Современная электронная библиотека ModernLib.Net

Жизнь замечательных людей (№255) - Максвелл

ModernLib.Net / Биографии и мемуары / Карцев Владимир Петрович / Максвелл - Чтение (стр. 20)
Автор: Карцев Владимир Петрович
Жанр: Биографии и мемуары
Серия: Жизнь замечательных людей

 

 


— А кто сделал эту модель?

Он отвечал обычно:

— Один мой друг.

— Какой друг? — следовал углубляющий вопрос.

— Друг из Англии.

Гиббс и Максвелл никогда не встречались...

...Вряд ли на королеву Викторию и ее пышное окружение горячая речь Максвелла произвела сколько-нибудь заметное впечатление. Отшелестели платья, отзвенели шпоры, и вот уже видно в окно, как трогаются шестерки лошадей, запряженных в придворные золоченые кареты. А в первой, в которую запряжены были лимонно-желтые, как бы тоже позолоченные лошади, укатила в Букингемский дворец та, чьим именем будут названы шестьдесят лет ее правления, — королева Виктория.

Да, судьба распорядилась так, что вся жизнь Максвелла уложилась в рамки «викторианской» Англии. Он был викторианским ученым, но его идеи перерастали викторианский век. Они предвосхищали уже век новый — двадцатый.

УЧЕНИКИ

Уже через много лет после смерти Максвелла, да и через много лет после смерти его преемников на посту директора Кавендишской лаборатории лорда Релея, бывшего Джона Стрэтта, Дж.Дж.Томсона и лорда Резерфорда возникла необходимость передвинуть один из рабочих столов, стоящий в лаборатории со дня ее основания и использовавшийся по традиции всеми директорами лаборатории. Когда его отодвинули от стены, в нем стало возможным открыть еще один ряд ящиков — и в одном из них оказались забытые бумаги и приборы человека, расщепившего атом, — Резерфорда. А в глубине ящика завалялась скатанная в шарик, пожелтевшая от времени бумажка.

Ее развернули...

На ней было написано:

«Джентльмены, посещавшие практические занятия

Лент-семестр 1877

М-р Христал Корпус[47]

« Шустер Эмануэль

« Шоу Даунинг

« Ом[48] Даунинг

« Шаррат Сент-Джон

« Харгривс Тринити

« ...йзбрук Кингс»



Не сразу признали присутствовавшие руку великого Максвелла. А когда узнали — замолкли в волнении. Как будто появились перед ними в этой комнате, перед этим старинным письменным столом Максвелл и его ученики.

Вот стоят они, только что сдавшие с отличием математический трайпос бывшие студенты. Стоят вокруг стола, окружая его, Максвелла...

...Еще тогда, когда Максвелл был только назначен первым кавендишским профессором и строительство лаборатории, по сути дела, не начиналось, он старался четко определить задачи, которые встанут перед будущей лабораторией и перед ним лично.

«Джеймс Клерк Максвелл — Миссис Максвелл

20 марта 1871

Существует два мнения относительно профессорства. Одни хотят популярных лекций, а другие больше заботятся об экспериментальной работе. Мне кажется, здесь должна быть градация — популярные лекции для масс; настоящие эксперименты для настоящих студентов и, наконец, трудоемкие эксперименты для первоклассных людей, таких, как Троттер, Стюарт и Стрэтт».

Градация градацией, а профессору Максвеллу лично было интересней всего заниматься именно «трудоемкими» экспериментами с «первоклассными» людьми, и поэтому он при первой возможности сплавил прочие задачи демонстратору Вильяму Гарнетту из колледжа Сент-Джон, мечтая наконец-то здесь, в Кавендишской лаборатории, осуществить свою мечту — завести учеников, которые бы учились, исследуя, работая под его руководством, которых предостерегал бы он от ошибок и которым передал бы все, чем владел сам.

