Современная электронная библиотека ModernLib.Net

Создано человеком

ModernLib.Net / Жаворонков Николай / Создано человеком - Чтение (стр. 2)
Автор: Жаворонков Николай
Жанр:

 

 


      Не так давно, например, в Институте элементоорганпческих соединений (ИНЭОС) АН СССР в лаборатории, возглавляемой академиком И. Л. Кнунянцем, было синтезировано вещество, получившее название хромоксана.
      Его результативность так поразила производственников еще во время промышленного эксперимента, что новорожденному соединению поспешили приписать поистине сказочные возможности. Это как раз тот редкий случай, когда слухи достоверно отразили действительность.
      Дело в том, что вещество, подобное хромоксану, уже давно ждали приборо-, автомобиле-, вагоностроительные предприятия, карбюраторные заводы. Нужен он и другим отраслям народного хозяйства. Об этом красноречивее всего говорят многочисленные заявки на хромоксан, присланные в адрес института. Нужда в нем и в самом деле очень острая, поскольку хромирование, никелирование, платинирование поверхностей деталей и приборов - процесс трудоемкий, дорогой и небезопасный для окружающей среды. А обойтись без него, к сожалению, нельзя: коррозия не щади г металл, превращая в прах автомобиль, инструмент, прибор. Вот и приходилось, не считаясь с затратами, особенно часто обращаться к хромированию - наиболее распространенному способу покрытия металлических поверхностей. Выглядело это приблизительно так: деталь или заготовку погружали в ванну, заполненную раствором серной кислоты и хромового ангидрида (ангидриды - химические производные неорганических и органических кислот, образующихся при их дегидратации - отщепления воды). После того как изделие, подлежащее хромированию, присоединяли к отрицательному полюсу источника постоянного тока, на поверхности детали начинал выделяться водород, одновременно зеркальный слой восстанавливаемого хрома начинал нарастать, превращая еще недавно невзрачную, как Золушка, деталь или заготовку в сверкающую принцессу. Но, во-первых, такой процесс восстановления энергоемок, вовторых, чрезвычайно расточителен, неэкономичен: пузырьки водорода захватывают, испаряясь, капельки раствора и пары ангидрида. Из последних, кстати, и образуется едкий, токсичный туман. Бороться с ним, конечно, можно, но опять же дорого. Вентиляционное хозяйство, различного рода улавливатели и т. д. обходятся предприятию, как говорят, в копеечку. А если к этим затратам прибавить еще расходы на очистные работы и проведение мероприятий по обеспечению техники безопасности, то окажется, что стоимость самого хромирования даже дороже всех этих необходимых, но все же накладных расходов.
      Правда, химики уже однажды предложили специалистам поверхностно активное вещество, образующее на поверхности раствора стойкую шапку пены, сквозь которую ни капельки раствора, ни пары ангидрида пробиться не могут. Это вещество - хромин. Но, во-первых, он дорог - 55 рублей килограмм, во-вторых, недолговечен, поскольку сильноокислительная среда и довольно жесткие условия электролиза быстро разрушают даже фторорганический каркас хромина. Да и производство его небезопасно, а экологически очень вредно. Поэтому особых "поклонников" у этого вещества практически нет. А если его все же и применяют, то, поверьте, не от хорошей жизни.
      Другое дело - хромоксан. Он снимает с повестки дня сразу многие проблемы технологического процесса хромирования.
      Директор института академик А. В. Фокин так характеризовал создание хромоксана: "Это интересная и полностью оригинальная работа. Нашему институту принадлежит приоритет не только на применение вещества, но и на его синтез. Такой отрадный результат вырос из многолетних фундаментальных исследований, выполняемых школой Ивана Людвиговича Кнунянца".
      Заменить хромин - именно так скромно определялась создателями нового вещества первоначальная задача. Но заменитель должен быть не менее эффективен и дешев.
      Как же решить эту проблему?
