Современная электронная библиотека ModernLib.Net

Создано человеком

ModernLib.Net / Жаворонков Николай / Создано человеком - Чтение (стр. 12)
Автор: Жаворонков Николай
Жанр:

 

 


До недавнего времени один из главных поставщиков "меченых" соединений для нужд страны - ГППХ располагал, к сожалению, крайне неравномерной номенклатурой. Институт производил, например, около трехсот наименований соединений с радиоактивным углеродом, вдвое меньше с тритием (радиоактивным изотопом водорода), а с радиоактивным фосфором всего семь. Для такой "скудности" было, разумеется, очень серьезное основание: работать с изоюпом фосфор-32Р, а именно с ним имели дело исследователи, чрезвычайно трудно. Во-первых, жесткое излучение изотопа требует в лаборатории специальных мер защиты. Во-вторых, период его полураспада невелик - чуть больше 14 дней. Бывает, например, что эксперимент еще не завершится, а "меченое" соединение уже перестает о себе заявлять излучением. К тому же фосфор-32Р еще и "капризен", так как склонен в отличие от своих изотопных собратьев образовывать аэрозоли. А эта взвесь соединений радиоактивного фосфора в лаборатории - и вред здоровью ученых, и помеха в работе.
      В общем, изотоп фосфор-32Р труден в работе, к тому же и дорог. Поэтому многие ученые-радиохимики во всем мире предпринимали неоднократные попытки получить другой радиоактивный изотоп - фосфор-ЗЗР. Но все они оказывались безрезультатными. И это несмотря на то, что способ получения и основные свойства изотопа - ЗЗР было предсказать нетрудно на основании знания общих законов радиоактивного распада.
      Ученые не жалели сил и времени, чтобы получить этот изотоп. Подумать только, продолжительность полураспада его обещала быть 25 суток (многие эксперименты можно было бы завершить за такой срок), и в то же время уровень излучения в 7 раз ниже, чем у фосфор-32Р. К тому же соединения, меченные изотопом фосфор-ЗЗР, могли быть получены в высочайшей степени радиохимической чистоты.
      Молодые ученые ГИПХа, как я уже говорил, решили эту проблему.
      Но почему все-таки зарубежные ученые, располагающие самым уникальным оборудованием, потерпели неудачу?
      С поиска ответа на этот вопрос, как предписывает гипховская Школа (учтя ошибки предшественников), и начали они свою работу. И очень скоро пришли к выводу, что ученые и не могли получить фосфор-ЗЗР, поскольку не располагали для этого близким по массе элементом - серой-338, которую прежде не удавалось получить.
      Потребовалось ответить и еще на один вопрос: а если бы предшественники все-таки располагали серой-335, они смогли бы получить радиоактивный фосфор-ЗЗР или нет?
      Ответ оказался в то время также отрицательным, потому что превращение одного вещества в другое могло бы произойти только под воздействием сверхмощных потоков нейтронов, а источником такого излучения предшественники не обладали.
      Химики ГИПХа обратились за помощью к коллегамфизикам. К тому времени в СССР впервые в мире уже была получена элементарная cepa-33S, и главная заслуга в этом принадлежала ученым Института атомной энергии имени П. В. Курчатова. К ним-то и обратились ленинградские химики с просьбой создать сырьевую базу для получения изотопа фосфор-ЗЗР. И изотоп cepa-33S, выделенный из изотопного моря естественной серы, в Институте атомной энергии был передан ГИПХу.
      Но драгоценную cepy-33S еще предстояло "обстрелять" в реакторе нейтронным "градом" и отделить от нее фосфор-ЗЗР, образовавшийся на стенках кварцевой ампулы под воздействием облучения. А для этого пришлось создать специальную аппаратуру, позволившую осуществить такое разделение старым, добрым химическим методом - отгонкой. И в конце концов изотоп фосфор-ЗЗР был получен, и стал тем самым "ключом", что, "войдя" в молекулу, двадцать пять дней непрерывно посылает исследователям сообщения о своем положении и всех превращениях, происходящих в интимнейшем из миров - генетическом аппарате.
