Современная электронная библиотека ModernLib.Net

Создано человеком

ModernLib.Net / Жаворонков Николай / Создано человеком - Чтение (стр. 9)
Автор: Жаворонков Николай
Жанр:

 

 


      Ученик академика Н. Д. Зелинского, успешно специализировавшийся в первые годы работы в области органической и биохимии, обращается к новому направлению уже в 1906 году, защищая докторскую диссертацию в Московском университете на тему "Исследования в области комплексных соединений".
      Есть серьезные основания полагать, что путь в химию комплексных соединений Л. А. Чугаеву открыл сам Д. И. Менделеев. Достаточно вспомнить, например, что из всех корифеев научной мысли России, где термин "комплексное соединение" появился еще в 1890 году, теорию А. Вернера с самого начала поддерживали лишь Д. И. Менделеев и (с некоторыми оговорками) Н. С. Курнаков, чтобы понять, сколь основательны подобные предположения. Что ж, талантом предвидения, как известно, обладают немногие, а лишь суперодаренные или даже гениальные исследователиНо так или иначе, только в последнее предреволюционное десятилетие Львом Александровичем выполняются блестящие исследования координационных соединений платины, кобальта, никеля и других металлов. Работы эти навсегда войдут в золотой фонд отечественной химии, поныне не утратив значения основополагающих.
      Однако настоящий размах исследования в области координационной химии получили у нас в стране только после Великой Октябрьской социалистической революции. В мае 1918 года по инициативе Л. А. Чугаева создается Институт по изучению платины и других благородных металлов, издающий (через два года после основания) журнал "Известия Института по изучению платины и других благородных металлов".
      Можно много говорить о том, чем стал для становления координационной химии в стране и мире этот институт и его "Известия". Но думаю, что лучшей и выразительной оценки, данной его трудам профессором Г. Б. Кауфманом (США), быть все же не может. "Тридцать два тома "Известий" подобны тридцати двум фортепианным сонатам Людвига ван Бетховена. Сонаты Бехтовена были написаны в 27-летний период (с 1796 по 1823 гг.), за время которого проявился его редкий талант композитора и совершенствовалось мастерство формы.
      Подобным образом и тома "Известий", появившиеся в свет примерно за такой же период, свидетельствовали об успехах советских исследований в области платиновых металлов со времени скромных начинаний в годы хаоса гражданской войны до полного их совершенствования в послевоенный период XX века".
      Теория А. Вернера, как и все новое, не вписывающееся в жесткие рамки сложившихся мнений, шла к признанию трудными путями. Секрет столь долгого непонимания большой химией нового дочернего направления, по сути дела, прост: получить соединения, возможность существования которых предсказывала теория Вернера, ученым не удавалось. В числе этих "неуловимых" были и соединения четырехвалентной платины. И лишь в 1915 году Л. А. Чугаеву и Н. А. Владимирову эту "брешь" удалось ликвидировать. А десять лет спустя решением IV Менделеевского съезда по чистой и прикладной химии полученные ими комплексные соединения стали называться солями Чугаева. Эти исследования и позволили Льву Александровичу открыть в дальнейшем так называемую амидореакцию, послужившую основой создания теории кислотно-основных свойств комплексных соединений (автор - академик А. А. Гринберг).
      Какими сложными, а главное, какими суперважными проблемами занимались тогда в Институте платины, можно судить хотя бы по тому факту, что новый класс координационных соединений двухвалентной платины (названный позднее аномальными аммиачнонитрильными соединениями), открытый Л. А. Чугаевым совместно с его учеником В. В. Лебединским, вплоть до 1961 года представлял собой серьезную загадку. Целый ряд работ ученого по изучению комплексных соединений с циклообразующими лигандами позволил ему вывести правило, известное теперь как "правило циклов" Чугаева. Но почему все-таки изучению платины и созданию в стране платиновой промышленности уделял Лев Александрович такое внимание?
      Потому что даже относительный достаток драгоценного металла означал для страны реальную возможность освобождения экономики от зависимости, в которую ее поставили разруха, голод и враждебные силы капитала.
