория элементарных частиц даст необходимое обоснование рецептурных приемов устранения очень высоких энергий. Такой теорией может быть представление о наименьших расстояниях и наименьших интервалах времени, представление, которое было бы выведено из каких-то общих идей. Мы вскоре рассмотрим указанное представление. Но в современной физике не дожидаются, пока оно будет непротиворечивым образом сформулировано. Уже сейчас в расчете на ту или другую будущую теорию вводят различные приемы устранения бесконечных значений энергии частицы.
      353
      Какими архаичными в такой ситуации кажутся идеи "чистого описания", а также идеи условного или же априорного происхождения физических понятий! Феноменологические теории сами по себе не могут сколько-нибудь непротиворечивым образом описать ход процессов, стоящих в центре внимания современной физики. Физика ищет нефеноменологическую, но отнюдь не априорную картину этих процессов и, уверенная в возможности такой теории, уже сейчас "в кредит" вычисляет энергию электронов, устраняя бесконечные значения. Зато какой злободневной кажется сейчас эйнштейновская схема внешнего оправдания и внутреннего совершенства.
      Заметим теперь, что эта схема как раз и развертывалась в тридцатые пятидесятые годы в эйнштейновских попытках построения единой теории поля и в критике квантовой механики, с одной стороны, и в развитии теории элементарных частиц в работах других физиков, с другой. Развитие теории элементарных частиц приводило к поразительно стройным и изящным отдельным концепциям Но они не укладывались в единую картину. Более того, выдвинутые в них схемы противоречили друг другу даже в пределах одной концепции. Релятивистские квантовые теории середины нашего столетия напоминают картину сотворения мира в поэме Эмпедокла, где описываются причудливые сочетания органов у животных, первоначально появившихся на Земле.
      Симптомом отсутствия внутреннего совершенства в теории элементарных частиц было обилие эмпирических величин, фигурирующих в этой теории. Каждая эмпирическая константа означает, что в данном пункте обрывается единая цепь каузального объяснения, что мы вводим некую величину, не объясняя, почему она именно такая, а не какая-либо иная. Для Эйнштейна идеалом научной картины, мира была картина, не содержащая эмпирических постоянных. В теории элементарных частиц сохранялись основные эмпирические величины - значения масс и зарядов, свойственных частицам различных типов.
      В целом состояние теории элементарных частиц характеризуется отсутствием "внутреннего совершенства".
      В свою очередь конструкции Эйнштейна, выдвинутые в тридцатые пятидесятые годы, были лишены "внешнего оправдания". Они не противоречили фактам, но и не находили того experimentum crucis, который становится исходным пунктом преобразования картины мира. Концепции элементарных частиц, быстро сменявшие одна
      354
      другую (иногда уживавшиеся одна с другой) на страницах физических журналов, не были достаточно "безумными" в смысле логической парадоксальности, в них отсутствовал достаточно глубокий разрыв с классическими понятиями. Конструкции Эйнштейна были недостаточно "безумными" в смысле парадоксального экспериментального результата как основы новых конструкций. Такие результаты накоплялись в "официальной" теории элементарных частиц: недаром в ней появилось а качестве вполне определенной величины понятие "странности" и множество понятий, не получивших такого названия, но не менее странных.
      Можно ли предположить, что разошедшиеся линии развития науки пересекутся? Будет ли построена теория, соединяющая новые, гораздо более парадоксальные с классических позиций, более "безумные" общие идеи с однозначным объяснением всей совокупности парадоксальпых фактов, найденных в физике элементарных частиц?
      Путь к такой теории достаточно далек. Теоретической физике придется не раз вспомнить слова, написанные Эйнштейном незадолго до смерти, в феврале 1955 г., Максу фон Лауэ в ответ на приглашение в Берлин на заседания, посвященные пятидесятилетию теории относительности.
      "Старость и болезнь, - писал Эйнштейн, - делают мой приезд невозможным и, признаться, я благодарен судьбе: все, что связано с личным культом, мне всегда было крайне неприятно. В данном случае речь идет о развитии мысли, в котором участвовали многие и которое далеко не закончено... Если долгие поиски меня чему-либо научили, то их итог таков: мы гораздо дальше от понимания элементарпых процессов, чем полагает большая часть современников (тебя я не включаю), и шумные торжества не соответствуют современной ситуации" [5].