      Мне не довелось самому быть участником этих работ и о событиях поиска знаю лишь по материалам прессы и документам, представленным в Комиссию по присуждению премии Ленинского комсомола. А значит, какие-то детали, тонкости этого поиска наверняка не нашли здесь своего отражения. Но думается, что в данном случае не это важно. Главное в другом - как творчески подошли молодые ученые к решению важной комплексной научной задачи, и в этом, пожалуй, основной секрет их успеха.
      Понятие "Школы" - отнюдь не застывшее, сцементированное опытом нескольких поколений научное здание. Традиции не мешают ему расти, а помогают, становясь опорой, фундаментом для поисков новых и неожиданных направлений. А если рядом появляется еще и молодая поросль новых Школ и направлений, то этому нужно только радоваться, так как соревнование ценнейшее качество любого поиска. А научного - особенно. И это верно применительно к фундаментальным исследованиям, и к прикладной, в том числе и вузовской науке. Последняя все решительнее берется сегодня за важные проблемы, и лучшее тому свидетельство - выставка, работавшая в июне 1986 года в Минвузе СССР.
      Она называлась "Наука вузов - стране" и знакомила посетителей с высокоэффективными решениями больших народнохозяйственных задач. Многие экспонаты выставки могли бы украсить стенды любой международной экспозиции, а красота и логичность поиска, предшествовавшие практической реализации идей, не могли не радовать.
      Необычайной выставкой заинтересовались представители промышленности и здесь же устанавливались деловые контакты. Широта научных интересов высшей школы оказалась столь всесторонней и многоплановой, что нп одна отрасль народного хозяйства не была обойдена их вниманием.
      Московский авиационно-технологический институт имени К. Э. Циолковского представил, например, на выставке новый метод производства армированных пластиков на основе термопластических полимеров.
      Оригинальное творческое решение, предложенное учеными института, позволяет коренным образом изменить способы производства надежных и очень нужных пародному хозяйству конструкционных материалов, изготовление которых идет сейчас по сложной и экономически несовершенной схеме, основной порок которой - многоступенчатость. Прежде всего, необходимо получить смесь из смолы, отвердителя и различных добавок, пропитать этим малоприятным для наших органов чувств составом упрочняющий материал (ткани, полосы, ленты из кварцевых, углеродных, стеклянных или других волокон), подсушить, сделать заготовки и отформовать. Но до конца еще далеко, потому что полученное изделие нужно выдержать при высокой температуре. А отходы, которые остаются после раскроя заготовок? А взрывеи пожароопасность производства? Разве об этом можно забывать?
      В основе нового метода, предложенного Московским авиационно-технологическнм институтом, - разделение труда. Химическая промышленность производит армирующие и плавкие модифицированные волокна; текстильщики ткут из них материалы с заданным чередованием нитей, рисунком, толщиной. Такую ткань легко доставить на предприятия, нуждающиеся в армированных пластиках. А поскольку при производстве ткани чередующиеся упрочняющие и плавкие полимерные волокна уже нагревались под давлением, и полимерные нити, расплавившись, связали армирующее волокно, то заготовки, выкроенные из такой ткани, не нуждаются в длительном выдерживании при повышенной температуре и давлении. Им нужно только сложить в стоики и отформовать.
      Преимуществ у нового способа, на мой взгляд, довольно много. Во-первых, экономия времени. Во-вторых, почти в четыре раза снижается трудоемкость процесса и. в-третьих, открывается возможность отформовать любой конфигурации изделие, скажем, полусферы: ведь новый материал совсем нетрудно уложить в пресс-форму.
      К тому же цвет армирующих волокон при обработке не меняется, а значит, отпадает надобность в лакокрасочном покрытии.
      Не пропадут и отходы, которые прежде выбрасывались. Они уйдут на формовку мелких деталей. Тех же заклепок, например, которые значительно долговечнее металлических, ведь коррозия им не страшна, да и пластиковому корпусу малолитражки они больше "к лицу".
      Уже сегодня с помощью волоконных материалов можно производить почти два десятка новых конструкционных материалов, получаемых из фенилона (армирующего) и капрона (плавкое вещество). Причем эти материалы не уступают по прочности даже стали и выдерживают колебания температуры от -60 до +60 градусов. А если химическая промышленность еще и расширит ассортимент волокон, то, подбирая, модифицируя пары, придавая им определенные свойства, изменяя толщину и структуру нити, можно получить целую гамму материалов с нужными качествами. Они могут обладать химической и термостойкостью, удивительной прочностью. К тому же останутся легкими, не утратят теплоизолирующих достоинств.
