Ниобий и тантал, молибден и вольфрам - материалы будущего. Вероятнее всего, что, помимо широкого их применения в ракетостроении и при создании космических кораблей, они найдут самое широкое распространение в производстве горячих штампов и химического оборудования.
Конечно, этот своеобразный парад материалов, претендующих на роль лидера в ближайшей перспективе материаловедения, можно было бы продолжать довольно долго. Рискну все же прервать его для очень важного, на мой взгляд, отступления, суть которого сводится к следующему: не ошибаются ли ученые, называя среди материалов, которым предстоит трудиться на нужды науки и промышленности XXI века, те из них, что и сейчас имеют самое широкое распространение?
Думаю, что нет, не ошибаются. Хотя поверить в это действительно нелегко. Недаром мой старый друг, прочитав рукопись этой книги, несказанно удивился, узнав, что дерево - старый верный материал, известный людям, как говорится, испокон веков - отнесен в ней в разряд перспективных. Какой же он перспективный, если из него еще наши предки рубили дома, строили корабли, гнали живицу, жгли уголь?
Все верно, так оно и есть. Но одно другому не помеха. И скажи кто-то в свое время нашим прапрадедам, что придет пора, и дерево обернется материалом прочным, как сталь, тяжелым, как камень, не будет гореть в огне и мгновенно пойдет ко дну, если окажется в воде - ни за что бы не поверили. Между тем, все эти удивительные свойства не выдумка, не вымысел фантастов. Древесина с совершенно не свойственными ей от природы качествами существует и применяется с самыми различными целями и назначениями.
Это новый, весьма перспективный материал. Сегодня естественный, природный композиционный материал - древесина - стал основой великого множества конструкционных материалов. И чем еще он нас порадует, покажет будущее.
Так что новым материал называется отнюдь не потому, что он недавно открыт, создан, синтезирован. Новым, перспективным его делают качества, обнаруженные в нем учеными в процессе решения какой-то научной или практической задачи или специально созданные в нем, запрограммированные с какой-то целью неизвестные доселе свойства. Вспомните-ка общеизвестные крылатые выражения: твердый, как кремень; не человек - кремень. Твердость решений, непоколебимость характера, упорство в достижении цели ассоциируются в нашем представлении со словами "как кремень".
Но прошло время, и жизнь показала, что отнюдь не одна твердость, как говорится, вывела кремний в число перспективных, новейших материалов. Именно кремний считается в наши дни стандартным материалом для изготовления элементов солнечных батарей. Ленточные монокристаллы кремния, используемые в таких батареях, открывают возможность осуществления заветной мечты человечества - прямого превращения солнечного света в электрическую энергию.
Или взять, например, сверхпроводники. Разве мало известно их уже в наши дни? Достоинствами сверхпроводимости обладают многие десятки материалов. Но все ли их качества выявлены? И нельзя ли отыскать материалы, способные становиться сверхпроводящими при более высоких температурах? Между тем, как экономике нашей страны, так и экономике других государств такие материалы очень бы пригодились. Ведь провода, сделанные из сверхпроводников, не оказывают никакого сопротивления идущему по ним электротоку. А это значит, что в отличие от традиционных проводников, таких, как медь и алюминий, здесь полностью исключается потеря электроэнергии.
Создать новый материал отнюдь не значит открыть новый, не вписанный еще в таблицу Менделеева элемент.
Вопрос чаще всего ставится по-иному: придать новые качества уже известному материалу, открывающие широчайшие возможности его применения в технике.
Так, общеизвестно, что сплав ниобия и германия имеет наивысшую изо всех до сих пор известных металлов температуру перехода в сверхпроводящее состояние - минус 250 градусов Цельсия. Но эти чрезвычайно нужные для современной техники свойства сплава долгое время не могли быть никак использованы: он оказывался слишком хрупким для обработки. А сверхпроводящий проводник, выполненный из сплава ниобия и олова, охлажденный гелием, уже несет циркулирующий ток в сверхпроводящих магнитах, а они используются в самых различных установках.
Применение новых материалов открывает такие возможности перед наукой, техникой, медициной, о которых еще каких-нибудь два десятилетия назад исследователи не отваживались и мечтать.
Инфракрасные детекторы, например, выполненные на основе полупроводниковых кристаллов, таких, как антимонид индия, теллурид ртути, теллурид кадмия, позволяют "видеть" окружающий мир даже в абсолютной темноте. Сенсорные устройства, выполненные из материалов, способных "рассматривать" разного рода объекты, воспринимая исходящее от них тепло, уже сегодня успешно диагностируют злокачественные опухоли, безошибочно выявляют утечки тепла из жилых зданий и производственных помещений.