      А еще потому, что Л. А. Чугеез писал: "До последнего времени лишь малая доля платины выделялась и очищалось на русских заводах, главная же масса руды направлялась для этой цели за границу. То же самое целиком относится к спутникам платины, заводской добычи которых в России не существует. Едва ли нужно говорить о крайней ненормальности такого положения вещей".
      Создание Платинового института исправляет эту ненормальность в самые сжатые сроки. Здесь в тесном содружестве с заводскими лабораториями разрабатываются и внедряются в производство новые методы получения платины, родия, осмия и рутения, радикально улучшается и видоизменяется методика анализа сырой платины, рафинированных (очищенных от примесей) металлов и полупродуктов производства. И уже к 1929 году промышленность страны вырабатывает все металлы платиновой группы, причем они значительно превосходят по качеству продукцию старейших зарубежных фирм.
      Но Лев Александрович мечтает не только о том, чтобы крепла и развивалась отечественная наука, чтобы могущественней день ото дня становилась ее индустрия, он думает еще и о том, чтобы как можно больше людей и в минимально сжатые сроки овладели бы знаниями, бывшими до сей поры им недоступными. И он без колебания вступает в свободную ассоциацию деятелей науки и культуры по развитию и распространению естественнонаучных знаний.
      Ассоциация возникла по инициативе А. М. Горького, академиков И. П. Павлова, А. А. Маркова, В. И. Вернадского и И. И. Бардина в Петрограде. В апреле 1917 года в переполненном до отказа Михайловском театре Лев Александрович, избранный в организационный комитет ассоциации, выступает перед собравшимися с блистательной речью. К счастью, текст ее сохранился все в тех же бесценных архивах.
      Но о чем может говорить ученый перед голодными, продрогшими солдатами? Конечно, о том, что может дать их стране, их революции наука, просвещение. Он говорит о том, что понятно каждому, что доходит до сердца.
      Он говорит, что благодаря русской революции "удается нанести смертельный удар ненавистному милитаризму и упрочить в странах всего мира демократический режим".
      Мало, до обидного мало прожил Лев Александрович Чугаев. Он погиб от брюшного тифа в сентябре 1922 года. Но продолжает жить и работать его Платиновый институт (учрежденный одновременно с Институтом физико-химического анализа, возглавляемым Н. С. Курнаковым) - один из двух первых научно-исследовательских институтов, созданных Академией наук при Советской власти. А начатое им дело - в надежных руках учеников. Их у него много, и каждый - гордость нашей науки: академики В. Г. Хлопин, И. И. Черняев, А. А. Гринберг, члены-корреспонденты АН СССР В. В. Лебединский, Н. К. Пшепицын, И. И. Жданов и многие, многие другие.
      И то, что отечественной химии координационных соединений характерны сегодня высочайшие темпы развития - безусловная их заслуга. В первую очередь это относится к химии комплексов с органическими лигандами, в качестве которых могут выступать стабильные молекулы (этилен, бензол, окись углерода) или нестабильные в обычных условиях соединения - свободные радикалы.
      Но чтобы все эти соединения получили "права гражданства", потребовались пионерские исследования И. И. Черняева и А. Д. Гельман в СССР и несколько позже Дж. Чатта (в Англии); систематические работы по химии комплексов с ароматическими системами (П-комплексов), выполненные школами Э. О. Фишера в ФРГ и А. Н. Несмеянова в СССР. Методы синтеза таких комплексов и многочисленных производных, разработанные этими учеными и их учениками, позволили получить и подробно исследовать реакционную способность почти всех переходных элементов периодической системы, выяснить многочисленные аспекты влияния координации на свойства лигандов.
      Интерес к перечисленным соединениям, ставшим теперь объектами неорганической, органической и собственно координационной химии одновременно, не случаен. История естествознания последних десятилетий дает немало примеров особенно плодотворного развития науки на стыках разных областей человеческого знания.