      В подобных материалах сегодня нуждается сельское хозяйство, судостроение, машиностроение, автомобильная промышленность, авиастроение и т. д. Мало ли где еще смогут пригодиться армированные пластики!
      Важно, чтобы эта научная разработка скорей реализовалась. Сдерживает ее практическое применение одно немаловажное обстоятельство: химическая промышленность должна производить разнообразный ассортимент волокон в небольших количествах, а малотоннажное производство предприятиям, как известно, невыгодно, так как в силу значительных накладных расходов дорого.
      Так что пока что судьба интересной разработки, открывающей возможность сочетания безопасности труда, высокой его производительности, замены дорогих материалов гораздо более дешевыми, весьма и весьма проблематична.
      Правда, на выставке экспонировались работы с гораздо более удачливой судьбой. Кафедра химической технологии пластмасс Московского химико-технологического института имени Д. И. Менделеева предлагала, например, технологию термоэластопласта "бенэласт".
      Шлангам, приводным ремням, транспортерным лентам, бензобакам, подошвам обуви, изготовленным из него, не страшны пи холод, ни жара. Объясняются эти достоинства полимера просто - в его структуре чередуются жесткие и эластичные полиэфирные блоки. Сетку, придающую бенэласту механическую прочность, образуют жесткие блоки. Роль гибких пружин на стыках сетки выполняют эластичные полиэфирные блоки.
      Производство бенэласта безотходно. Это объясняется особенностями все той же структуры полимера. Ведь он своим свойством напоминает резины, в которых есть и химические сшивки, и различные наполнители. Но бенэласт отличается от резины тем, что может подвергаться многократной переработке.
      В бенэласте так заинтересовано народное хозяйство, что в работу по его производству уже включились Воронежский филиал ВНИИ синтетического каучука, НИИ резиновой промышленности, Украинский НИИ пластических масс.
      Впрочем, судьба реализации многих разработок зависит от целого ряда причин. Разобщенность, узкий ведомственный подход многих министерств не только мешают отдельным отраслям народного хозяйства прочно встать на курс ускорения, но и наносят серьезный урон экономике страны.
      Приведу конкретный пример. Чтобы защитить от коррозии металлические конструкции, мы тратим на покрытия, покраску и ремонт многие миллионы рублей. Поддержание в порядке газо- и нефтепроводов также требует колоссальных капиталовложений, причем изоляционные ленты "поликен", "нитто", "фурокава" страна покупает за рубежом. Эти дорогостоящие ленты, однако, не выдерживают низких температур и их нельзя применять в Сибири, в районах Крайнего Севера, а в Среднеазиатских республиках они применимы с большой оговоркой, так как "выдерживают" лишь плюс 40 градусов, а если температура выше, то провисают и размягчаются. В средпеклиматических условиях хлопот с импортными изоляционными лентами также хватает, поскольку высокопарафинистые нефти специально подогревают и они идут по трубопроводу горячими. Вот и приходится каждые пять-семь лет менять пришедшую в негодность изоляционную ленту.
      Выход из сложившейся ситуации в создании собственной термостойкой ленты. Московский институт имени И. Н. Губкина совместно с ВНИИ строительства магистральных трубопроводов разработал технологию таких лент и представил ее на выставку в Минвузе.
      Делают отечественную термостойкую ленту, как и импортную, из полиэтилена - дешевого, очень доступного сырья. Но... с добавлением веществ, способных придавать ей эластичность, термостойкость и, что особенно важно, адгезионные качества. Последнее, как известно, означает сцепление поверхностей разнородных тел, гарантирующее прочность покрытия металла защитной лентой. Губкинцами разработан принципиально новый способ получения дефицитных лент и создано три их типа, отличающихся друг от друга по качеству и по способу нанесения на металлическую поверхность.
      Лентой, получившей товарное название ЛТСИ, например, обматываются трубы, покрытые горячим битумом. ЛПИ-80С (так называется другой вид ленты) сама имеет липкое покрытие и в предварительном нанесении битума не нуждается, надо только, чтобы металлическая поверхность, на которую ляжет лента, была бы не загрязненной. Третий вид ленты ЛТИ-823 разработан специально для изоляции трубопроводов и с успехом может быть применен взамен импортных термоусаживающихся муфт, кстати, очень дорогих.