А в перспективе - широчайшие возможности новых сенсорных материалов, чутко реагирующих даже на самые слабые давления. Это в первую очередь поливинилидин, флюорид и фосфат алюминия, который уже довольно широко известен под названием "борлинит". Уникальные возможности этих материалов заключаются в том", что они в ответ даже на очень незначительное давление начинают вырабатывать слабые токи.
Звуковолновые сенсоры нужны медицине, металловедам, металлургам. Безошибочно различая предметы и исследуемые объекты по исходящим от них звукам, эти необычные приборы "видят" сквозь толщу пород и жар расплавленного металла. С помощью сенсора, созданного на основе двуокиси циркония, металлурги стран, лидирующих в области научно-технического прогресса, легко и быстро определяют содержание кислорода в расплавленной стали.
Но будем объективными: при всей архиважности названных здесь материалов и заманчивости перспективного их использования сегодня только специалист в состоянии определить всю их значимость. Между тем существует целый ряд материалов, о которых даже человек, весьма далекий от проблем науки и техники, с уверенностью скажет, что за ними будущее.
Эти материалы - синтетические полимеры: пластмассы и резины. Они столь популярны в наши дни среди самых широких слоев населения, а скорость их внедрения в жизнь так велика, что тезису о перспективности полимеров вряд ли требуются какие-то особые доказательства. И все же позволю себе небольшой экскурс в историю "завоевания" полимерами, например, США. Их производство начиная с 1950 года росло темпами, превышающими темпы реста любых других материалов, и давно превысило по объему производство стали. Еще в 1977 году в США выпускалось 29 миллиардов фунтов (13 миллионов тонн) пластмасс, а производство искусственного каучука превысило 5 миллиардов фунтов (2,3 миллиона тонн). Такой, прямо скажем, завидный темп объясняется не только современной разработкой американской наукой новых материалов, но и умением объединять в единый технологический процесс перспективность материала, конструктивный расчет и способ его производства, добиваясь наилучших свойств и повышенных эксплуатационных характеристик готовых изделий.
Была, конечно, и еще одна серьезная причина столь широкомасштабного промышленного выпуска полимеров:
использование пластмасс значительно снижало производственные издержки. Одна-единственная деталь машины, выполненная из пластмассы путем точного литья, успешно заменяла, например, несколько металлических штамповок при меньших издержках и меньшей стоимости рабочей силы.
Нужно сказать, что столь стремительно начавшееся "завоевание" пластмассами различных отраслей промышленности особенно наглядно и убедительно проявилось в автомобилестроении. Пластмассы очень быстро заменили в типичном американском легковом автомобиле многие металлические детали, составив свыше 907 килограммов от его веса, а в моделях 1985 года они еще больше вытеснили металл.
Впрочем, замена пластмассой металлических деталей - повсеместная тенденция. Автомобиль от этого только выигрывает. Он становится легче, подвижней, а себестоимость его производства значительно снижается.
Но развитие производства полимеров поставило на повестку дня вопрос о рациональном использовании нефти. Это уникальное углеводородное сырье было, есть и еще долгие десятилетия будет основным материалом, из которого получаются полимеры. Правда нефть еще используется во всем мире крайне расточительно - как топливо. О недопустимости такого отношения к невосполнимому природному сырью говорил, как всем известно, еще Д. И. Менделеев, считавший, что применять нефть в качестве топлива и горючего все равно, что топить печь ассигнациями.
По объемам материалов и готовых изделий, потребляемых современным обществом, первое место занимают неорганические материалы и неметаллы. Они же, безусловно, будут лидировать и в будущем. А наиболее типичным представителем их останется керамика, под которой (в широком смысле слова) надо понимать все неорганические неметаллические материалы, получаемые под воздействием высоких температур.
Исходное керамическое сырье - это разнородные комбинации природных силикатов, соединений кремния и кислорода с различными металлами, и окислов, сплавляющихся или спекающихся в общую массу. Цемент и кирпич, плитка облицовочная и сантехнические изделия, фарфор и посуда из него, стекло разных видов и глазурь, эмаль по металлу, абразивы и .огнеупоры все это керамика.
Но среди великого множества проблем, связанных с улучшением свойств и эффективности производственных процессов, будущее, несомненно, за разработкой и широким внедрением в практику кремнекерамических материалов.
Кремнекерамические материалы - это карбид кремния и сиалоны (названия соединений кремния, алюминия, кислорода и азота по первым буквам английских наименований этих элементов) - неорганические материалы, не встречающиеся в природе, хотя химический состав и свойства нитридов кремния очень близки по своим свойствам и составу соединениям природного кремния, что открывает заманчивейшую перспективу синтезировать большой ряд соединений типа нитрида кремния с уникальными свойствами путем замены некоторых атомов кремния и азота на атомы алюминия и кислорода.