Поначалу учеников было немного. Сперва — один Хикс, затем целая группа — Гордон, Джордж Христал, Саундерс, Дональд Макалистер, Амбруаз Флеминг, Глэйзбрук, Шустер, Нивен, Пойнтинг, Шоу.

В Кембридже только-только была введена система защиты диссертаций, и для получения степеней необходимо было найти тему, разработать ее и защитить свои мысли. Многие искали темы в физике, в эксперименте. Они-то и оказались первыми Максвелловыми учениками, фактически — первыми аспирантами.

...Вот стоят они, столпившись вокруг стола в большом помещении физической лаборатории, самый запах которой им еще неведом, и профессор Максвелл объясняет им методику измерений сопротивления с помощью мостика Уитстона, и один из них, Глэйзбрук, вдруг сожалеет, что это объяснение не состоялось всего несколько недель назад — на трайпосе, изменившем свое лицо, повернувшемся наконец к физике. Вильям Стрэтт спросил его как раз про измерение сопротивления посредством мостика Уитстона.

Через несколько дней эти зеленые новички научились довольно лихо измерять электрические сопротивления и — вершина мастерства! — прилаживать неумелыми еще пальцами зеркальце к гальванометру Томсона. Затем еще несколько полезных уроков по обращению с лабораторными приборами — и все.

Аспиранты, еще не умеющие плавать, были брошены Максвеллом в океан большой науки.

Сам выбор темы для исследований был оставлен на их усмотрение — Максвелл только советовал. Причем не отговаривал и от никчемных, на его взгляд, экспериментов.

— Я никогда не отговариваю студента от намерения, — часто говорил Максвелл, — провести какой-нибудь эксперимент. Даже если он не найдет, что искал, он найдет что-то другое.

Своеобразный взгляд был у Максвелла и на измерительные приборы.

— Воспитательная ценность экспериментов, — говорил он, — зачастую обратно пропорциональна сложности приборов. Студент, пользующийся самодельной, неточно работающей установкой, часто научается большему, нежели тот, который работает с приборами, которым можно доверять, но которые страшно разобрать на отдельные части.

Максвелл был всегда погружен в собственные мысли, и иной раз казалось, что он не слышит обращающихся к нему с вопросом учеников. Он сам говаривал, что его мозг крепко защищен броней собственных проблем, и для ученика всегда было приятным сюрпризом, когда на следующий день рядом с ним появлялся профессор и говорил:

— Кстати, вы вчера задали мне вопрос, я подумал о нем и скажу вам вот что...

Нечего и говорить о том, что ответ был исчерпывающим.

Глэйзбрук, Христал и Саундерс решили проверить, справедлив ли закон Ома. Максвелл поддержал их.

Христал и Саундерс пропускали ток от батарей Даниэля через проводник — сначала ток был очень велик, а потом — бесконечно мал.

«Проф. Джеймс Клерк Максвелл — Проф. Льюису Кемпбеллу

Скруп-Террас II

Кембридж, 4 марта 1876

...Христал... непрерывно работал с октября, проверяя закон Ома, и Ом вышел из испытания с триумфом, хотя в некоторых экспериментах проволока накалялась проходящим током докрасна...»

Закон Ома соблюдался в опытах Христала с точностью до 0,000000001 процента.

Отпали сомнения в правильности закона Ома, выдвинутые некогда Вебером и Шустером Максвелл гордился результатами своих учеников не меньше, чем своими, особенно выделяя Христала и Нивена.

Максвелл переживал, когда они уходили, его ученики Шоу уехал в Берлин к Гельмгольцу, Пойнтинг вернулся к своим измерениям плотности Земли.

Глэйзбрук нашел свою тему — она перекликалась скорее с исследованиями Стокса — решил проверить френелевскую теорию поперечных колебаний в твердом эфире на двухосном кристалле арагонита. Эта тема должна была способствовать укреплению Максвелловой теории, поскольку электромагнитная теория света также приводила к поперечным колебаниям в эфире.

