Современная электронная библиотека ModernLib.Net

Большая Советская Энциклопедия (ЦИ)

ModernLib.Net / Энциклопедии / БСЭ / Большая Советская Энциклопедия (ЦИ) - Чтение (стр. 9)
Автор: БСЭ
Жанр: Энциклопедии

 

 


Барнум открыл большой передвижной цирк («сверхцирк»), где представление проходило одновременно на трёх манежах. Барнум соединил Ц. с паноптикумом и различными аттракционами. В 1886 в Париже был построен Новый цирк, арена которого в течение нескольких минут заполнялась водой. В 1887 К. Гагенбек, крупнейший торговец животными, владелец зоопарка в Гамбурге, открыл т. н. зооцирк. Здесь в большинстве номеров участвовали животные, в том числе хищные. Номера дрессировщиков быстро завоевали популярность.
        Конец 19 в. характерен обращением к спорту (что также расширило границы цирковых жанров) — выступлениям силачей, гимнастов на кольцах и турниках, жокеев, жонглёров, велофигуристов, роликобежцев. В 1904 в петербургском цирке Чинизелли проведён первый всемирный чемпионат борцов. Оригинальные номера и целые жанры принесли на арену Ц. японские, китайские, персидские, арабские артисты.
        С конца 19 в. буржуазный Ц. переживал творческий кризис. Отдельные номера отличались грубостью, вульгарностью, зачастую очевидной жестокостью (например, т. н. дикая дрессировка). В псевдопатриотических военных пантомимах восхвалялась империалистическая экспансия. Клоунада в значительной степени утратила сатирическую направленность, строилась на грубых шутках и трюках. Ц. теряли зрителей, ориентировались в значительной мере на детей. Этот процесс продолжался и в 20 в. Даже в 70-е гг. стационарные Ц. отсутствуют в США, нет их в Латинской Америке, Африке, Австралии. В Западной Европе работают 5—6 стационарных цирков, там отсутствует планомерная подготовка цирковых артистов, нет и специальных учебных заведений.
        После 2-й мировой войны цирковое искусство социалистических стран получило значительное развитие, построены и строятся стационары в Венгрии, Монголии, Румынии, Болгарии, КНДР; в Чехословакии, ГДР и Югославии действуют крупные передвижные цирковые коллективы. В ГДР, Венгрии, Болгарии существуют также училища и студии циркового искусства.
        В России начиная с 18 в. постоянно гастролировали передвижные цирковые труппы. Английский наездник Я. Бейте соорудил для выступлений своей труппы в Москве амфитеатр (1764), выступал он и в Петербурге (1765). В 1827 французский предприниматель Ж. Турниер построил в Петербурге стационарное здание, вскоре перешедшее к дирекции императорских театров; в 1849 здесь же был открыт каменный Ц. (императорский). При Петербургском театральном училище начал действовать цирковой класс. В 18 и 1-й половине 19 вв. в Ц. артисты продолжали широко использовать в своих выступлениях лошадей, шли также сюжетные постановки (пантомимы).
        В 1877 Чинизелли открыл стационар в Петербурге, в 1880 Саломонский — в Москве; братья Д. А., А. А. и П. А. Никитины в 1886 и в 1911 создали стационары в Москве; в 1903 П. С. Крутиков построил цирк в Киеве.
        В русских цирках, несмотря на жестокий полицейский режим, особенную популярность получила сатирическая публицистическая клоунада, выдвинувшая своих корифеев: В. Л. и А. Л. Дуровы, Бим-Бом (И. С. Радунский и М. А. Станевский), С. С. и Д. С. Альперовы. Мировую известность завоевали: наездники — П. И. Орлов, В. Т. Соболевский, Н. Л. Сычев, канатоходец Ф. Ф. Молодцов, борцы и атлеты — И. М. Заикин, И. В. Лебедев (дядя Ваня), И. М. Поддубный и др.