      Но среди причин, определивших такой, невиданно высокий взлет координационной химии, прикладное значение научных результатов должно быть поставлено на первое место. Хотя и чисто теоретическую значимость проведенных исследований было б ошибкой недооценить. Так, изучение электронного строения комплексов переходных металлов дало развитию теории химической связи гораздо больший импульс, чем все исследования простых неорганических и многих органических соединений.
      Достижения советской координационной химии позволили, например, установить, что такие непоколебимые, обязательные принципы описания химических связей, как валентный штрих, числовая валентность, направленные валентности, обязательность спаривания электронов и т. д., оказываются вовсе и не необходимыми. И на смену классическому описанию электронного строения молекул приходит периодическая их систематизация с позиций метода молекулярных орбиталий (МО).
      Сейчас этот метод уже общепринят и служит основой интерпретационных схем современных физико-химических методов исследования строения и свойств координационных соединений. С его помощью изучают, например, электронную структуру комплексов. Можно с уверенностью сказать, что ни одно из направлений науки не стимулировало так развитие теории химической связи и строения молекул, как координационная химия.
      Это и неудивительно. Потому что только она поставляла и непрерывно поставляет исследователям все новые классы "странных" соединений с необычным составом, структурой и свойствами, принципиально не укладывающимися в рамки классических представлений. Более того, способность к насыщению координационных валентностей оказалась в природе чрезвычайно распространенной. В той или иной степени она присуща практически всем элементам периодической системы.
      Однако число "странных" соединений сейчас столь велико, что решить, является ли их "поведение" правилом или исключением из него, не всегда легко. Возникают, например, трудности с определением понятий не только валентности, но и координационного числа. Например, в высококоординационных соединениях тяжелых металлов расстояния металл-лиганд (даже при одинаковых лигандах) варьируют в столь широких пределах, что нахождение границ внутренней сферы комплекса довольно затруднительно. Отсюда неопределенность и в принципиальнейшем для химии вопросе: какое же взаимодействие металл-лиганд можно считать "настоящей" химической связью? Ведь не случайно выдающийся советский химик И. И. Черняев, ученик и последователь Л. А. Чугаева, писал: "Весь прогресс современной химии, включая и органическую, зависит от нашего понимания химии комплексных соединений". А сам Лев Александрович, характеризуя научную политику созданного им Платинового института, непременно подчеркивал: "...в этом учреждении разработка чисто научных вопросов чрезвычайно тесно связана, и можно сказать, переплетена с разработкой вопросов технического порядка, которые по преимуществу интересуют практиков".
      Это незыблемое правило соединения практики с теорией оказывается неприкосновенным и в дальнейшей деятельности института. В 1926 году, например, уже после смерти Льва Александровича его ученик и последователь И. И. Черняев открывает закономерность трансвлияния лигандов в координационных соединениях. Суть ее заключается в том, что взаимное влияние лигандов в координационных соединениях переходных элементов в основном направлено по транскоординате (напротив друг друга).
      А это уже открывает практике уникальную возможность управления реакциями замещения.
      Впоследствии учение о взаимном влиянии лигандов в координационных соединениях было развито и расширено в трудах многих советских ученых.
      А в 40-х годах представители советской школы во главе с И. И. Черняевым, В. Г. Хлопиным, А. А. Гринбергом и Б. П. Никольским активно включаются в разработку координационной химии актинидов (радиоактивных элементов). Тему научного поиска определяют практические задачи советской атомной промышленности, Работы по синтезу и изучению комплексов тория, урана приводят к накоплению обширнейшего экспериментального материала, в свою очередь ставшего основой новых теоретических обобщений. Было установлено, например, что уран, торий, плутоний наиболее прочные связи образуют с кислородом. А когда академик В. И. Спицын и его ученики открывали соединения, содержащие плутоний и нептуний в высшей (-1-7) степени окисления, этот чисто теоретический вывод нашел блестящее подтверждение.
      Сегодня комплексные соединения с успехом используются в строительной технике и медицине, в нефтяной промышленности и теплоэнергетике при очистке вод и реактивов, активно применяются в процессах очистки промышленных выбросов для охраны окружающей среды.