Возможности их использования могли бы быть самыми разнообразными. И прежде всего в качестве жаропрочных конструкционных материалов, огнеупоров в оптических и электронных устройствах.
Все рабочие профессии нового материала определяются его свойствами: керамические изделия из карбида и нитрида кремния при обычных температурах прочнее и устойчивее, чем изделия из обычного типа оксидной керамики. Они исключительно стойко противостоят коррозии, эрозии и тепловым ударам.
Карбидокремниевая и нитридокремниевая керамика в недалеком будущем сможет заменить жаропрочные сплавы на основе никеля и кобальта при производстве некоторых деталей, работающих при очень высоких температурах (например, в газовых турбинах), и быть использованной в керамических теплообменниках. Такая керамика обеспечит еще более высокие температурные режимы работы, чем металлы.
Более высокие температурные режимы работы, в которых трудятся такие материалы, например, в процессах превращения энергии, позволяют добиваться высокого КПД и значительной экономии топлива. Разработка нового поколения газовых турбин тоже связана с возможностями нитридов и карбидокремниевой керамики. Представьте себе керамическую турбину, которая применяется, скажем, в качестве двигателя автомобиля. Заманчивая идея, не правда ли?
На керамические материалы обладают одной общей и весьма неприятной особенностью - они хрупки. Надежность и определенность срока службы - вот главные вопросы, которые предстоит решить создателям новых материалов. Работа над этой проблемой требует органичного объединения усилий материаловедов, конструкторов и технологов для дальнейшего усовершенствования производства новых материалов.
Разумеется, многие из названных здесь примеров перспективного использования новых материалов весьма проблематичны. Предвидения, да еще в таком деле, как научно-техническая революция, не всегда сбываются. Причин "расхождения" прогнозов и реальностей достаточно.
Думаю, что анализировать их здесь просто ни к чему.
А с примером "несостоявшихся судеб" новых материалов читателю, наверное, познакомиться все же интересно.
Тому, кто следит за политикой в области науки и техники, за тенденциями развития материаловедения у нас и за рубежом, прекрасно известно, что эпитет "металл будущего" непременно сопровождал алюминий, титан, магний, бериллий. Причем, это подразумевало значительное увеличение объемов их использования в качестве конструкционных материалов.
Но жизнь и, разумеется, научно-технический прогресс распорядились по-своему. И в качестве дешевого конструкционного материала нашел широкое распространение только алюминий. Титан и магний действительно стали металлами будущего, но благодаря своим неметаллическим формам - двуокиси титана и окиси магния. Бериллий тоже вроде бы вполне на законных основаниях дожил до звания материала будущего, но вот массовости не обрел, оставаясь очень дорогим металлом специального назначения, используемым в сплавах и конструкционных материалах для ядерных реакторов.
Но... предвидеть, планировать необходимо. Без взгляда в будущее кардинальную задачу ускорения социально-экономического развития страны, поставленную перед советским народом и экономикой XXVII съездом КПСС, не решить. В выполнение этих планов внесет свой вклад и Комплексная программа химизации народного хозяйства СССР на период до 2000 года. Создание новых конструкционных материалов, способных обеспечить интенсификацию всех отраслей народного хозяйства, - одно из главных ее направлений.
...В начале 30-х годов мы отмечали каждое новое достижение отечественной химии как величайшее событие в жизни страны. О нем писали газеты, восторженно рассказывало в многочисленных своих сообщениях радио.
Что ж, тогда было такое время: трудовая романтика, ломавшая устоявшиеся представления о возможностях человека и свободного труда, окрашивала в свои цвета вообще-то будничные, несмотря на их колоссальную значимость для индустриализации нашего молодого государства, дела и успехи. Но и в этой атмосфере приподнятости находились люди, способные трезво оценивать, казалось бы, самые выдающиеся, грандиозные события.
Помню, как кто-то на одном из митингов, сказал мне простые и спокойные слова: "Что ж, начало сделано.
Пройдет время, и мы научимся синтезировать природные материалы..."
Как он оказался прав, тот ученый из моей далекой молодости. И как опередила его жизнь " своем созидании! Сегодня отечественная химия не только синтезирует природные, но и создает материалы, которых никогда не было в ее "лабораториях". На каждом из них можно было бы смело поставить своеобразное клеймо госприемки:
"В практику!", "Создано человеком!" И я счастлив, что в год 70-летнего юбилея нашего государства мне посчастливилось обо всем этом рассказать читателям "Эврики".