        Советский многонациональный Ц. унаследовал всё лучшее, что было создано в России до Октябрьской революции 1917, добился больших творческих и организационных успехов. На практике осуществилась мысль ленинского декрета об объединении театрального дела о демократической направленности циркового искусства Главным в обновленном Ц. стал показ физической красоты человека, сильного телом и смелого духом. Для руководства Ц. было создано единое государственное управление В 1926 открылась Мастерская циркового искусства (с 1961 — Государственное училище циркового и эстрадного искусства, ГУЦЭИ), которая стала готовить квалифицированных артистов разных жанров. С середины 30-х гг. крупнейшие Ц. получили художественных руководителей. К работе в Ц. привлекались известные писатели, художники, композиторы. Получил развитие вид тематических представлений — пантомим, посвященных историко-революционной тематике и современности: «Москва горит» (1930), «Трое наших» (1942), «Карнавал на Кубе» (1962) и многие др.
        В советском Ц. выросла плеяда выдающихся артистов, известных всему миру: династия клоунов-дрессировщиков Дуровых клоуны В. Е. и В. В. Лазаренко, Карандаш (М. Н. Румянцев), Ю. В. Никулин, О. К. Попов, Л. Г. Енгибаров, дрессировщики В. Ж. Труцци, Е. М. Ефимов, Н. П. Гладильщиков, Б. А. Эдер И. Н. Бугримова, А. Н. и А. А. Корниловы, В. И. Филатов, В. М. Запашный и др., иллюзионисты Э. Т. Кио И. К. Символоков. В становлении советского цирка значительную роль сыграли: режиссёры — В. Ж. Труцци, Б. А. Шахет, Г. С. Венецианов, художники — С. Т. Коненков Б. Р. Эрдман, В. А. Ходасевич, А. А Судакевич, Т. Г. Бруни, В. Ф. Рындин, Л. А. Окунь, композиторы — И. О Дунаевский, М. И. Блантер, З. Л. Компанеец, Ю. С. Мейтус, Ю. С. Милютин и др. Лицо современного советского цирка определяют режиссёры М. С. Местечкин, Е. М Зискинд, Б. М. Заец, А. И. Вольный, З. Б. Краснянский, А. Н. Ширай, А. А. Сонин. Значительный вклад в теорию и историю циркового искусства внесли Е. М. Кузнецов, Ю. А. Дмитриев и др. С 1928 работает Ленинградский музей циркового искусства, обладающий богатейшими документальными материалами.
        В СССР работает (1976) 61 стационарный Ц., действуют 14 национальных цирковых коллективов, а также 15 передвижных Ц.; «Цирк на воде», 2 «Цирка на льду»; 55 коллективов «Цирк на сцене»; 13 зооцирков. Отдельные группы и целые коллективы выступают во всех странах мира. В программах многих советского Ц. участвуют лучшие артисты из-за рубежа. См. также — «СССР», раздел Цирк и соответствующие разделы в статьях о странах и союзных республиках.
         Ю. А. Дмитриев.
      Цирк. Выступления советских артистов. Баланс на ножной лестнице эквилибристов под руководством Е. Т. Милаева.
      Цирк. Водяная пантомима в цирке Ченизелли. Петербург. 19 в.
      Цирк. Внутренний вид Московского цирка на Ленинских горах.
      Цирк. Выступления советских артистов. «Летающие акробаты» Арнаутовы.
      Цирк. Дрессировщица У. Бётнер с белыми медведями. ГДР.
      Цирк. Жонглер на проволоке А. Бошилов. Болгария.
      Цирк. Акробатическая группа цирка Астлея. Лондон. 1770.
      Цирк. Внешний вид цирка Саразани. Берлин. 1930.
      Цирк. Выступления советских артистов. Дагестанские канатоходцы «Цовкра».
      Цирк. Выступления советских артистов. Дрессировщик А. И. Попов в номере «Приём у доктора Айболита».
      Цирк. Акробаты Варади. Венгрия.
      Цирк. Выступления советских артистов. Джигиты Кантемировы. («Али-Бек»).
      Цирк. Д. Гибор с дрессированным дельфином. США.
      Цирк. Выступления советских артистов. Конные дрессировщики Л. Т. Котова и Ю. М. Ермолаев.
      Цирк. Выступления советских артистов. Иллюзионный номер Э. Т. Кио «Загадочный домик».
      Цирк. Здание школы верховой езды цирка Астлея. Лондон. 1770.
      Цирк. Цирк на Елисейских полях. Париж. 1843.
      Цирк. Выступления советских артистов. Жонглёр А. Н. Кисс.
      Цирк. Внутренний вид цирка Билла Рикетса. Филадельфия. 1785.