      Особенно широки перспективы использования комплексных соединений в сельском хозяйстве. Дело в том, что многие микроэлементы, необходимые для жизнедеятельности растений, содержатся в почве в трудноусвояемом состоянии, так что роль их комплексных соединении для перевода в растворимую форму трудно переоценить - они живительный "концентрат", эликсир здоровья для урожая.
      Советская школа координационной химии внесла существенный вклад к в становление химической промышленности пашей страны. Взять хотя бы процесс очистки азотоводородной смеси от окиси углерода в производстве синтетического аммиака, представлявший прежде чрезвычайную сложность. Выполненные в начале 30-х годов в Московском химико-технологическом институте имени Д. И. Менделеева фундаментальные исследования по изучению абсорбции (поглощения) вредной для окружающей среды окиси углерода растворами аммиакатов меди выявили оптимальные условия, при которых окись углерода поглощается наиболее полно. Сегодня мощность заводов, использующих во всем мире этот метод, составляет до 9 миллионов тонн.
      Или взять другую важнейшую область практического использования достижений координационной химии - металлокомплекспыи катализ с участием комплексных металлов, родоначальниками которого по праву считаются выдающийся русский химик-органик М. Г. Кучеров, французский химик и минералог Ш. Фридель и американский ученый Дж. Крафтс. Результаты внедрения катализа в производство были столь ошеломляющие, что достоверно оцепить экономическую его отдачу практически невозможно.
      И здесь тоже нет никаких преувеличений. Ведь сейчас многие продукты основного органического синтеза (винилацетат, уксусный альдегид и почти вся уксусная кислота) получают с помощью комплексов металлов.
      Только продукция промышленного синтеза, базирующегося на реакциях, где в качестве катализатора используют комплексы кобальта или родия, исчисляется миллионами тонн.
      Вот она - поистине многотоннажная химия. Значительную часть полимерных материалов (полиэтилен, полидиены и т. д.) тоже получают с помощью таких катализаторов. А ведь совсем недавно, всего лишь в начале 70-х годов, предположения выдающегося английского химика Найхолма о том, что в 80-х годах большая часть основного органического синтеза будет производиться с помощью металлокомплексных катализаторов, считалось чуть ли не утопическим.
      Но как ни важен для экономики всех стран столь результативный практический "выход" исследований пометаллокатализу, теоретическое значение таких работ непреходяще. Потому что именно этот метод невиданно укрепил позиции восходящей еще к Д. И. Менделееву химической теории гетерогенного (гетеро - от греческого "другой", "разный") катализа, при котором процесс протекает в жидкой или газовой фазах, а ускорение осуществляет твердый катализатор.
      Но возможности координационной химии отнюдь не исчерпаны. И мы вправе ожидать еще и еще новых успехов от практического применения комплексов со связью "металл - металл". Советскими исследователями уже синтезированы содержащие связи "металл - металл"
      комплексы рения, платины. Созданы и так называемые кластерные соединения (содержащие связь "металл - металл"), открывающие перед катализом самые широкие перспективы.
      Недавно в Институте общей и неорганической химии имени Н. С. Курнакова были синтезированы совершенно необычные соединения. Представьте себе икосаэдр - любопытный и довольно редко встречающийся в повседневной практике тип многогранника. Понимаю, что нелегко вообразить эдакую ячеистую башню из двадцати треугольных граней, тридцати ребер и двенадцати вершин, в каждой из которой сходится пять ребер. Такое "сооружение" и синтезировано учеными ИОНХа. Разумеется, "возведение" его преследовало вполне конкретную научную цель: создать гигантский кластер.
      Здесь необходимо сказать, что химия кластерных соединений - интенсивно развивающееся в последние годы научное направление. Находится оно, как принято сейчас говорить, на стыке неорганической, элементоорганической химии, катализа, биохимии, коллоидной химии, физики ультрадисперсных систем, физики поверхности и электронного материаловедения. Химия кластерных соединений - развитие и продолжение химии координационной. А ее становление связано с достижениями русской и советской науки.