      Тот, кто побывал на строительстве трубопровода, знает, что он собирается из отдельных труб, уже покрытых изоляционной лентой. Ею не защищены только небольшие участки поверхности в тех местах, где трубы будут свариваться. Но и эти участки тоже должны быть надежно изолированы, защищены от разрушительного воздействия коррозии. Для этого на еще горячий после сварки стык и надевают полимерную муфту. После охлаждения она надежно закроет поверхность стыка.
      С помощью термоусаживающей пленки сделать это легче, быстрее.
      Все, казалось бы, за то, чтобы разработка столичного вуза как можно быстрее реализовалась. Рабочие, прокладывающие и ремонтирующие трубопроводы, ждут ее не дождутся, сырья - в достатке, необходимое оборудование, созданное украинскими машиностроителями, - имеется, техническая документация давно готова. Даже трассовые испытания подтвердили достоинства отечественных лент, их преимущества перед импортными, а межведомственная неразбериха продолжается. Беда...
      И огромный урон экономике страны - вот ее следствие.
      Работ на выставке было много, но разумеется, для меня наиболее интересными были те, что связаны с достижениями химии и химической технологии. И, конечно, с созданием новых материалов и веществ. Взять хотя бы препарат картолин. Его представил на выставку мой родной вуз Московский химико-технологический институт имени Д. И. Менделеева.
      Картолин - первый антистрессовый препарат для растений. Действует он по принципу антидепрессантов, используемых в медицине, то есть так же, как и опи, препарат выводит посевы из состояния угнетенности.
      Картолин - один из производных картаминовой кислоты, синтезированных в Менделеевке. И одно, по не единственное из этого семейства веществ, благотворно влияющее на развитие растений.
      Физиологам, например, хорошо известно, что пережившие засуху, заморозки растения очень медленно обретают "форму". Они выходят из стресса долго и трудно. Ученые - защитники растений, агрономы, селекционеры давно мечтали о препарате, который позволил бы многократно сократить период выздоровления. Картолин - как раз такой препарат.
      Как установили испытания, проведенные ВНИИ химических средств защиты растений и Институтом физиологии растений имени К. А. Тимирязева АН СССР, применение картолина позволяет собирать неплохой урожай при неблагоприятных погодных условиях.
      Картолин - уникальный регулятор роста. В отличие от знаменитого стимулятора роста растений ТУРа, столь распространенного в нашем сельском хозяйстве, при нормальной, погодной ситуации, картолин не влияет на развитие растения. Он приходит на помощь растению только в критические моменты и так отлаживает биологический механизм, что растение оказывается способно не только противостоять всем невзгодам, но дать хороший урожай.
      И если сегодня в адрес гербицидов (вся "вина" которых в безграмотном их применении) мы слышим множество упреков, то с помощью картолина погубленное нерадивым земледельцем поле вновь можно возродшь.
      Дело в том, что картолин вызывает активное деление клеток растений только при стрессовых обстоятельствах, тогда как весьма распространенные в мире цитокинипы (кпнез - деление) действуют по тому же принципу, но в нормальных и, более того, в благоприятных условиях роста.
      Это вещество синтезировано впервые и обещает земледельцам самые заманчивые перспективы. Например, в зонах рискованного земледелия внесение не более полкилограмма препарата на гектар гарантирует стабильный урожай. А ведь большая часть нашей пахотной земли как раз и находится в зоне рискованного земледелия.
      К тому же, что совсем немаловажно, картолпн дешев.
      Ориентировочная цепа одного килограмма препарата не превышает 10 рублей.
      МХТИ совместно с Всесоюзным научно-исследовательским институтом гербицидов и регуляторов роста растений разработал промышленный способ производства этого препарата, и ограничений в его выпуске может не быть.
      Дело, как говорится, за внедрением. На выставке в Минвузе, где препарат был представлен, красноречивая надпись достаточно убедительно взывала об этом: заинтересованные организации могут обращаться непосредственно к разработчикам.