Цирк горный

       Цирк го'рный,то же, что .

Цирк (здание)

       Цирк(от лат. circus, буквально — круг), здание для цирковых представлений. В Древнем Риме — эллипсовидная арена с трибунами, на которой проводились соревнования (гонки) колесниц. В перерывах между заездами выступали акробаты, эквилибристы, дрессировщики, комики и др. артисты. Большой Ц. Рима вмещал до 50 тыс. зрителей. В Испании, Мексике и некоторых др. странах арена, окруженная амфитеатром (для зрителей), служит для проведения боя быков. Современный Ц. имеет круглую арену (манеж) диаметром У 13—14 м(в некоторых Ц. — от 9 до 17 м) ,обнесённую жёстким барьером, и сферический купол, необходимый для исполнения номеров воздушной акробатики, а также расположенные амфитеатром места для зрителей. Многие советские стационарные Ц., построенные в 50—70-е гг. в Москве, Сочи, Ташкенте и других городах (свыше 50), имеют вместительные зрительные залы (до 3,5 тыс. мест), оснащенные самой передовой цирковой техникой, располагают обширными закулисными помещениями для артистов и обслуживающего персонала, благоустроенными конюшнями для животных, репетиционными манежами и залами с кондиционированием воздуха; для зрителей имеются удобные фойе и гардеробы.
      См. также ст. .
         Ю. А. Дмитриев.
      Архитекторы Ю. Л. Шварцбрейм, В. Я. Эдемская, инженеры Н. В. Топилин, П. У. Карпов. Цирк в Сочи. 1971.
      Цирк. 1967. Архитектор Г. М, Пичуев, инженер О. И. Берим и др.

Циркадные ритмы

       Цирка'дные ри'тмы(от лат. circa — около и dies — день), околосуточные, или циркадианные, ритмы, циклические колебания интенсивности различных биологических процессов с периодом примерно от 20 до 28 ч.Часто к Ц. р., относят и ,наблюдающиеся у организмов в естественных условиях. д В изолированном же помещении, где поддерживаются постоянные освещение или темнота, температура и т.д., у растений, животных и человека период ритма, как правило, отклоняется от суточного. Если условия не изменяются, период Ц. р. стабилен. Чаще всего у животных, активных преимущественно в конце дня, вечером и ночью, период Ц. р. наиболее короток в темноте и тем продолжительнее, чем выше уровень постоянной освещённости. У животных, более активных в начале и середине 1 дня, наблюдается обратное соотношение. Наиболее признана теория, согласно: которой Ц. р. (независимо от его периода); рассматривают как собственную спонтанную (эндогенную) и генетически закрепленную цикличность биологических процессов в организме (см. ) ;этот ритм превращается в суточный под влиянием цикличности внешних условий. Согласно др. теории, Ц. р. возникают как артефакт из наследуемых суточных под влиянием принудительных постоянных условий, неестественных для организма. Например, если постоянные условия благоприятны для жизнедеятельности, животное становится активным раньше обычного времени; если же условия неблагоприятны, время активности ежедневно запаздывает; соответственно период исходного 24-часового ритма ежесуточно укорачивается или удлиняется. Ц. р. могут влиять как на поведение целого организма (например, откладка яиц насекомыми, изменение положения листьев у растений), так и на отдельные физиологические процессы. В постоянных условиях периоды Ц. р. этих функций часто различны (например, при постоянной освещённости у человека изменяются периоды ритма температуры тела, сна и бодрствования). Такое их рассогласование во времени приводит к патологическому состоянию организма, что имеет большое значение для медицины, в частности в связи с космическими полётами человека и животных. По-видимому, аналогичным образом годичные эндогенные ритмы в постоянных условиях теряют стабильность своего периода и превращаются в окологодичные (цирканные) ритмы.
      