      5 Seelig, 396-397.
      Это письмо хорошо иллюстрирует основное в позиции Эйнштейна: она не успокаивает, а побуждает; Эйнштейн не останавливается на какой-то уже найденной старой истине (в том числе на классическом представлении о микропроцессах), а видит незавершенность новых идей.
      355
      Он критикует их не с классических, а по существу с квантово-релятивистских позиций. Ведь в этом же письме говорится о незавершенности развития теории относительности. Ее дальнейшее развитие должно обосновать квантовые закономерности.
      Но само признание незавершенности современных идей приобретает сколько-нибудь определенный смысл только в том случае, когда в принципе предвидится создание единой, непротиворечивой теории элементарных процессов.
      Если появление такой теории вытекает из наметившихся тенденций, если такой прогноз обоснован, то это меняет принципиальную оценку тридцатилетней напряженной деятельности Эйнштейна. В этом случае можно, следуя примеру самой физики, делать "в кредит" некоторые предварительные ретроспективные оценки. В книге об Эйнштейне такой прием не только допустим, но и обязателен; ведь Эйнштейн в своем творчестве перекликался не только (в некоторые периоды и в некоторых проблемах - не столько) с современными исследованиями, но и с будущим науки.
      Рассмотрим с этой точки зрения вопрос о так называемом "одиночестве" Эйнштейна.
      Инфельд считает одиночество Эйнштейна характерной чертой его творчества, может быть, самой характерной. Эта черта каким-то далеко не явным образом соединяет облик Эйнштейна, его погруженность в себя даже в минуты оживленного общения с окружающими и тот факт, что он мало занимался проблемами, поглощавшими в данный момент внимание большинства физиков (так называемыми актуальными проблемами), и слабый резонанс, вызванный его работами в последний период жизни. Все это вещи разного порядка, и лежат они в разных планах. Но все же можно найти нечто общее, отвечавшее самым основным чертам мировоззрения Эйнштейна и приводившее к некоторой изоляции мыслителя.
      "Для него, - пишет Инфельд, - изоляция была благословенной, потому что предохраняла от избитых путей. Одиночество, независимое обдумывание проблем, которые он сам перед собой ставил, поиски собственных, уединенных дорог, то, что он избегал давки, - вот наиболее характерные черты его творчества. Это не только оригинальность, это не только научная фантазия; это нечто большее, что может быть попятно лишь тогда, когда мы рассмотрим проблемы и методы работы Эйнштейна" [6].
      6 Успехи физических наук, 1956, 59, вып. 1, с. 144.
      356
      Посмотрим с этой точки зрения на специальную теорию относительности. Здесь можно говорить об изоляции Эйнштейна только в чисто биографическом плане, в том смысле, что Эйнштейн в Берне не встречался с физиками и, по его словам, только в тридцать лет впервые увидел физика-теоретика ("иначе, как в зеркале", - заметил по поводу этого признания Инфельд). Но статья "К электродинамике движущихся тел" была посвящена проблеме, находившейся если не в центре внимания физиков, то во всяком случае недалеко от такого центра. Об этом свидетельствует одновременное появление фундаментальных работ трех крупнейших ученых - Эйнштейна, Лоренца и Пуанкаре, посвященных объяснению результатов Майкельсона. Н. II. Лузин как-то заметил, что молодой мыслитель, выступающий с радикальными концепциями, не будет даже услышан, если его идеи не избавят ученых от тяжелых и безрезультатных поисков, не помогут им в собственных бедах. "Чтобы вытащить ученых из их постелей, нужно дать им ответ на вопросы, над которыми они мучаются".
      Специальная теория относительности ответила па весьма злободневный вопрос о причине отрицательного результата опыта Майкельсона я аналогичных опытов. Поэтому она вызвала не меньший интерес, чем другие выдающиеся физические работы девятисотых годов. Почему она вызвала несравненно больший интерес, почему интерес к теории Эйнштейна несопоставим с интересом к другим физическим теориям - об этом уже говорилось. Задача, поставленная перед классической физикой результатами опыта Майкельсона, оказалась роковой, она отличалась от вопросов Сфинкса, заданных Эдипу, тем, что гибель следовала за правильным ответом. Нет нужды еще раз оговаривать условность "гибели" классической физики, с тем же правом можно говорить о ее апофеозе, но мы будем иметь в виду то, что действительно погибло, убеждение в точности и незыблемости классического правила сложения скоростей и представление об абсолютном времени.