      Нет, не зря академик А. В. Фокин упомянул о многолетних фундаментальных исследованиях. К ним, к опыту лабораторного фторорганического синтеза, и решено было обратиться. А он в 70-е годы обогатился методом катализа анионами (анион - отрицательно заряженный ион) фтора. Помнится, что одно время фтор-ион популяризаторы науки именовали в своих статьях не иначе, как "протоном фтороргаников". С помощью именно этого метода, путем катализа пятифтористой сурьмой ученые института из недефицитных, выпускаемых отечественной промышленностью, соединений получили необходимую для производства хромоксана соль. А в промышленных объемах синтезировали его на опытном заводе Боркславского филиала ГосНИИХлорнроекта.
      Здесь, вероятно, вполне уместно сказать, что коллектив филиала отличается удивительным чутьем на новое, творческим подходом к решению самых сложных, но и самых злободневных проблем. Знаю это по опыту совместной работы ИОНХа с бориславскими коллегами над созданием промышленною способа получения муравьиной кислоты, о чем речь еще впереди.
      Завершить же СБОЙ рассказ об одном из 50 тысяч соединений, синтезированных советскими химиками, хочу краткой характеристикой нового вещества: хромоксанпри всей дешевизне в девять раз долговечнее хромина, а требуется его, чтобы практически полностью предотвратить потери хрома, в 13.5 раза меньше. Покрытия, наносимые методом электролиза с добавками хромоксана, оказываются удивительно монолитными, поскольку соединение действует еще на стадии образования пузырьков водорода. По крайней мере, хромирование титана - важнейшего и необходимейшего для всех приоритетных направлений научно-технического прогресса металла, стало вя"- можиым только после применения хромоксановой добавки. Она, без всякого преувеличения, счлит народному хозяйству миллионные прибыли.
      Химии под стать и превращения другого рода. Она, к примеру, может так изменить, облагородить, "перекроить" существующий испокон веков материал, что он приобретает новые, не значившиеся за ним прежде достоинства и свойства. Недаром же в двери химических лабораторий все чаще стучатся энергетики и машиностроители, медики и пищевики, микробиологи и фармацевты, строители и аграрники. И чем невиданней заказ, тем интереснее работать над ним.
      Иногда приходится объединить в одном и том же материале "лед и пламень". Как уж тут не вспомнить удивительную сказку о снежной королеве, несколько переиначенную в недавней телевизионной постановке? В ней по воле сценариста королеве с ледяным сердцем (играет ее. как всегда превосходно, Алиса Фрейндлих), которой и теплый ветер - серьезная угроза, захотелось вдруг горячего молока. Но то - сказка. А если в жизни, в технике необходимо совместить, казалось бы, абсолютно несочетаемые свойства в одном и том же материале? Ну, например, такие, как способность поглощать тепло и одновременно защищать от него заданную поверхность.
      Вот такую нелегкую задачу поставила перед моей наукой в свое время космонавтика. И химия блестяще с ней справилась, создав расплавляемые и уносимые набегающим потоком газа материалы, получившие название абляционных.
      Обмазки, созданные на их основе, надежно защитили от перегрева и сгорания при входе в атмосферу наши космические летательные аппараты и головные части ракет-носителей. Они же успешно охладили камеры ракетных двигателей.
      Если специальной обмазкой, обладающей такими способностями, покрыть несущие деревянные конструкции в здании, они окажутся для огня неуязвимыми. И если уж в химическом цехе и случится пожар, то опоры межэтажных перекрытий, обработанные такой обмазкой, окажутся под надежной теплозащитой. Ее обеспечит вспучившаяся поверхность. А что значит выиграть при пожаре дополнительные минуты, говорить не приходится. Аварийная ситуация ликвидируется. Но обмазки - вещества "экзотические", с редким применением. Да и пожары, к счастью, случаются не каждый день.
      Надо сказать, что, помимо явных "отклонений" от нормы, эти новые материалы еще и не вписывались в силу своей специфичности в многочисленное конструкционное семейство, поскольку последнему вменяется в обязанность противостоять внешним силам и не разрушаться под их воздействием. И хочешь - не хочешь на повестке дня появился вопрос: какие же материалы можно считать собственно конструкционными? Те, "традиционные", которым в качестве основного свойства положено обладать заданной удельной прочностью или жестокостью?
      А если крайне важным для повседневной научной и инженерной практики оказываются материалы с иными достоинствами, в которых на первый план выступают то же абляционные свойства или повышенное сопротивление коррозии, или, наконец, диэлектрические характеристики?