Глэйзбруку была выделена мрачная комната на верхнем этаже, служащая обычно для проведения оптических исследований и проявления фотопластинок. Там были черные стены, окрашенные сажей с пивом, и постоянное натриевое пламя, необходимое для спектроскопических экспериментов. Это делало атмосферу в комнатушке весьма тяжелой. Да и работа поначалу не ладилась, и Глэйзбруку пришлось спрашивать совета у Максвелла.

— Вы знаете, — ответил Максвелл, — другие вопросы образовали вокруг моей головы такую плотную корку, что вашему придется немного подождать, пока он просочится.

А через день или два подошел и сказал: если вы сделаете так и так, то, я думаю, все будет в порядке.

Так и оказалось. В надлежащий срок диссертация была написана и посвящена Максвеллу. Измеренная скорость волн была весьма близка к величинам, предсказываемым, исходя из френелевской и Максвелловой теорий.

Глэйзбрук по представлению Максвелла был избран «феллоу» — членом совета колледжа. Дальше работа была продолжена совместно Максвеллом и Глэйзбруком на другом кристалле. Под названием «Плоские волны в двухосном кристалле» она была доложена Максвеллом Королевскому обществу в июне 1878 года. Различие между следующими из теорий Максвелла и Френеля и экспериментальными данными было менее 0,00007. Такой же результат был получен на другом кристалле — исландского шпага. Этот результат был представлен Королевскому обществу летом 1879 года. Видимо, это была последняя научная работа по экспериментальной физике, в которой Максвелл принимал участие...

Ученики Максвелла со временем заняли видные места в мире английской науки.

Замкнутый Шустер, активный велосипедист и скалолаз, меценат и страстный путешественник, стал вице-президентом Королевского общества, предложил изящный метод определения отношения заряда к массе электрона по отклонению в магнитном поле и несколько других весьма ценных идей.

Интеллигентный Глэйзбрук, разделявший с Шустером страсть к альпинизму и с сыном Питера Тэта Фредди — к гольфу, стал первым директором Национальной физической лаборатории, где в аэродинамических трубах исследовались модели первых английских самолетов.

Талантливый земляк Христал — «второй спорщик» и первый лауреат премии Смита 1875 года — по рекомендации Максвелла занял кафедру математики в Эдинбургском университете и занимался в физической лаборатории Питера Тэта. После смерти Питера в 1901 году Христал стал генеральным секретарем Эдинбургского королевского общества. Христал многое сделал для усовершенствования телефона и фотоаппарата, для объяснения формы волн в шотландских озерах — лохах. Он написал учебник алгебры и пособие по геометрии для английских школ.

Самый молодой — Шоу, стал виднейшим английским метеорологом, директором Метеорологического управления. Он ввел в практику метеорологии исследования с помощью судов, воздушных шаров, он ввел в практику новую единицу — миллибар. Его долгая жизнь, увенчанная множеством наград и почестей, окончилась всего за несколько месяцев до конца второй мировой войны.

Среди двух студентов, присутствовавших на последней лекции Максвелла, был Амбруаз Флеминг. Он посвятил жизнь вопросам практического использования электромагнитных волн, открытых его учителем и обнаруженных Герцем. Вместе с Оливером Лоджем, испытавшим сильное влияние Максвелла, Флеминг стал «мозговым центром» у молодого и процветающего Маркони. Затем Флеминг работал с Эдисоном и сделал крупнейшее, можно сказать, революционное изобретение в радиотехнике: в 1904 году он изобрел первую радиолампу — диод.