      357
      Все дело в том, что в девятисотые годы пересеклись две линии теоретической мысли, соответствующие двум эвристическим критериям. Первая линия состоит в поисках теории, которая объяснила бы новые экспериментальные факты. Эта линия связана по преимуществу с тем, что Эйнштейн называл "внешним оправданием" теории. Вторая линия - это поиски новой теории, направленные на преодоление выдвинутых ad hoc, объясняющих лишь узкий круг явлений и в этом смысле сравнительно произвольных допущений. Эти поиски связаны по преимуществу с тем, что Эйнштейн называл "внутренним совершенством" теории. Теория Лоренца, выдвинутая ad hoc, уступила место теории Эйнштейна, которая объяснила результаты опыта Майкельсона исходя из общего (т.е. в последнем счете опирающегося па очень большое число различных фактов) принципа.
      Ответ был дан на вопрос, интересовавший широкий круг физиков. Эксперименты уже были сделаны, результаты их не укладывались ни в одну из существующих теорий, нужно было создать теорию, соответствующую новым наблюдениям, и из различных теорий, которые можно было согласовать с наблюдениями, только теория Эйнштейна обладала, помимо "внешнего оправдания", также и "внутренним совершенством".
      Общая теория относительности не разрешала каких-либо нависших над физикой вопросов и апорий. Она позволила разъяснить результаты опытов Галилея, которые, конечно, не волновали физиков XX столетия. В годы, когда Эйнштейн с величайшим трудом приближался к новой теории тяготения, никто этой теорией не занимался. Восемь лет работы над общей теорией относительности, приведшие в 1916 г. к ее законченной формулировке, и еще три года до подтверждения теории наблюдением были временем большого одиночества Эйнштейна. Если бы Эйнштейн не проявил этого почти беспрецедентного в истории науки творческого упрямства, общая теория относительности не была бы найдена в течение первой четверти столетия, а может быть, и позже. Эйнштейн говорил Инфельду уже в Принстоне:
      "Специальная теория относительности сейчас была бы уже создана независимо от меня. Эта проблема назрела. Но я не думаю, что это касается и общей теории относительности".
      358
      Для общей теории относительности "внешнее оправдание" имело место на триста лет раньше ее создания и на три года позже. Она создавалась на основе первого "оправдания", т.е. равенства тяжелой и инертной массы, она искала второго "оправдания" - доказательства искривления световых лучей в поле тяготения. Но пересечение этой линии "внешнего оправдания" с чрезвычайно энергичным и эффективным поиском внутренней гармонии произошло очень далеко от актуальных проблем.
      Однако несравненно более полным было одиночество Эйнштейна в годы, проведенные в Принстоне. Работа над единой теорией поля велась в полной изоляции от сколько-нибудь влиятельных и широких групп физиков-теоретиков. На этот раз теория не имела никаких данных, чтобы заинтересовать широкие круги физиков объяснением загадочных результатов некоторого эксперимента. "Внутреннее совершенство" теории не имело точек пересечения с "внешним оправданием". На этот раз "внутреннее совершенство" было самым широким, какое только можно представить. Речь шла об исходных допущениях, которые могут без добавочных гипотез объяснить всю сумму физических процессов, какие бы поля ни вызывали эти процессы. Но эти исходные допущения не были связаны с экспериментом, который бы придал им достоверность.
      Судьба и исторический смысл единой теории поля, которую Эйнштейн разрабатывал в течение тридцати лет, напоминает судьбу и смысл его критики квантовой механики. В отношении квантовой механики позиция Эйнштейна была чисто негативной, он не противопоставлял ей иную концепцию, не разрабатывал какой-либо нестатистической теории микромира. Напротив, единая теория поля была изложена в позитивной форме. Но как раз позитивные и конкретные контуры этой теории, по-видимому, не войдут в единую теорию поля. Мы можем поставить в кавычки эпитет "ошибочная" применительно к единой теории Эйнштейна, потому что отнюдь не ошибочным был ее общий смысл представление о существовании тех или иных закономерностей, определяющих не только структуру некоторого поля, но и структуру всех полей, представление о едином мире, модификациями которого являются известные нам поля. В 1959 г. Гейзенберг написал статью "Замечания к эйнштейнов
      359
      скому наброску единой теории поля" [7]. Здесь в качестве первой причины неудачи эйнштейновской попытки указывается быстрое расширение сведений о новых частицах и полях. Действительно, в тридцатые - пятидесятые годы были периоды, когда чуть ли не каждый очередной номер физического журнала приносил весть о новом типе элементарных частиц. Каждая частица ассоциировалась с некоторым полем, частицу рассматривали в качестве агента, переносящего взаимодействие других частиц, подобно тому как фотон переносит электромагнитное взаимодействие электронов и других электрически заряженных частиц. Трудно было в этом потоке новых фактов найти твердую почву для единой теории поля.