      Вот и пришлось изменить "устав" конструкционных материалов, внося в него поправки с учетом требовании развивающейся техники. Однако в настоящее время и конструкционные (то есть используемые при конструировании машин и аппаратов материалы о заранее определенными конкретными свойствами), и специально синтезированные химией по заказу различных отраслей науки и техники материалы все чаще называют общим именем - новые. Сюда относят и композиционные материалы или, как их все чаще сегодня называют, композиты.
      Что же принято сегодня называть композиционными материалами? Это материалы из металлической или неметаллической основы (матрицы) с заданным распределением в ней упрочнителя. В качестве последнего могут выступать всевозможные волокна и даже кристаллы. Прообразом композитов считается железобетон.
      Композиционных материалов сегодня множество, и "семейство" их постоянно увеличивается, а основные их качества становятся все более разнообразными. Всю эту богатейшую номенклатуру делят на несколько групп.
      Наибольший интерес для техники и приоритетных направлений научно-технического прогресса представляют армированные волокнами или нитевидными кристаллами, и слоистые, где упрочнитель - материалы, полученные путем прокатки или прессования. Разумеется, такое разделение композитов весьма условно.
      Среди новых материалов сотни любопытнейших.
      Иные уже освоены промышленностью, другие стоят на заводских порогах, ожидая применения. Взять, к примеру, конструкционную техническую керамику.
      К ней, не преуменьшая ведущей роли металлических конструкционных материалов, исследователи проявляют все больший интерес. Правда, речь идет в данном случае не о традиционных видах керамических материалов, а о новых материалах на основе специальной жаростойкой и ударопрочной керамики. В настоящее время работы в этой области продвинулись вперед настолько, что, по-видимому, в ближайшие годы именно они станут одним из важнейших промышленных конструкционных материалов наряду с металлами, вяжущими веществами на основе цемента и полимерами.
      Основа специальной технической керамики - оксиды (окислы), нитриды, карбиды, силициды, бориды и алюмосиликаты некоторых металлов. Большой интерес, в частности, представляют нитриды кремния, бора и титана, оксиды алюминия, кремния, бериллия, титана, цинка, циркония и других металлов, карбиды кремния, бора, титана и т. п. Материалы на основе этих веществ обладаю:
      многими достоинствами: малый удельный вес, высокая прочность и твердость, неограниченная сырьевая база (азот, кислород, кремний, углерод, как известно, наиболее распространенные элементы в природе).
      Одно из основных направлений исследований - повышение ударной вязкости хрупких по своей природе керамических материалов. Это достигается лишь при использовании сверхчистых ультратонких порошков, а также путем легирования некоторыми оксидами металлов (например, алюминия, магния), графитом и др. Хорошие результаты дает армирование керамических материалов волокнами углерода, карбида кремния и оксида алюминия.
      Среди важнейших и наиболее прогрессивных направлений, развитию которых в последнее время уделяется особое внимание, - создание керамических материалов для деталей двигателей. Наиболее широкое использование керамики ожидается в перспективе в газотурбинных и так называемых адиабатических дизельных двигателях, то есть ие получающих тепла извне и не отдающих его.
      При работе газотурбинного двигателя с ротором из карбида кремния или нитрида кремния допустимы температуры порядка 1400 градусов Цельсия, в то время как лишь немногие из специальных сплавов могут работать при 1100 градусах.
      Адиабатические двигатели внутреннего сгорания с деталями из керамики для легковых и грузовых автомобилей также имеют ряд преимуществ по сравнению с традиционными. Благодаря большой теплостойкости они ие требуют водяного охлаждения. По прогнозам это позволит не менее, чем на 30 процентов, повысить эффективность использования дизельного топлива.
      Работы по синтезу и использованию новых керамических материалов в некоторых странах в последнее время ааметно продвинулись, особенно в Японии и США.
      У пас они то/ко ведутся и сразу несколькими организациями. Однако усилия, к сожалению, все еще разрозненны. Нечего скрывать - мы здесь несколько отстали от твоих зарубежных коллег не только в экспериментальном плане, но и в фундаментальных исследованиях; а они необходимы. Прежде всего потому, что еще предстоит обеспечить конструкционной керамике требуемую ударную вязкость и решить проблемы армирования. Да л гам метод получения армирующих волокон тоже нуждается в совершенствовании.