         Лит.:Циркадные ритмы человека и животных, Фр., 1975; см. также лит. при статьях , и .
         В. Б. Чернышев.

Циркель Фердинанд

       Ци'ркель(Zirkel) Фердинанд (20.5.1838, Бонн, — 11.6.1912, там же), немецкий геолог и петрограф. Окончил Боннский университет (доктор философии, 1861). С 1863 профессор Львовского университета, в 1870—1909 профессор минералогии в Лейпциге. Изучал магматические горные породы в Исландии, Шотландии, Италии, Франции, Северной Америке, Индии, на Цейлоне. Первым применил кристаллооптический метод для микроскопического изучения горных пород и их диагностики. Ц. — автор учебника по петрографии (1893—94), выдержавшего несколько изданий и способствовавшего дальнейшему развитию петрографии.
        Соч .:Untersuchung ьber die mikroskopische Zusammensetzung und Struktur der Basaitgesteine, Bonn, 1870.

Циркон

       Цирко'н(нем. Zirkon; первоисточник: перс. заргун — золотистый), минерал из класса островных силикатов, Zr [SiO 4] По содержанию примесей выделяют следующие разновидности Ц.: альвит — с Hf и Th, оямалит — с TR и Р, хагаталит — с TR, Nb, наэгит — с TR, Th, Ta и др. Метамиктные (см. ) дипирамидальные Ц., содержащие Th, U, H 2O (Th > U), называются малаконами призматические (Th < U) — циртолитами. Прозрачный Ц. медово-жёлтого красно-бурого, розового цвета называется гиацинтом; метаколлоидный, колломорфный — аршиновитом. Кристаллизуется в тетрагональной системе, образуя столбчатые или короткопризматические, реже дипирамидальные кристаллы. Часты закономерные срастания с ксенотимом YPO 4. Цвет коричневато-желтый до коричневого, сероватый, красный, розовый; иногда бесцветен. Прозрачный до просвечивающего. Спайность обычно отсутствует. Твердость по минералогической шкале 7—8; плотность 4680—4710 кг/м 3(у метамиктных разностей твердость и плотность ниже).
        Ц. — характерный акцессорный минерал гранитов, нефелиновых сиенитов и их эффузивных аналогов, а также различных метаморфических и терригенно-осадочных пород, крупные его выделения встречаются в гранитных и щелочных пегматитах. В промышленных количествах концентрируется иногда совместно с пирохлором в зонах альбитизации щелочных пород При выветривании пород переходит в россыпи. Большие запасы Ц. заключены в прибрежно-морских россыпях Тихоокеанского побережья США (Флорида) на о. Шри-Ланка, в Восточной Австралии Ц. — основной источник получения Zr и Hf двуокиси циркония. Чисто цирконовые пески применяются в формовочном литье, а также в качестве сырья для получения огнеупоров, специальной керамики. Гиацинт и прозрачные жёлтые и зелёные Ц. используются в ювелирном деле (драгоценные камни II класса).
         Л. И. Гинзбург