      Кластерами называют такие соединения металлов, молекулы которых содержат обрамленный лигандами (молекулы или ионы в комплексных соединениях, непосредственно связанные центральным атомом-комплексообразователем) остов из атомов металлов, находящихся на расстояниях, допускающих прямые взаимодействия "металл - металл".
      Не так давно английские исследователи сообщили в прессе как о выдающемся достижении национальной химической науки о синтезировании кластера с 28 атомами металла. С 28! А в ИОНХе создан гигант из 561 атома.
      Та самая ажурная "башня", с которой я начал рассказ о кластерах. 560 атомов палладия "роятся" в ней в пяти слоях вокруг одного центрального. А на поверхности икосаэдра располагаются 60 молекул азотистого основания.
      Вся конструкция - металлический остов и связанные с ним азотистые основания - несет положительный заряд +180, Вокруг такой конструкции размещаются ионы ацетата (сложных производных уксусной кислоты), компенсирующие заряд кластера, в результате чего все соединение электрически нейтрально. Такие кластеры в отличие от обычного металла (его называют компактным) растворяются в полярных (вода, спирты, уксусная кислота и т. д.) растворителях и в них способны осуществлять ряд необычных реакций органических соединений.
      Химия кластеров не только расширила наши представления о строении материи, но уже дала практике удивительные катализаторы. Чем больше атомов металла в основании кластера, тем уникальнее, разнообразнее его возможности. Гигант из 561 атома палладия - химическая сенсация. Ведь кластерные катализаторы работают при комнатной температуре. Аналогию с ними выдерживают только те системы, что заложены природой в живом организме.
      А спрос международного рынка на продукцию координационной химии все растет и растет. И в первую очередь на платиновые металлы, без которых не может сегодня обойтись ни электроника, ни электротехника. И здесь вновь пришлось обратиться за помощью к фундаментальным исследованиям. Автору этой книги и его коллегам удалось установить, например, что простые и двойные окислы платиновых металлов обладают металлическим характером проводимости только в том случае, если атом платинового металла имеет строго определенную электронную конфигурацию. При других электронных конфигурациях те же окислы становятся уже... полупроводниками. То есть их электрические свойства меняются.
      Что же дает практике выявленная закономерность?
      Возможность направленного синтеза соединений с заданными электрическими свойствами. Перспективно и использование достижений координационной химии в области создания неорганических материалов. Достаточно напомнить, что основные гидрометаллургические процессы в производстве редких, цветных, благородных, радиоактивных металлов непременно включают образование их координационных соединений. Так что детальное изучение этих процессов непременно будет способствовать разработке новых электрохимических и гидрометаллургических методов производства металлов.
      Уже сегодня самое широкое применение нашли координационные соединения при получении металлов высокой степени чистоты, материалов для квантовой электроники, микроэлектроники и других областей новой техники. Недаром, оценивая значение "заслуг" координационной химии вообще и советской ее школы в частности, известный английский химик Дж. Чатт сказал: "...создание таких аппаратов современной техники, как атомные реакторы и ракеты, потребовало исследовать заново химию металлических элементов для нахождения лучших способов их очистки и получения новых материалов, пригодных для продолжительного использования в напряженных физических условиях. Возможно, не случайным было и то, что единственная страна, которая посвятила значительную часть своих усилий в области химических исследований в 20-30-х годах разработке координационной химии, была и первой страной, пославшей ракету на Луну".
      Координационная химия активно вторгается в такую актуальную область современной промышленности, как энергетика. Речь идет прежде всего о химии гидридов (соединений с водородом) металлов и бора. Перспективы многоцелевого применения водорода в химической промышленности, а в будущем, возможно, и в энергетике - мощный стимул развития координационной химии гидридов. И советские ученые уже внесли важный вклад в развитие этой области.