      Программа исследований в области новых керамических материалов уже составлена. Она объединяет усилия многих научных учреждений страны металловедческого профиля, и в том числе ряда академических институтов.
      Мнение науки по данному вопросу однозначно: конструкционная керамика одно из главных направлений научно-технического прогресса в современном материаловедении, и к нему требуется максимальное внимание.
      А ситалы или пирокерамы? Вещества, созданные на основе стекла с повышенной прочностью и термостойкостью? Их тоже никогда прежде не знала ни природа, ни техника... Сегодня они с успехом применяются в качестве облицовочного материала в строительстве, при изготовлении оптической техники.
      Без рукотворных способностей химии сегодня нельзя ни модулировать лазерный луч, ни создать устройства оперативной памяти ЭВМ. Да и все дальнейшее развитие научно-технической революции просто немыслимо без бурного опережающего развития химической науки и промышленности. Взять хотя бы синтез неорганических высокомолекулярных соединений. Он уже дал отечественно:!
      промышленности великое множество конструкционных материалов, обладающих высочайшей жаропрочностью, отличными полупроводниковыми свойствами, механической и химической стойкостью. " А возможности этого метода практически неисчерпаемы.
      Химия буквально вселилась в наши дома, несказанно все преобразив, внеся в них комфорт и достаток. Холодильник и приемник, телевизор и мебель, телефон и декоративные ткани на окнах - все это достижения химии, реализовавшиеся в бытовых потребностях человека.
      Пластмассы, красители, отбеливающие вещества, лакокрасочные и множество других материалов, обязанных своим рождением химии, успешно трудятся сегодня ил наш быт, экономя время, резко повышая производительность труда. Взять хотя бы такую довольно часто употбляемую фразу: химизация - один пз основных факторов повышения производительности труда и эффективности производства. При всей огромной значимости этого положения оно конкретизируется вполне определенно: получение и использование в различных областях народного хозяйства одного миллиона тонн полимерных материалов гарантирует высвобождение 300 тысяч работников. А применение полумиллиона тонн полимерных волокон высвобождает 700 тысяч человек. При DTOM затраты обществеиного труда на производство химических материалов значительно ниже, чем, скажем, при использовании того же естественного сырья.
      Ну, представьте хотя бы на мгновенье такую поистине фантастическую ситуацию: из нашей жизни - нет, не исчезли предметы, которым дала жизнь химия, а лишь на время прекратился их выпуск. Что произойдет? Я, например, даже вообразить себе не могу. Окажись, допустим, человечество перед фактом, что пьезокварц, на котором основывается в наши дни вся радиотехническая аппаратура в мире, больше не производится - и десятки стран переживут серьезный экономический и научный кризис. Дело в том, что природные запасы этого минерала крайне ограниченны и только гидротермальное выращивание (выращивание кристаллов в условиях высоких давлений и температур) промышленных кристаллов пьезокварца решило в свое время уже довольно остро стоявшую проблему. Технологический цикл получения чудокристаллов измеряется сутками, природе же для его выращивания требуются миллионы лет.
      Разумеется, разработка и создание пьезокристаллов - социальный заказ пауки. Его прежде всего и выполняли ученые. А выяснилось, что свои "права" на них заявила...
      мода на ювелирные изделия.
      Впрочем, не только на них, и во Всесоюзном научноисследовательском институте синтеза минерального сырья уже получен искусственным путем малахит, наиболее удачные образцы которого практически неотличимы от всемирно известного уральского ювелирно-поделочного малахита. На срезе образца, который, как и положено малахиту, состоит из тонко- и скрытокристаллических плотных "агрегатов", отчетливо видны концентрические полосы и зоны, выделяющиеся различными оттенками зеленого цвета. Такой камень, если он встречается в естественных условиях, считается у каменных дел мастеров особенно удачным.
      Получение новых неорганических соединений в виде кристаллов, выращивание, изучение их свойств и структуры - одна из важнейших задач химии и химической технологии. Кстати сказать, кристаллы теперь выращивают не только из водных растворов (как это было при получении пьезокварца), из газовых сред или гидротермальным синтезом, но и производят их методом электрокристаллизации и другими способами, отнюдь не всегда моделирующими процессы, происходящие в природе.