Джон Генри Пойнтинг, проводивший под руководством Максвелла в Кавендишской лаборатории эксперименты по определению средней плотности Земли (а-ля Кавендиш), занял кафедру физики в Берлинском университете. Он получил от Королевского общества Королевскую медаль «за исследования по физике, особенно в связи с гравитационной постоянной и теориями электродинамики и радиации». Таким образом, он оказался одним из самых верных по отношению к Максвелловой тематике. Он ввел в теорию электромагнитного поля Максвелла важнейшее понятие вектора потока электромагнитной энергии — «вектора Умова — Пойнтинга» (русский ученый Н.А.Умов за десять лет до Пойнтинга ввел аналогичный вектор для звука).

И еще один, не бывший формально учеником Максвелла, но находившийся под сильнейшим его влиянием гений, оригинал и отшельник — Оливер Хевисайд. Хевисайд уже после смерти учителя произвел генеральную «чистку» уравнений Максвелла, устранил повторения, придал им современный вид. Кроме того, Хевисайд ввел в электро— и радиотехнику такие важнейшие понятия, как «линия без искажений» и «слой Хевисайда». Он разработал операторный и символический методы решения дифференциальных уравнений, дал «формулу разложения Хевисайда», и по сей день весьма почитаемую электриками-теоретиками. Он предвосхитил и многие важные выводы теории относительности.

...Почти все ученики Максвелла заняли видные места в английской науке, но ни один не смог бы похвастаться тем, что превзошел учителя. Множество можно придумать причин. Не смог сам Максвелл стать таким педагогом и учителем, который жил бы делами и славой своих учеников, — не такой был он, и не такими были они; и, может быть, главное, небосвод научной истории еще не повернулся настолько, чтобы засияли на нем имена Максвелловых учеников, и лишь через много лет, после беккерелевской засвеченной фотографической пластинки, откроются новые горизонты и призовет физика новые сонмы молодых гениев. А те, кто родился раньше времени, должны будут довольствоваться скромными профессорскими должностями. И возможно, высшей славой, которой они коснулись, останется для этих людей то, что были они выпестованы и любимы великим Максвеллом.

КРУКС, ДУХИ И РАДИОМЕТР

Экспериментальная работа, проделанная совместно с Глэйзбруком, хотя и подтверждала косвенно Максвеллову теорию, не была все же решающим доказательством ее правильности.

Таким прямым доказательством могло быть, например, обнаружение электромагнитных волн или давления света. Удивительно, но в Кавендишской лаборатории, казалось, никто не интересовался «проблемой доказательства».

Впрочем, было одно исключение...

Оно началось с открытия Вильяма Крукса.

В 1873 году английский химик Вильям Крукс решил определить атомный вес вновь открытого им элемента таллия и взвесить его на очень точных весах. Чтобы случайные воздушные потоки не исказили картины взвешивания, Крукс решил подвесить коромысла в вакууме. Сделал — и поразился. Его тончайшие весы были чувствительны к теплу. Если источник тепла находился под предметом, он уменьшал его вес, если над — увеличивал.

Усовершенствуя этот свой нечаянный опыт, Крукс придумал забавную игрушку, которую называли то радиометром, то световой мельничкой. И уже в названии сквозило, казалось, объяснение принципа работы этого нехитрого устройства, состоящего из невесомых лопастей, или крылышек, сделанных из фольги и подвешенных на тонкой нити в вакууме, или, точнее сказать, в очень разреженном газе. Одна сторона лопастей была отполирована, другая — зачернена. Если теперь к устройству поднести какой-нибудь теплый предмет или осветить его солнечным светом, мельничка, составленная из лопастей, начинала крутиться вокруг оси. Отсюда и название — радиометр, так сказать, измеритель излучения, или еще конкретней — «световая мельничка», мельничка, движущаяся под действием света.

Прямое подтверждение теории светового давления Максвелла? Триумф?