      Химия сегодня широко "простирает руки свои", и предметом ее опеки становятся различные области знаний. Взять хотя бы медицину. В нее уже давно и прочно вошли и отлично себя зарекомендовали искусственные клапаны сердца, синтетические кровеносные сосуды. Они сделаны из силаплена силоксановой резины, которую получают вулканизацией кремнийорганических соединений.
      Реакция осуществляется с помощью катализатора - вещества, повышающего скорость химической реакции.
      Но катализатор вулканизации - в данном случае органические перекисные соединения - мы по довольно дорогой цене закупаем за рубежом. Работы по созданию отечественного катализатора, не уступающего по своим качествам импортному, велись в стране несколькими научно-исследовательскими институтами, а результативными оказались усилия двух кафедр Московского института юнкон химической технологии имени М. В. Ломоносова:
      Редких и рассеянных элементов и Синтеза элеменгоорганических и неорганических полимеров, создавших катализатор на основе комплексных соединений.
      То, что этот катализатор по многим параметрам превосходит импортный, очевидно уже сегодня. Во-первых, он растворим в кремншюрганических соединениях, а значит, равномерно распределяется по вулканизуемой массе, и потребуется его меньше. Во-вторых, его воздействие на вулканизуемую массу очень мягкое, и она становится эластичной, очень легко размягчается при нагревании. В результате обработка полученной массы значительно улучшается, а резина в итоге выходит прочнее.
      У этой работы есть и еще одно важное достоинство:
      нужные количества катализаторов столь невелики, что их легко нарабатывает кафедра Редких и рассеянных элементов MPITXT.
      В общем, уже сегодня появилась реальная возможность отказаться от зарубежного катализатора, полностью обеспечив потребности страны в силаплене за счет собственных резервов.
      Эта научная разработка открывает возможность решения и еще более многоплановой социальной задачи, ведь с внедрением в отечественную медицину искусственных клапанов сердца, магистральных кровеносных сосудов, кардиомассажеров, желудочно-кишечных зондов и так далее связаны победы над многими заболеваниями, считавшимися прежде неизлечимыми. Л что может быть дороже здоровья человека?
      Отечественная химия и химическая технология давно и очень многопланово трудятся на здравоохранение. Вот уж поистине - народная жатва в данном случае на медицинской ниве все ощутимее чувствует, сколь обилен научный посев, совершенный в разное время и разными поколениями отечественных химиков. Причем, на "алтарь" здравоохранения работают сегодня и фундаментальная и прикладные науки, нередко, при решении крупнейших, глобальных проблем, объединяя свои усилия.
      Взять хотя бы такую большую и социально важную проблему, как борьба с травматизмом. Казалось бы, какое отношение имеет химия к ее решению? Оказывается, самое непосредственное. Помню, как-то в одном из архивов я обратил внимание на совсем небольшую заметку, опубликованную на страницах "Журнала военного хозяйства" от 15 августа 1922 года. А написана она была Михаилом Ивановичем Калининым - одним из самых авторитетных людей Советского государства, в .то время председателя ВЦИК. Народ любовно называл товарища М. И. Калинина сначала Всероссийским, а затем, после образования СССР, - Всесоюзным старостой.
      Что же волновало Всероссийского старосту в тяжелейшие для молодой Советской Республики времена, какая забота заставила его взяться за перо в дни напряженной борьбы с интервенцией, разрухой, голодом? Оказывается, политически остро стоявший тогда вопрос о борьбе с инвалидностью.
      "...Голодный крестьянин, - писал М. Калинин, - ждет помощи от Советской власти. Безработный рабочий требует работы, они оба обращают свои надежды на рабоче-крестьянское правительство... Но все эти упреки ничто по сравнению с упреками, которые я получаю от красных инвалидов гражданской войны. Ежедневно 1-2 десятка инвалидов посещают мою приемную, у всех один основной вопрос: "Помогите. - Я имею право на помощь от Советской Республики".
      Голод заслонил от рабочих, крестьян, Советского правительства этих прекрасных мучеников. У меня один ответ: подождите до осени, дайте пережить остроту голода, Советская власть не забудет, не оставит, сделает все, что в ее силах, для своих красных героев..."
      И страна, Советская власть не забыли их. Еще в 1921 году в Москве был организован Лечебно-протезный институт (ныне всемирно известный институт травматологии и ортопедии - ЦИТО), а в 1923 году - Институт скорой помощи имени Н. В. Склифосовского.