      Химии стал по плечу выбор своего собственного, присущего только ей пути развития. Так могло случиться только при единственном условии: когда наука, отойдя от эмпирических методов, из описательной превращается в науку точную. А раз так - к ней со стороны смежных наук и спрос иной. Вот и приходится принимать не только похвалы, но и упреки.
      К слову сказать, в одной из зарубежных статей, теперь уже более чем десятилетней давности, прогнозирующей "создание необходимых материалов" на 10 лет вперед, состояние материаловедения характеризовалось как переходное: от эмпирических методов к методам целенаправленным, опирающимся на достижения химии и физики твердого тела. И в этой же статье, кстати, констатировалось, что до недавнего времени создание многих материалов было скорее искусством, чем наукой. А теперь существование материаловедения как неоспоримого научного направления - факт. И химия с радостью принимает от него заказы и, увы, упреки.
      "Дитя" обрело самостоятельность, твердо стало на ноги и, как уже водится в жизни, тут же забыло, чем оно обязано родителям - физике и химии.
      Среди них есть материалы с поистине массовым потреблением, и мы давно воспринимаем их как само собой разумеющиеся. Мы о них даже не говорим и вроде бы не замечаем... Что такое, скажем, транзистор? Электронный прибор или карманный радиоприемник?
      А многие ли из нас помнят, что функциональную жизнь транзистору, как и многим иным промышленным и бытовым приборам, дали полупроводниковые материалы? Или взять еще более ходовые и еще более незаменимые материалы. Я имею в виду люминофоры, освоение которых привело в свое время к огромным, прямо-таки революционным изменениям в быту, культуре и на производстве. Именно люминофоры, излучающие свет под действием электронной бомбардировки, открыли, к примеру, принципиальную возможность цветного телеизображеиия.
      Однако взятые мною почти наугад в качестве примера полупроводники и люминофоры все еще дороги. А это значит, что предстоит изыскать новые, более дешевые, но не уступающие им по комплексу свойств, материалы.
      Скажем, для радиоэлектронной промышленности большой интерес представляет в перспективе синтез молекул, которые сами по себе могут функционировать как индивидуальные проводники, резисторы, емкости и т. д. "
      комбинирование которых может привести к созданию "молекулярных" усилителей, тех же ячеек памяти в компьютерах. Такое направление, где понятия "конструкция"
      и "функция" как бы сливаются воедино на молекулярном уровне, обещает революцию в области электронных мини-устройств, очень малых цо своим размерам, но обладающих большой мощностью и быстpoдействием.
      Прототип их - живые организмы, в которых электропроводность осуществляется с помощью "тщательно подобранных" рядов электропроводящих протеинов внутри клетки. Понимание механизма переноса электронов в протеинах позволит создать органические и неорганические проводники на молекулярном уровне.
      В общем, у химии богатейшие возможности, а перспективы самые заманчивые. И с некоторыми из них я непременно познакомлю читателя. А закончить эту небольшую главу, которую прошу рассматривать как приглашение к серьезному разговору, хотелось бы выражением надежды, что он окажется содержательным и интересным.
      Из всего - все
      Эти слова по праву могли бы стать девизом химии, ибо у превращений и преобразований, происходящих по ее воле, нет ни конца, ни начала. Они вершились всегда и будут твориться вечно...
      Но как ни точно, как ни объемно по своей сути это выражение, принадлежит оно, к сожалению, не химику, а писателю. Изумительному знатоку русской природы, заступнику и поэту ее - Леониду Леонову. А если уж быть совсем точным, то профессору Впхрову, главному герою романа "Русский лес", лесоводу по специальности, философу и борцу за нравственность народа - по сути своей. Я и ныне готов подписаться под каждым словом той знаменитой лекции, которую произнес Иван Вихров в тяжелую пору ленинградской блокады перед будущими лесниками. Обратимся к ней и мы с высот сегодняшнего дня, сопоставляя современные заботы экономики с заботами и нуждами тех дней.