Странно, но Максвелл до сих пор, казалось, совершенно не интересовался радикальными экспериментальными подтверждениями своей электромагнитной теории. Может быть, он был слишком занят сначала написанием своего «Трактата», затем постройкой лаборатории затем изданием рукописей Кавендиша. Отдавал этому все свое время. Не хватало его даже на попытку осуществить самый простой эксперимент. Во всяком случае с 1864 года, со времени появления его статьи «Динамическая теория электромагнитного поля», где впервые было предсказано существование электромагнитных волн он не сделал ни малейшей попытки доказать их существование.

Радиометр вызвал в научных кругах сенсацию, и прежде всего потому, что, казалось, непосредственно и убедительно доказывал существование предсказанного Максвеллом давления света. И когда в 1873 году радиометр впервые был продемонстрирован на заседании Королевского общества, вряд ли кто-нибудь был иного мнения. Движущей силой радиометра, несомненно, являлась механическая сила света.

Но были и скептики, которые забавлялись над доверчивостью членов Королевского общества, еще раз поверившими «этому Круксу», только что оскандалившемуся со своими спиритуалистическими занятиями. Как писал Энгельс впоследствии:

«Господин Крукс начал исследовать спиритические явления приблизительно с 1871 г. и применял при этом целый ряд физических и механических аппаратов: пружинные весы, электрические батареи и т.д. Мы увидим сейчас, взял ли он с собою главный аппарат, скептически-критическую голову, или сохранил ли его до конца в пригодном для работы состоянии...

Духи доказывают существование четвертого измерения, как и четвертое измерение свидетельствует о существовании духов. А раз это установлено, то перед наукой открывается совершенно новое, необозримое поле деятельности. Вся математика и естествознание прошлого оказываются только преддверием и к математике четвертого и дальнейших измерений и к механике, физике, химии, физиологии духов, пребывающих в этих высших измерениях. Ведь установил же научным образом господин Крукс, как велика потеря веса столов и другой мебели при переходе ее, — мы можем теперь сказать так, — в четвертое измерение».

И Крукс, и многие другие английские ученые, в том числе электротехник Варлей, а вместе с ним и континентальное подкрепление — в лице статского советника Аксакова и химика Бутлерова, — оказались в свете развенчания их спиритуалистических увлечений в весьма неудобном для их престижа положении. И тем более — Крукс, определявший «научным образом», как велика потеря веса столов и другой мебели при переходе в «четвертое измерение».

Аналогия между падением веса предметов при переходе их в «четвертое измерение» и падением веса предметов в вакууме под воздействием излучения была настолько прозрачна, что Круксу и другим членам Королевского общества, по крайней мере в то время, следовало ее иметь в виду.

Максвелл, присутствовавший на демонстрации радиометра в Королевском обществе, был очень взволнован. Он описывает это событие в письме Вильяму Томсону следующим образом:

«...трехдюймовая свеча действует на внутренний диск так же быстро, как магнит действует на стрелку компаса. Нет времени для воздушных потоков, а сила гораздо больше веса всего воздуха, оставшегося в сосуде. Очень живое, сильное притяжение куском льда. Все это — в лучшем доступном вакууме...»

Как все это прекрасно согласуется со строками только что вышедшего его «Трактата»! Там было прямо сказано, что сконцентрированный свет электрической лампы, «падающий на тонкий металлический диск, деликатно подвешенный в вакууме, возможно, сможет произвести ощутимый механический эффект, доступный для наблюдения». Он высчитал даже, что давление солнечных лучей на перпендикулярно расположенную пластину будет в десять раз слабее горизонтальной составляющей магнитной силы в Англии. Разумеется, Максвелл был весьма подготовлен к положительному восприятию «радиационного» объяснения работы радиометра.

И поэтому, когда редакция «Философских трудов» прислала ему на рецензирование статью Крукса с таким объяснением действия радиометра, он написал на нее 24 февраля 1874 года положительную рецензию. Он, конечно, вполне согласен с тем, что «отталкивание от теплоизлучающего тела» ... «обязано своим происхождением излучению».