Циркониевые сплавы

       Цирко'ниевые спла'вы,сплавы на основе .До начала 50-х гг. 20 в. Ц. с. изучались мало и практически не применялись, а полученная в то время информация об их свойствах во многих случаях была недостоверной, вследствие использования для исследований недостаточно чистого циркония и несовершенных методов приготовления сплавов. Положение резко изменилось, когда в начале 50-х гг. удалось получить цирконий, очищенный от примеси гафния, и было обнаружено, что такой металл имеет малое поперечное сечение поглощения тепловых.
      Механическое свойства циркониевых сплавов
Сплав Полуфабрикат (состояние) При 20 °С При 300 °С предел прочности s В Относи- тельное удлине- ние d % предел прочности s В Относи- тельное удлине- ние d % Мн/м 2 кгс/мм 2' Мн/м 2 кгс/мм 2' Циркалой-2 Листы (отожжённые) 480 48 22 200 20 35 Zr2,5Nb То же 450 45 25 300 30 23 Циркалой-2 Трубы (холоднокатаные) 690 69 22 400 40 19 Zr2,5Nb То же 790 79 27 560 56 23       нейтронов. Это позволило рассматривать цирконий (при наличии других благоприятных свойств) как весьма перспективный материал для конструкций энергетических ядерных реакторов на тепловых нейтронах. Однако, как показали первые исследования, использовать для этой цели нелегированный цирконий не представлялось возможным в первую очередь из-за нестабильной коррозионной стойкости его в нагретой воде. Это обстоятельство стимулировало начало интенсивных исследований Ц. с., в результате чего были разработаны промышленные сплавы, нашедшие широкое применение в ядерной энергетике. Ц. с. используются для элементов конструкции активной зоны ядерных реакторов на тепловых нейтронах — оболочки тепловыделяющих элементов (твэлов), каналы, кассеты, дистанционные решётки и др. Наибольшее применение Ц. с. получили в реакторах с пароводяным теплоносителем. Ц. с. наряду с малым поперечным сечением поглощения тепловых нейтронов обладают высокой и стабильной коррозионной стойкостью в воде и паре высоких параметров и в других агрессивных средах, хорошей пластичностью и удовлетворительными прочностными характеристиками. К легирующим элементам Ц. с. предъявляется комплекс требований: одни из них должны значительно ослаблять (подавлять) вредное влияние азота на коррозионную стойкость циркония (при допустимом содержании азота в сплавах менее 0,01%), другие — ощутимо не увеличивать поперечное сечение поглощения тепловых нейтронов, не снижать радиационную стойкость, повышать прочностные характеристики и при этом существенно не уменьшать пластичность (сплавы должны быть пригодны для изготовления из них особо тонкостенных труб и листов, обладать хорошей свариваемостью). Поэтому выбор легирующих добавок ограничен сравнительно небольшим числом элементов при невысоком содержании их в сплавах. Для легирования используются Nb, Sn, Fe, Cr, Ni, Cu и Mo, которые вводятся в количествах от долей процента до 2—3% (в сумме).