      7 Эйнштейн и развитие физико-математической мысли. Сб. статей. М., 1962, с. 63-69.
      "Эта великолепная в своей основе попытка, - пишет Гейзенберг, сначала как будто потерпела крах. В то самое время, когда Эйнштейн занимался проблемой единой теории поля, непрерывно открывали новые элементарные частицы, а с ними - сопоставленные им новые поля. Вследствие этого для проведения эйнштейновской программы еще не существовало твердой эмпирической основы, и попытка Эйнштейна не привела к каким-либо убедительным результатам".
      Но эта трудность построения единой теории поля приводила ко все большему накоплению аргументов в пользу программы Эйнштейна. Открытия тридцатых - семидесятых годов включали в картину мира частицы, легко превращающиеся в другие частицы и соответственно поля, переходящие в иные поля. Единая теория поля вырастает сейчас из квантовых представлений, переход одного поля в другое поле - это переход кванта одного поля в квант другого поля, в элементарную частицу другого типа. Мы можем допустить, что мысль о "заквантовом" мире ультрарелятивистских эффектов и единая теория ноля сольются в некоторую целостную концепцию трансмутаций элементарных частиц как основных процессов мироздания. Такой концепции еще нет. Мы можем говорить только о принципиальной возможности перехода от картины мира, в которой основным понятием служит движение тождественной себе частицы в гравитационном, электромагнитном и т.д. полях, к картине мира,
      360
      в которой исходным физическим образом является превращение частицы одного типа в частицу другого типа, связанное своеобразной дополнительностью с непрерывным движением тождественной себе частицы, с непрерывной мировой линией.
      Эйнштейн стремился к завершению своей теории относительности. Но, с его точки зрения, завершение теории может иметь только один смысл: мы находим некоторые более общие исходные идеи, понятия и закономерности, которые позволяют нам логически перейти к данной теории, вывести ее из другой, более общей теории. Такой характер носило завершение специальной теории относительности; оно было связано с генезисом общей теории относительности, из которой специальная теория может быть выведена как частный случай. Таким же может быть и завершение общей теории относительности, т.е. теории тяготения: в единой теории поля должны быть указаны условия, при которых единое поле принимает форму гравитационного поля и подчиняется соотношениям общей теории относительности. В каждой теории мы встречаем предельные понятия и величины, которые в рамках этой теории не раскрывают своей природы, принимаются как данные и могут получить обоснование, быть выведены из других только в более общей теории. Для небесной механики как теории движения звезд, планет и других небесных тел исходными, заданными, необъяененными остаются массы небесных тел и исходные расстояния. Эти величины могут найти объяснение в космогонии, оперирующей движениями и превращениями молекул, атомов, элементарных частиц. В атомной физике заданы массы и заряды элементарных частиц, которые ждут объяснения и выведения из более общих закономерностей единой теории элементарных частиц.
      Почему исходные расстояния между небесными телами таковы, а не иные? Если выразить их в километрах или других произвольных единицах, вопрос несколько затушевывается, число, измеряющее расстояние между двумя небесными телами, может казаться произвольным, зависящим от взятых единиц длины - сантиметров, километров, световых лет. Но если взять какую-то естественную меру, например радиус Солнечной системы, и выразить расстояния между планетами с помощью этой меры, то произвол должен быть исключен, отношение ра
      361
      диуса орбиты Нептуна к радиусу орбиты Марса должно получить причинное объяснение, должно быть выведено из теории образования Солнечной системы. Аналогичным образом, если выразить массы частиц не в граммах, а в их отношении к массе электрона, принятой за единицу, то эти массы, т.е. константы атомной и ядерной физики, явным образом требуют выведения из более общих закономерностей, из единой теории элементарных частиц, из картины образования частиц, которая должна дать отношения масс частиц различных типов.

  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46