      В нашей стране ведутся систематические поиски и так называемых энергоемких соединений, все шире используемых в качестве сильных неорганических окислителей. Сюда в первую очередь следует отнести координационные соединения, в которые в качестве лигандов входят окислители. Большие успехи достигнуты в области синтеза и исследований другого класса неорганических соединений - фторидов и окислов галогенов и инертных газов.
      Многого можно ожидать от исследований механизма действия микроэлементов, играющих важную роль в жизни растений и животных. А ведь понимание природы соединений, в форме которых микроэлементы окалываются активными, как соединений координационных, ставит науку о микроэлементах на качественно новый, современный уровень. Так, например, только "взгляд" на витамин B12 с позиций координационной химии позволил в свое время ученым понять, почему столь благотворным оказывается для организма это координационное соединение кобальта. Быстрое развитие биоорганической химии непосредственно связано также с выяснением важной роли координационных соединений в основных процессах жизнедеятельности и прежде всего фотосинтеза, дыхания, во время которого происходит обратимое присоединение кислорода к гемоглобину, с выяснением механизма действия биологических мембран.
      Большой вклад в изучение мембраноактивных соединений, способствующих избирательному переходу ионов металлов через биологические и искусственные мембраны, а также изучение механизмов мембранного транспорта в клетке принадлежит школе академика Ю. А. Овчинникова.
      Или, скажем, такой пример всепроникаемости, всеобъемлемости координационной химии: один из важнейших процессов в круговороте веществ в природе - фиксация азота воздуха микроорганизмами - невозможен без участия ее соединений. Именно поэтому нахождение способа такой фиксации при обычной температуре и давлении - задача, над которой сегодня работают многие химики мира.
      Одним из первых биокоординационной химией начал заниматься уже упоминавшийся мной академик А. А. Гринберг еще в 30-х годах, осуществивший систематические исследования в области биоактивных координационных соединений кобальта. И в том, что в ближайшие годы поле деятельности координационных соединений в качестве физиологически активных и лекарственных препаратов значительно расширится, нет никаких сомнений.
      Уже сегодня широко ведутся исследования по применению координационных соединений платины в химиотерапии опухолей, изучаются взаимодействия соединений металлов платиновой группы с ДНК и другими важными в биохимическом плане лигандами, продолжаются поиски корреляций между биологической активностью и физико-химическими свойствами комплексов.
      Успехи координационной химии ярко проявились в аналитической химии. Так, развитие учения об изменении цвета органических реагентов, входящих в качестве лигандов во внутреннюю сферу комплексов, привело к созданию реагентов-индикаторов многоцелевого назначения типа "Арсеназо-П", и "Арсеназо-Ш" и многих других, получивших широкое распространение благодаря работам советских исследователей.
      Координационная химия все шире, разностороннее используется науками о Земле, оказывая решающее влияние на развитие геохимии, минералогии и петрографии.
      Советские ученые были пионерами в разработке механизмов рудообразования некоторых цветных и редких металлов на основе координационно-химических представлении.
      Так глубокие теоретические исследования влияния комплексообразования меди на формирование ее минералов, выполненные советскими учеными, вызвали живой интерес международной геологической общественности.
      Эти работы вскрыли общую связь между состоянием ионов металла в растворе и составом кристаллизующегося из него минерала, заставив геохимиков по-новому оценить многие природные наблюдения. Недаром, характеризуя их, академик Д. И. Щербаков писал: "Эти существенно новые принципиальные взгляды по-новому ставят проблему практических поисков".
      Именно подход с координационно-химических позиций к проблемам геохимии внес революционные изменения в утвердившиеся, ставшие традиционными, незыблемыми представления. Теперь уже можно считать доказанным, что в сложных по составу поверхностных и глубинных природных водах перенос большинства металлов осуществляется в виде координационных соединений.
      Такой новый подход позволил обнаружить в старом - новое, в природных растворах - комплексные ионы различного состава, устойчивые как при низких, так и при высоких температурах, и связать поведение рудных компонентов с гидрохимическим типом вод и активностью присутствующих в них лигандов.