        Из большого числа исследованных Ц. с. практическое применение нашли лишь немногие. За рубежом наибольшее распространение получил американский сплав циркалой-2 (1,5% Sn, 0,1% Fe, 0,1% Cr, 0,05% Ni и не более 0,01% N). Используется также сплав циркалой-4 (отличается от циркалоя-2 пониженным содержанием никеля — 0,007%). Сплав циркалой-2 специально разрабатывался и был сначала использован для оболочек твэлов реактора первой американской атомной подводной лодки «Наутилус», затем нашёл применение во многих энергетических реакторах атомных станций для твэлов и каналов, работающих в воде и пароводяных смесях с температурой 250—300 °C. В СССР разработаны и применяются оригинальные сплавы, не содержащие олова, — Zr1Nb и Zr2, 5Nb (соответственно с 1 и 2,5% Nb). Сплав Zr1Nb впервые был применен для твэлов реактора атомного ледокола «Ленин», а сплав Zr2, 5Nb — для кассет реактора Ново-Воронежской АЭС. В середине 70-х гг. сплавы Zr1Nb и Zr2, 5Nb используются для оболочек твэлов, кассет и каналов реакторов большинства атомных электростанций СССР и социалистических стран. Кроме того, сплав Zr2, 5Nb применен в ряде реакторов в Канаде. По коррозионной стойкости сплав Zr2, 5Nb сопоставим со сплавами типа циркалой, однако он имеет меньшую склонность к наводороживанию, не подвержен снижению сопротивления коррозии под облучением и обладает большей прочностью, в частности более высоким сопротивлением ползучести. Несмотря на высокую температуру плавления циркония (1852 °C), его известные сплавы не отличаются высокой жаропрочностью и практически пригодны для работы в пароводяных средах при температурах не выше 400 °C. При более высоких температурах наряду со снижением прочности Ц. с. происходит сильное окисление их с растворением кислорода, приводящее к потере пластичности и наводороживанию, которое вызывает охрупчивание в результате образования гидридов. Механические свойства Ц. с. типа циркалой и цирконий-ниобиевых сплавов по уровню прочности и пластичности (при кратковременных испытаниях) одного порядка (см. табл.) и зависят, как и для других металлических материалов, от структурного состояния, обусловленного термической и деформационной обработкой.
        Ц. с. выплавляют в дуговых вакуумных печах с расходуемым электродом и электроннолучевых печах. Используется цирконий т. н. ядерной чистоты (значительно очищенный от гафния и др. примесей с большим поперечным сечением поглощения тепловых нейтронов). Полуфабрикаты из Ц. с. изготовляются на обычном оборудовании, применяемом для многих цветных металлов. Отжиг проводится в вакуумных печах. Если в ядерной энергетике Ц. с. получили широкое распространение, то в др. областях техники они практически не нашли применения; в частности, как конструкционный и коррозионностойкий материал они уступают более прочным, лёгким и дешёвым титановым сплавам.
        Лит.:Металлургия циркония, пер. с англ., М., 1959; Труды второй Международной конференции по мирному использованию атомной энергии, Женева, 1958. Доклады советских ученых, т. 3, М., 1959, с. 486; Ривкин Е. Ю., Родченков Б. С., Филатов В. И., Прочность сплавов циркония, М., 1974; Дуглас Д., Металловедение циркония, пер. с англ., М., 1975 (лит.).
         А. А. Киселев.