Но что-то все-таки мучит Максвелла, омрачает его радость, не дает полностью почувствовать вкус победы. И это — то, что эффект слишком уж велик, слишком уж показателен, он непохож на то слабенькое давление, которого ожидал Максвелл. Поэтому он пишет в рецензии на статью Крукса, что, хотя он и предсказал в своем «Трактате» «возможное отталкивающее действие излучения», «эффект, обнаруженный м-ром Круксом, как будто бы обнаруживает силы значительно большей величины». Максвелл рекомендовал статью к опубликованию.

В то лето над Европой видна была большая комета, и ее явное присутствие на небе, ее характерный вид с отогнутым от Солнца хвостом вызвал в английских научных салонах новый прилив разговоров о возможной причине отклонения хвоста кометы от Солнца: не вызвано ли это отклонение предсказанным Максвеллом давлением солнечных лучей?

Большие споры происходили и на. Скруп-Террас, II. И гости, и хозяин часто и подчас горячо поминали хвост кометы. Как-то один из гостей заметил, что любимый терьер Максвелла Тоби вертушкой вертится на одном месте, пытаясь ухватить себя за одноименный орган. Под всеобщий смех выяснилось, что Максвелл, не подозревая еще о грядущем появлении небесного тела, натаскал терьера по команде «хвост» гоняться за собственным хвостом. Во время бурных споров об отклонении кометного хвоста бедняге Тоби приходилось вертеться как белке в колесе. Да, бурные были споры, и Максвеллу скорее пришлось в них выступать против гипотезы об отклонении кометного хвоста за счет солнечного света, уже почти общепризнанной. Ему постепенно становилось ясно, что радиометр Крукса никак не подтверждал этой гипотезы. Эффект был слишком велик!

Вместе с Максвеллом, но совсем по другой причине, еще один человек противодействовал теории отклонения кометных хвостов за счет солнечных лучей. Это был резкий, тридцатидвухлетний манчестерский профессор со странными манерами и пренеприятной привычкой видеть за всеми действиями других исключительно корыстные мотивы. Это был Осборн Рейнольдс. Он был силен в прикладных, инженерных науках, но его познания в высокой физике были столь же невинны, как изощрены были познания Максвелла. Иногда знать меньше полезно, так как именно Рейнольдс предложил правильный ключ к решению проблемы радиометра.

Причина, по которой Максвелл противодействовал собственной теории, происходила от безбрежной широты и отдаленности горизонтов, где витала его мысль, от того, что не было для него в науке и природе «святых земель», которые не подлежали исследованию. Не было для него «плохих» фактов. Факты были хороши уже потому, что они таковыми являлись.

Рейнольдс, стоящий на более практической, приземленной точке зрения, работавший над проблемой осаждения пара из паровоздушных смесей на холодных поверхностях паровых машин, не верил в существование еще неизвестных сил и фактов. Он предположил, что действие радиометра вызывается все тем же: испарением с лопаток вертушки под действием тепла сконденсировавшейся на них смеси газов.

Как раз в это время вернулся из Сиама, где он наблюдал солнечное затмение, молодой сотрудник Рейнольдса Артур Шустер. Он свежим взглядом окинул проблему радиометра. Предложил поставить простой, но решающий эксперимент. Вызывается ли вращение вертушки радиометра внешними или внутренними причинами?

Установить это просто. Нужно проверить, не вращается ли одновременно с вращением вертушки и сам сосуд? Если да, и причем в другую сторону, то причина вращения — внутри, если нет — снаружи. Прозрачное стекло сосуда не должно было испытывать никакого механического действия излучения. Если причина в излучении, сосуд должен оставаться в покое. Поскольку Рейнольдс не захотел ставить такой эксперимент, Шустер провел его сам, подвесив сосуд на тонкой нити.

Как только к баллону подносили теплый предмет, вертушка начинала вращаться. Но и сосуд тоже начинал вращаться — только в другую сторону. Это можно было легко наблюдать по движению зайчика от зеркальца, прикрепленного к сосуду.