      Отечественная ортопедия и травматология располагает сегодня, в том числе и благодаря химии, широчайшими возможностями. Тысячам людей медицина вернула здоровье благодаря эндопротезам (внутренним протезам), суставам из металла или полимеров, консервации костей. Успешно развиваются методы микрохирургии л приживления кисти, пальцев, целой руки. Еще недавно казавшиеся роком самые тяжкие заболевания, такие, например, как опухоли костей, сегодня в большинстве случаев не только не приводят к смерти, но и к ампутации конечности. Такому больному пораженный сустав заменяют консервантом, сохраненным при непосредственном участии химии. А как это важно, особенно если речь идет о ребенке, только вступающем в жизнь, попятно любому, даже очень далекому от проблем травматологии человеку. Пройдет время, донорская кость ассимилируется организмом и станет его собственной неотъемлемой частью.
      Донорскую кость можно заменить и полимерной.
      Правда, создать идеально совместимый с человеческим организмом полимер вряд ли удастся в ближайшее время. Еще в 1960 году академиком В. А. Каргиным была высказана мысль о том, что биосовместимым можно считать полимер, вводимый в организм на ограниченное время для выполнения какой-то конкретной лечебной задачи и который затем разрушается и заменяется вновь образованными тканями. Блестящее предположение ученого подтверждено практикой. И полимеры все решительней проникают в медицину.
      В Институте химии высокомолекулярных соединений Академии наук Украинской ССР созданием медицинских полимерных материалов занимается коллектив, возглавляемый профессором Т. 3. Липатовой. Сущность предложенного учеными метода в том, что полимер вводят в тот или иной орган в виде пломбы или клеевого шва, искусственного клапана пли сосуда с учетом биологической активности среды и характера нагрузки, воздействующей на протез. С учетом этих важнейших факторов и разрабатывается состав и структура полимерного материала, его делают сплошным или пористым, в виде сетки и т. п. Но чтобы подобрать материал, оптимальный для данных условий, необходимо иметь возможно более полное представление о характере взаимодействия биологической среды с полимером, и успехи в этой важной области значительны. В настоящее время стало возможным даже регулировать срок рассасывания полимера в организме.
      Полиуретановый клей КЛ-3 является представителем именно такого рода материалов и предназначен для наложения на различные раны. Его авторы ученые Института туберкулеза и грудной хирургии Минздрава УССР сегодня с успехом применяют этот материал для закрытия бронхиальных свищей, а в киевской городской больнице No 3 - при закрытии кишечных свищей. Характерной особенностью клея КЛ-3 является то, что при отвердении он вспенивается и увеличивается в объеме.
      Этим и достигается достаточная плотность закрытия отверстия. Если же в состав клея ввести катализатор, то можно регулировать время затвердения от нескольких секунд до нескольких минут.
      Используется этот клей и при лечении такой, к сожалению, весьма распространенной болезни, как язва желудка. Оказалось, что лечение возможно в амбулаторных условиях и без операционного вмешательства. В Тернопольском медицинском институте впервые начали накладывать клей непосредственно на язву через тубус гастроскопа.
      Широкое применение нашел КЛ-3 и при урологических операциях, и в челюстно-лицевой хирургии. Этот препарат используется уже и за пределами СССР.
      В частности, в Чехословакии при пластике мозговых свищей и трепанационных отверстий. В последнее время чехословацкие хирурги применили его при лечении злокачественных опухолей головного мозга, для обеспечения высокой местной концентрации лекарства, подавляющего рост опухоли. Для этого из клея изготовляют пломбу, в наполнитель которой входит лечебный препарат.
      В Москве, в Институте сердечно-сосудистой хирургии имени А. Н. Бакулева успешно проводится изучение возможностей применения полимерных материалов для создания искусственных кровеносных сосудов. Было обнаружено, что наиболее устойчивыми к образованию тромбов являются полимеры, поверхность которых обработана гипаритом или гидрогелями. Однако важное значение для решений этих задач имеют не только химические, но и физические свойства материала. Тромбообразование определяется, кроме всего прочего, еще и условиями смачивания поверхности кровью, адсорбцией (адсорбция концентрирование вещества из объема фаз на поверхности раздела между ними, например, из жидкости на поверхность твердого тела) белков крови на внутренней поверхности сосуда. Важнейшую роль при этом играет шероховатость поверхности полимерного материала. Она в значительной степени влияет и на структуру потока крови в полимерном кровеносном сосуде.