      Итак, слово профессору Впхрову, стражу и творцу нашего леса... "Все жертвы святы в борьбе за советское дело, и не содрогнутся сердца лесоводов, когда гряда за грядой падает сейчас Белорусское Полесье, образуя зввалы на путях фашистских танков. Не впервой русскому лесу стоять с нами плечом к плечу в труде и ратной сече: в годы разрухи и интервенции он тоже в полную силу поработал для рабоче-крестьянской республики... Отрезаны фронтами уголь и нефть - он тянет по стран?
      красноармейские и хлебные эшелоны, везя в столицу героическую осьмушку, он крутит промерзшие станки предприятий, он поддерживает тепло рабочих жилищ. Его убыль такова, что Ленин на Девятом съезде Советов поднимает голос за исключение древесины из топливного баланса, за возвращение лесоводов из армии и отовсюду на их основную работу. Закон того времени ясно говорит о необходимости рубок по приросту и сметам, то есть о лесоводстве на твердых научных основаниях..."
      Как скоро беда научила нас рачительности, известно всем. А мне, как руководителю секции порохов, взрывчатых веществ, боеприпасов и сырья для них Научно-технического совета при уполномоченном Государственного Комитета Обороны (им 10 июля 1941 года был назначен С. В. Кафтанов), пожалуй, лучше других. Острая нехватка дефицитных материалов заставила нас не только в срочном порядке их создавать, но искать и находить источники сырья нередко заново, с новых позиций переоценивая имеющиеся ресурсы.
      В чем мы тогда только не нуждались! Научились беречь соду (каустическую и кальцинированную), хлор, серную кислоту, карбид и цианамид кальция, фосфор, глицерин, этиленгликоль, этиловый спирт, бутанол, черные и цветные металлы и еще великое множество других химических продуктов. А поиски заменителей привели ученых к "палочке-выручалочке" русского народа - лесу, древесине.
      Сейчас в это трудно поверить, но в то время даже корпуса авиабомб вместо традиционно металлических стали делать бетонными и бумажными. Были созданы конструкции бетонных корпусов и организовано их производство на Павшинском заводе бетонных изделий. Но, к сожалению, из-за больших потерь промышленных мощностей цемент также стал весьма дефицитным продуктом. Поэтому под руководством профессора Е. Н. Подклетного разрабатывается поточный метод производства "литых" бумажных корпусов, сырьем для которых служили древесная масса и бумажная макулатура. Метод реализовывался на заводах пищевой промышленности. Небольшие авиабомбы в бумажных оболочках, сбрасываемые на скопления танков врага с малой высоты самолетами-штурмовиками, оказались очень эффективными, а сами штурмовики Ил-2 и Ил-10 неуязвимыми для вражеского огня, так как имели надежную стальную броню. Разработали ее во Всесоюзном институте авиационных материалов С. Т. Кишкин и Н. М. Скляров.
      Широкое распространение в промышленности нашел новый метод получения этилового спирта из непищевого сырья путем гидролиза древесных опилок и других отходов лесопиления, предложенный сотрудниками Всесоюзного научно-исследовательского института гидролизной промышленности В. И. Шарковым, К. Д. Мартыненко и С. В. Чепиго.
      А уж если возвращаться к лекции профессора Вихрова, то именно лес пришел на помощь блокадному Ленинграду: научные сотрудники Центральной научно-исследовательской лаборатории бродильных процессов Р. В. Гивартовский, Е. А. Плевако, Н. И. Гутгер совместно с группой инженеров-химиков и механиков разработали метод получения белковых дрожжей из непищевого сырья и организовали их промышленное производство. Исходным материалом стали накопившиеся за многие годы отходы древесных опилок деревообрабатывающего завода в Дубровке. Опилки подвергались гидролизу слабым раствором серной кислоты, в гидролизат вводились биогенные вещества - азотные и фосфорные соли (большие запасы серной кислоты, суперфосфата и селитры имелись на Невском химическом заводе) - и выращивались дрожжи, восполнявшие дефицит пищевых белков в осажденном Ленинграде.
      Но то - в пору бедствий, испытаний, когда совершенно иным смыслом наполнялись привычные понятия, когда и в малом вдруг открывалось большое и значимое.
      А как хозяйничаем мы сегодпя в лесу, как заставляем служить древесину народному хозяйству?