ПОСЛЕДНЯЯ СТАТЬЯ МАКСВЕЛЛА

Эксперимент Шустера был, конечно, сокрушительным: причина, как и предполагал Осборн Рейнольдс, находилась «внутри», а не «вне».

К тому времени выяснилось и еще одно обстоятельство. Тоже немалой значимости. Никто раньше не заметил этого. Все вертушки вертелись совсем не так, как они должны были бы вертеться под действием излучения — известного или таинственного! Любое излучение должно было бы больше давить на отполированную, светлую сторону крылышек вертушки, чем на зачерненную. А все вертушки крутились в обратном направлении!

Стало ясно, что тепло и свет вносили в сосуд радиометра не столько механический момент, сколько тепловую энергию. Ключ к разгадке, очевидно, заключался во взаимодействии разреженного газа с поверхностью крылышек, во взаимодействии, проистекающем из разности температур зачерненной и светлой сторон лопаточек.

Максвелл мало интересовался в то время проблемой радиометра. Но в 1877 году в Кавендишскую лабораторию перешел из Манчестера бывший коллега Рейнольдса Шустер. Он привез с собой четыре радиометра и описание своего сокрушительного эксперимента.

Интерес к радиометру повсеместно уже почти угас, когда к нему вернулся интерес Максвелла. Величайший авторитет в молекулярной теории, Максвелл стал решать в ее рамках и проблему радиометра: его интересовала величина силы, которая могла бы давить на крылышки радиометра за счет разницы температур на двух их поверхностях. Статья по этому вопросу была в первый раз отправлена в редакцию в 1877 году.

Статья, как это было положено, пошла на отзыв анонимному рецензенту.

Рецензия затем была передана секретарем Королевского общества Джорджем Габриэлем Стоксом Максвеллу перепечатанной на машинке, без подписи.

Но трудно было бы Максвеллу не узнать льва по столь хорошо ему знакомым когтям. Томсон был мгновенно узнан по литературному стилю и по сделанному автору статьи замечательно дельному предложению: рассматривать поверхность крылышек не абсолютно ровной, а содержащей выпуклости, впадины и иные несовершенства. Столкновение молекул газа с этими выступами давало необходимую для работы радиометра тангенциальную силу.

Работая в направлении, указанном рецензентом, Максвелл полностью переделал статью и уже «добил» теорию радиометра, когда к нему от Стокса попала на рецензию статья Осборна Рейнольдса, посвященная тому же вопросу. В ней содержалось все то же здоровое предложение рассматривать взаимодействие газа с поверхностью и воздвигнутая вокруг этого громоздкая теория, не позволяющая достаточно точно вычислить усилия, воздействующие на крылышки.

Но разумное в статье Рейнольдса присутствовало явно. Это разумное нужно было учесть. Сославшись, конечно, на Рейнольдса в своей статье.

«До того, как я познакомился со статьей профессора Рейнольдса, я не рассматривал физических условий на поверхностях, расположенных в газе, так что все, что я сделал здесь, — это распространил на поверхностные явления метод, который, мне кажется, лучше всего подходит для изучения внутренних условий в газе. Мне кажется, что этот метод в некоторых отношениях удачней метода, принятого профессором Рейнольдсом. Мы должны признать, что его метод вполне удовлетворителен для определения существования самого эффекта, но непригоден для его численной оценки».

Меж тем Рейнольдс получил свою статью с рецензией Максвелла.

В своем отзыве Максвелл указал, что, несмотря на правильную общую идею Рейнольдса и его блестящие эксперименты, метод его громоздок и может быть переработан в таком-то и таком-то направлении.