Цирконий

       Цирко'ний(лат. Zirconium), Zr, химический элемент IV группы периодической системы Менделеева; атомный номер 40, атомная масса 91,22; серебристо-белый металл с характерным блеском. Известно пять природных изотопов Ц.: 90Zr (51,46%), 91Zr (11,23%), 92Zr (17,11%) 94Zr (17,4%), 96Zr (2,8%). Из искусственных радиоактивных изотопов важнейший 95Zr (T 1/2= 65 сут) ;используется в качестве .
        Историческая справка. В 1789 немецкий химик М. Г. Клапрот в результате анализа минерала выделил двуокись Ц. Порошкообразный Ц. впервые был получен в 1824 И. ,а пластичный — в 1925 нидерландскими учёными А. ван Аркелом и И. де Буром при термической диссоциации иодидов Ц.
        Распространение в природе. Среднее содержание Ц. в земной коре (кларк) 1,7Ч10 -2% по массе, в гранитах, песчаниках и глинах несколько больше (2Ч10 -2%) ,чем в основных породах (1,3Ч10 -2 %) .Максимальная концентрации Ц. — в щелочных породах (5Ч10 -2%). Ц. слабо участвует в водной и биогенной миграции. В морской воде содержится 0,00005 мг/лЦ. Известно 27 минералов Ц.; промышленное значение имеют бадделеит ZrO 2, циркон. Основные типы месторождений Ц.: щелочные породы с малаконом и цитролитом; магнетит-форстерит-апатитовые породы и карбонатиты с бадделеитом; прибрежно-морские и элювиально-делювиальные россыпи.
        Физические и химические свойства. Ц. существует в двух кристаллических модификациях: a-формы с гексагональной плотноупакованной решёткой ( а= 3,228 ; с= 5,120 ) и b-формы с кубической объёмноцентрированной решёткой ( а= 3,61 ). Переход a ® b происходит при 862 °C. Плотность a-Ц. (20 °C) 6,45 г/см 3; t пл1825 ± 10 °C; t кип3580—3700 °C; удельная теплоёмкость (25—100 °С) 0,291 кдж/( кгЧ К) [0,0693 кал/( гЧ °С)] ,коэффициент теплопроводности (50 °С) 20,96 вт/( мЧ К) [0,050 кал/( смЧ секЧ°С)]; температурный коэффициент линейного расширения (20—400 °С) 6,9Ч10 -6; удельное электрическое сопротивление Ц. высокой степени чистоты (20°С) 44,1 мкомЧ см.температура перехода в состояние сверхпроводимости 0,7 К. Ц. парамагнитен; удельная магнитная восприимчивость увеличивается при нагревании и при —73 °С равна 1,28Ч10 -6, а при 327 °С — 1,41Ч10 -6. Сечение захвата тепловых нейтронов (0,18 ± 0,004)Ч10 -28 м 2, примесь гафния увеличивает это значение. Чистый Ц. пластичен, легко поддаётся холодной и горячей обработке (прокатке, ковке, штамповке). Наличие растворённых в металле малых количеств кислорода, азота, водорода и углерода (или соединений этих элементов с Ц.) вызывает хрупкость Ц. Модуль упругости (20 °С) 97 Гн/м 2(9700 кгс /мм 2) ;предел прочности при растяжении 253 Мн/м 2(25,3 кгс/мм 2) ;твёрдость по Бринеллю 640—670 Мн/м 2(64—67 кгс/мм 2) ;на твёрдость очень сильное влияние оказывает содержание кислорода: при концентрации более 0,2% Ц. не поддаётся холодной обработке давлением.
        Внешняя электронная конфигурация атома Zr 4d 25s 2. Для Ц. характерна степень окисления +4. Более низкие степени окисления +2 и +3 известны для Ц. только в его соединениях с хлором, бромом и йодом. Компактный Ц. медленно начинает окисляться в пределах 200—400 °С, покрываясь плёнкой ZrO 2; выше 800 °С энергично взаимодействует с кислородом воздуха. Порошкообразный металл пирофорен — может воспламеняться на воздухе при обычной температуре. Ц. активно поглощает водород уже при 300 °С, образуя твёрдый раствор и гидриды ZrH и ZrH 2; при 1200—1300 °С в вакууме гидриды диссоциируют и весь водород может быть удалён из металла. С азотом Ц. образует при 700—800 °С нитрид ZrN. Ц. взаимодействует с углеродом при температуре выше 900 °С с образованием карбида ZrC. Карбид и нитрид Ц. — твёрдые тугоплавкие соединения; карбид Ц. — полупродукт для получения ZrCl 4. Ц. вступает в реакцию с фтором при обычной температуре, а с хлором, бромом и иодом при температуре выше 200 °С, образуя высшие галогениды ZrX 4(где Х — галоген). Ц. устойчив в воде и водяных парах до 300 °С, не реагирует с соляной и серной (до 50%) кислотами, а также с растворами щелочей (Ц. — единственный металл, стойкий в щелочах, содержащих аммиак). С азотной кислотой и царской водкой взаимодействует при температуре выше 100 °С. Растворяется в плавиковой и горячей концентрированной (выше 50%) серной кислотах. Из кислых растворов могут быть выделены соли соответствующих кислот разного состава, зависящего от концентрации кислоты. Так, из концентрированных сернокислых растворов Ц. осаждается кристаллогидрат Zr (SO 4) 2Ч4H 2O; из разбавленных растворов — основные сульфаты общей формулы xZrO 2ЧySO 3ЧzH 2O (где х: y> 1). Сульфаты Ц. при 800—900 °С полностью разлагаются с образованием двуокиси Ц. Из азотнокислых растворов кристаллизуется Zr (NO 3) 4Ч5H 2O или ZrO (NO 3) 2ЧxH 2O (где х=  2—6), из солянокислых растворов — ZrOCl 2Ч8H 2O, который обезвоживается при 180—200 °С.