      Для создания полноценных протезов необходимо прежде всего знать механические свойства живых тканей, например, деформируемость, прочность и т. д. Этими проблемами занимается Институт механики полимеров Академии наук Латвийской ССР.
      Одним словом, представители многочисленных Школ и направлений отечественной химии самым активным образом участвуют в решении важнейших проблем медицины, используя при этом все богатства обильной научной нивы.
      И только факты...
      В одно из своих посещений родных мест довелось мне проезжать свинокомплекс "Искра". Предприятие это на Рязанщине известно, пользуется заслуженной славой п в области, и за ее пределами. Здесь давно решены многие социальные проблемы, над которыми другие еще бьются: стабильность кадров, прекрасное жилье для рабочих, посменный труд. И отлаженный производственный цикл. В поселке, где живут рабочие комплекса, многоэтажные дома со всеми удобствами, общеобразовательная и музыкальная школы, прекрасный Дворец культуры, спортивный зал. Магазин, прачечная, гостиница - все свое, все добротно и современно. Но вот беда: время от времени душная, смрадная волна накатывается на жилой массив. Это ветер доносит зловоние с навозонакопителей, отравляя людям настроение и жизнь. Последнюю, впрочем, не только им. В местной речушке из-за сбросов свинокомплекса давно перевелась рыба, водившаяся в ней прежде, пропали лягушки, исчезли птицы в округе. Мертвая в буквальном смысле река опоясывает поселок свинокомплекса "Искра", по берегам ее умирают деревья. Так и хочется миновать, проехать побыстрее это гиблое место.
      Между тем, если по-хозяйски подойти к проблеме, решить вопрос утилизации свиного навоза можно и должно. Разумеется, самим работникам сельского хозяйства его не осилить. Здесь нужна действенная помощь науки. Нисколько не сомневаюсь в том, что рязанским научно-исследовательским институтам ото дело оказалось бы под силу, займись они им по-настоящему. Да и к чужому опыту не грех обратиться, например, латвийского Института микробиологии имени Августа Кирхенштейна, с успехом применяющего для утилизации отходов, скапливающихся на крупных животноводческих предприятиях, специальную культуру термофильных анаэробных, метанопродуцирующих бактерий. Расшифровываются эти довольно загадочные слова несложно: бактерии, не нуждающиеся для поддержания процесса жизнедеятельности в кислороде. Зачем же нужны такие бактерии?
      Чтобы превратить органические вещества биологических отходов в метан. Никаких секретов в таком методе утилизации смердящих отходов того же свинокомплекса здесь нет. Людям моего поколения этот "секрет" известен еще со школьной скамьи. Да и поколениям помоложе, вероятно, помнится несложный опыт, предписываемый учебниками естествознания: взять пробирку, собрать в нее пузырьки газа, выделяющегося со дна зарастающего водоема, поджечь его - над пробиркой вспыхнет язычок пламени. Это горит метан - болотный газ. Его продуцировали из органических остатков специальные бактерии. К помощи этих бактерий и обратились латышские ученые, разрабатывая методы утилизации и продуцирования свиного навоза.
      В ферментаторе - аппарате для выращивания бактерий, с их помощью производят природный газ при температуре 50-55 градусов. Такой подогрев необходим, чтобы погибли болезнетворные организмы, содержащиеся в органических остатках, и разрушились дурно пахнущие вещества. Полученный биологический газ - дешевое высокоэкономичное топливо, а главное, источник его неиссякаем: пока существует комплекс, производство газа не прекратится. Не знаю, хватило бы произведенного таким образом газа для отопления такого большого поселка, как "Искра", но энергетические нужды самого комплекса вполне могли бы быть компенсированы за этот счет.
      Установка по производству биогаза, разработанная и изготовленная институтом имени Августа Кирхенштейна специально для свинокомплекса совхоза "Огре", дает до 300 кубометров метана в сутки. Не так-то и мало.
      По крайней мере, эквивалентной теплотворной способностью обладают сто литров бензина. Установка работает несколько лет и вполне подтвердила свою практичность:

  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15