      Ведь именно дерево наряду с металлами и полимерами остается для нас одним из самых необходимых материалов. И прежде всего это возобновляемое сырье, необходимое для производства многочисленных веществ и изделий. Дерево - естественный композиционный материал, в котором матрицей является лигнин, а арматурой - целлюлозные волокна.
      Мы многое умеем делать из древесины, придавая ей заранее заданные свойства. Современная химия способна превращать дерево в материал гибкий, огнеупорный, текучий, сверхтвердый, нестираемый. Но сколько мы еще теряем, выбрасываем, сжигаем... На одну только ящичную тару тратим ежегодно в пересчете на круглый лес более 30 миллионов кубометров. А почему бы не заменить деревянные ящики картонными коробками, на производство которых идет щепа и отходы? Ведь простой подсчет показывает преимущества такой "подмены", тем более что рсартонная тара может использоваться многократно.
      Дерево - уникальное создание природы. Оно дарит человеку жизнь, поставляя ему кислород, и способно в буквальном смысле слова кормить, поить, одевать.
      Возьмем, к примеру, хвою. В одном ее килограмме в полтора раза больше витаминов, чем в таком же количестве многолетних трав. Тонны высушенной хвои достаточно, чтобы сбалансировать по содержанию витаминов до шестидесяти тонн комбикормов. Из хвои готовят каротиновую пасту, из опилок и отходов - кормовые дрожжи. Те самые, которые помогли когда-то выдержать ленинградцам блокаду. У нас самая мощная гидролизная промышленность в мире, без которой немыслимо сегодня существование того же промышленного птицеводства.
      Но до полной утилизации древесных отходов нам все еще очень далеко. Наши коллеги из ГДР, отличающиеся умением находить резервы и оценивать их возможности, подсчитали, что общее количество скопившихся в стране лесных и промышленных древесных отходов приближается к трем миллионам кубометров. А выход из создавшегося положения они видят прежде всего в возрастающей комплексности использования древесины и в переходе от механической к преимущественно химической ее обработке. Во всем мире наблюдается тенденция к росту абсолютною потребления древесины, считают химики ГДР. Причем, наиболее резкого роста можно ожидать в целлюлозно-бумажной промышленности.
      В ближайшее время ожидается интеграция в рамках всей химии полимеров, что вызывает появление совершенно новых областей применения древесины. Пиломатериалы, шпон, древесностружечные и древесноволокнистые плиты, фанера, целлюлоза, бумага, фитонциды и эфирные масла, кормовой белок, этиловый спирт, скипидар - вез это лес. Он могучий, возобновляемый экономический резерв планеты. Но он и неотъемлемая часть ее, без которой наша Земля потеряла бы свою прелесть и неповторимость. Лес - детище родной планеты и верный ее страж; до половины всей биомассы синтезировано лесом.
      Он очищает атмосферу от углекислого газа, поставляя ей кислород.
      Среди растений есть поистине санитары-чемпионы, поглощающие окислы азота, губительные для здоровья человека. Американская сосна, железное дерево, американский клен, ясень усваивают, например, листьями двуокись азота без всякого ущерба для собственного здоровья. Когда-то, характеризуя один из крупнейших по тем временам сибирских городов, Федор Михайлович Достоевский писал: "Омск гадкий городишко. Деревьев почти нет. Летом зной и ветер с песком, зимой буран. Природы я не видел..."
      Мне довелось много раз бывать в Сибири, и смею утверждать: ее города сейчас - это сады, парки, леса.
      Придет время, и мы действительно научимся создавать из всего все. По разве от этого мы оскудеем душой настолько, что разглядим в красавице березе одно лишь сырье для перерабатывающей промышленности? Это было бы ужасно...
      Лес - неотъемлемая часть русской природы, русского характера. С любовью к нему мы появляемся на свет и уходим из жизни, дабы возродилась она в грядущих поколениях... И честь и хвала химии, утверждающей:
      древесину можно и должно перерабатывать так глубоко, чтобы ничто не шло в отходы, тогда и леса рубились бы по плану, и количество материалов, поставляемых лесом народному хозяйству, не убавлялось бы. И хотя волшебства самого различного масштаба и свойства - прямая специальность химии, ее всемогущество в годы войны поражало даже нас, ученых и исследователей.

  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15