Осборн Рейнольдс этого делать не стал. Стал поджидать появления статьи самого Максвелла. И когда она появилась, затеял активную переписку со Стоксом и вторым рецензентом, которым вновь оказался Томсон. Природная доброжелательность Томсона сыграла в этой истории плохую службу, ибо Рейнольдс, не соглашаясь с критикой Максвелла, апеллировал к «доброму» Томсону. Он предоставлял все новые и новые варианты статьи и упрекал Максвелла за то, что он высказал замечания по его теории в своей статье и отзыве.

Максвелл очень плохо чувствовал себя тогда, а Рейнольдс шел в наступление. В августе 1879 года он вновь переработал статью и послал в редакцию. Но переработал ее, не приняв во внимание замечаний Максвелла. Доброжелательный Томсон рекомендовал напечатать статью в том виде, как она есть, в конце концов за нее отвечает сам Рейнольдс.

Сомнительно, стоит ли крупица, добавленная Рейнольдсом в кладовую знаний человечества, тех страданий, которые он доставил умирающему уже Максвеллу.

«Джеймс Клерк Максвелл — Дж. Габриэлю Стоксу

Гленлейр, 2 сентября 1879

...Разумеется, я не могу претендовать на то, чтобы с неослабным вниманием следить за работой акробата (Рейнольдса), который держит в одной руке одновременно 24 предмета, но, поскольку он уже неоднократно бросал вожжи и пробовал новую упряжь, вполне возможно, что в конце концов результаты получатся достаточно податливыми, чтобы приспособиться к фактам, какими бы эти факты ни были... О.Р. говорит, что он все переработал, и я надеюсь на это...

Для орлиного взора Томсона даже одна счастливая фраза в окружении полностью ошибочных может озарить весь конгломерат грубых ошибок значением, которое самого автора никогда не удастся заставить понять.

Что касается экспериментов Грэхама, — О.Р. прав, а Томсон — не прав».

Это письмо много десятков лет оставалось неизвестным: родственники Максвелла и его ученики боялись, что он будет выглядеть здесь в неверном свете, а Осборн Рейнольдс может «обидеться». Возможно, публикация письма задержалась напрасно. Возможно, многие молодые, да и не очень молодые ученые, не страдающие избытком скромности, сэкономили бы себе и своим доброжелательным, но бескомпромиссным рецензентам много нервов и здоровья, если бы они научились хоть немного прислушиваться к деловой критике, вникать в состояние других людей.

За две недели до смерти Максвелла Рейнольдс, прекрасно осведомленный о его бедственном состоянии — об этом знал весь Кембридж и все Королевское общество, — направил Стоксу как секретарю Королевского общества послание, в котором требовал, чтобы Максвелл изъял из своей статьи критику теории Рейнольдса, причем требовал, чтобы это его послание было немедленно зачитано на заседании общества.

Стокс, разумеется, отказался это сделать.

Рейнольдс настаивал.

5 ноября 1879 года, сразу после смерти Максвелла, Стокс направил Рейнольдсу телеграмму с просьбой взять свое заявление обратно или позволить Стоксу снабдить это заявление собственными комментариями. Рейнольдс избрал вторую альтернативу и вместе с ней — свою судьбу, которая была теперь неизбежна... Тэт, Томсон, Стокс стали для Рейнольдса вежливо непроницаемыми, впрочем, как и все Королевское общество. Поскольку в науке почти никогда не бывает мыслей, в той или иной форме не высказанных ранее, Томсон порылся в библиотеке и вскоре нашел, что искал.

Единственная здравая мысль Рейнольдса, так понравившаяся Томсону, была им найдена в несколько иной и завуалированной форме в трудах немца Федеррсена. Испуганный Рейнольдс, спасаясь от немецкого вторжения, схватился за французскую соломинку и указал, что результаты Федеррсена оспорены французом Виолле. Соломинка оказалась непрочной, ибо Рейнольдс, не обладавший достаточно серьезной научной эрудицией, истолковал Виолле неправильно... Однако статья Рейнольдса появилась все-таки в печати.


  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22