      Что только не умеет сегодня координационная химия:
      В какие области науки и техники не проникла! Но, как говорится, кому много дано, с того и спрашивается больше. Вот почему именно с координационной химией, у истоков которой стоял замечательный русский ученый Л. А. Чугаев, мы и связываем свои надежды с решением важнейших практических задач.
      Это с ее помощью мечтаем получить из угля необходимые индустрии химические продукты и моторное топливо, сэкономив при этом дефицитнейшую нефть. Мы возлагаем на нее надежды в получении новых медицинских препаратов, в том числе и для борьбы с раковыми опухолями, и думаем, что именно она поможет синтезировать в будущем столь необходимые продукты питания. А почему бы и нет? Ведь все, что планировал, что предвидел Л. А. Чугаев, по существу, уже сбылось или стоит на пороге реализации. И ему, исследователю и мечтателю, принадлежат слова, всецело относящиеся к нашему времени, характеризуемому всесильностью химии: "Единственной разумной причиной, до сего времени препятствовавшей развитию фабрикации искусственных пищевых продуктов, была высокая стоимость этих последних при дешевизне продуктов естественных.
      Однако глубокие научные, экономические и социальные изменения, происшедшие в XX веке, заставляют произвести переоценку многих ценностей... Что еще вчера казалось праздной мечтой во вкусе Уэллса, завтра может оказаться основанием для вполне реального и осуществимого плана. Я хочу сказать, что настало время, когда надлежит серьезно взяться за разработку вопросов, связанных с получением синтетических и вообще искусственных веществ. Особое внимание следует обратить на получение основных видов питательных веществ - углеводов, жиров и белков; необходимо разработать способы искусственного получения пищевых продуктов из "непитательных" материалов. Не менее важно широко заменять непитательными материалами пищевые продукты или изделия из них, употребляемые в технике для целей, питанию посторонних".
      На этом, пожалуй, можно было б и завершить рассказ о достижениях отечественной координационной химии, если б не одна историческая справка. Дело в том, что в 1934 году Платиновый институт, основанный Л. А. Чугаевым, перестал существовать. Нет, он не был упразднен, на него не обрушились организационные кары в виде переориентации. Но слившись с Институтом физико-химического анализа, основанным одновременно с ним академиком Н. С. Курнаковым, и Лабораторией химии - детищем М. В. Ломоносова - о" стал частью вновь созданного Института общей и неорганической химии Академии наук СССР. Этот институт, сменив на посту директора академика И. И. Черняева, я и имею честь возглавлять вот уже четверть века. И, честно говоря, очень надеюсь, что за эти годы наш коллектив не посрамил тех славных традиций, что были свойственны двум первым Советским академическим научно-исследовательским институтам. А в качестве эталона научной деятельности, преданности делу и Родине каждый сотрудник давно избрал для себя труд и жизнь Л. А. Чугаева. Так что под словами А. М. Горького, адресованными когда-то корифеям советской научной школы - "примите мой почтительный восторг", не сомневаюсь, готов с радостью подписаться любой из нас. От академика до вчерашнего студента...
      Что нам диктует НТР!
      Каких только терминов не употребляют в наши дни пропагандисты и популяризаторы научно-технических знаний, дабы охарактеризовать ту невиданную прежде взаимозависимость фундаментальных исследований и достижений практики, взлетов теоретической мысли и прикладных наук, объединенных усилий в работе над какойто одной конкретной проблемой и бесконечного множества направлений, что свойственны современности!
      Каких слов не напридумали газетчики, журналисты да и сами ученые, чтобы хоть как-то свести воедино процесс почти одновременно происходящих дифференциации и интеграции, стыкования и размежевания, объединения и разъединения знаний.
      Причем, каждое из этих явлений - итог поисков, изучений, исследований, ведущихся сегодня в академических и отраслевых институтах, в вузовских и заводских лабораториях. Нынешнее поколение людей - свидетель того, как рождаются новые направления и разделы науки, а старые, испокон веков почитавшиеся за классические представления, вдруг обретают контуры вроде бы даже и незнакомые. Уж не очередной ли то "кризис"

  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15