        Получение. В СССР основным промышленным источником получения Ц. является минерал циркон ZrSiO 4. Циркониевые руды обогащаются гравитационными методами с очисткой концентратов магнитной и электростатической сепарацией. Металл получают из его соединений, для производства которых концентрат вначале разлагают. Для этого применяют: 1) хлорирование в присутствии угля при 900—1000 °С (иногда с предварительной карбидизацией при 1700—1800 °С для удаления основной части кремния в виде легколетучего SiO); при этом получается ZrCl 4, который возгоняется и улавливается; 2) сплавление с едким натром при 500—600 °С или с содой при 1100 °С: ZrSiO 4+ 2Na 2CO 3= Na 2ZrO 3+ Na 2SiO 3+ 2CO 2; 3) спекание с. известью или карбонатом кальция (с добавкой CaCl 2) при 1100—1200 °С: ZrSiO 4+ 3CaO = CaZrO 3+ Ca 2SiO 4; 4) сплавление с фторосиликатом калия при 900 °С: ZrSiO 4+ K 2SiF 6= K 2ZrF 6+ 2SiO 2. Из спёка или плава, полученного в случаях щелочного вскрытия (2,3), вначале удаляют соединения кремния выщелачиванием водой или разбавленной соляной к той, а затем остаток разлагают соляной или серной; при этом образуются соответственно оксихлорид и сульфаты. Фтороцирконатный спек (4) обрабатывают подкисленной водой при нагревании; при этом в раствор переходит фтороцирконат калия, 75—90% которого выделяется при охлаждении раствора.
        Для выделения соединений Ц. из кислых растворов применяют следующие способы: 1) кристаллизацию оксихлорида Ц. ZrOCl 2Ч8H 2O при выпаривании солянокислых растворов; 2) гидролитическое осаждение основных сульфатов Ц. xZrO 2ЧySO 3(zH 2O из сернокислых или солянокислых растворов; 3) кристаллизацию сульфата Ц. Zr (SO 4) 2при добавлении концентрированной серной кислоты или при выпаривании сернокислых растворов. В результате прокаливания сульфатов и хлоридов получают ZrO 2.
        Соединения Ц., полученные из рудного сырья, всегда содержат примесь гафния. Ц. отделяют от этой примеси фракционной кристаллизацией K 2ZrF 6, экстракцией из кислых растворов органическими растворителями (например, трибутилфосфатом), ионообменными методами, избирательным восстановлением тетрахлоридов (ZrCl 4и HfCl 4).
        Ц. в виде порошка или губки получают металлотермическим восстановлением ZrCl 4, K 2ZrF 6и ZrO 2. Хлорид восстанавливают магнием или натрием, фтороцирконат калия — натрием, а двуокись Ц. — кальцием или его гидридом. Электролитический порошкообразный Ц. получают из расплава смеси солей галогенидов Ц. и хлоридов щелочных металлов. Компактный ковкий Ц. получают плавлением в вакуумных дуговых печах спрессованных губки или порошка, обычно служащих расходуемым электродом. Ц. высокой степени чистоты производят электроннолучевой плавкой слитков, полученных в дуговых печах, или прутков после иодидного рафинирования.
        Применение. Сплавы на основе Ц., очищенного от гафния, применяют преимущественно в качестве конструкционных материалов в ядерных реакторах, что обусловлено малым сечением захвата тепловых нейтронов (см. ) .Ц. входит в состав ряда сплавов (на основе магния, титана, никеля, молибдена, ниобия и др. металлов), используемых как конструкционные материалы, например, для ракет и др. летательных аппаратов. Из сплавов Ц. с ниобием делают обмотки .В литейном производстве применяют .К числу наиболее распространённых пьезокерамических материалов (пьезокерамики) относится группа цирконата — титаната свинца (например, ЦТС-23). В металлокерамических материалах (керметах) металлическим составляющим является Ц., а керамическим — его двуокись ZrO 2. При производстве генераторных ламп проволока из Ц. служит .

  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16