Современная электронная библиотека ModernLib.Net

Гидропоника для любителей

ModernLib.Net / Биология / Зальцер Эрнст / Гидропоника для любителей - Чтение (стр. 4)
Автор: Зальцер Эрнст
Жанр: Биология

 

 


      Мы увидим, что, используя этот принцип, можно сооружать как очень маленькие, так и гигантские по размерам установки. Часто их называют водными культурами в резервуарах, сосудах, стеллажах и т.п.
      Однако в дальнейшем, встречаясь с описанным здесь принципом, мы будем всегда обозначать его как гидропонный метод.
      Термин гидрокультура мы можем, если не буквально, то по смыслу, перевести как гравийная культура. Этот метод отличается прежде всего тем, что при нем растения укореняются в солидных слоях гравия (толщиной до 40 см). Обеспечение питательным раствором в этом случае может происходить в соответствие в двумя основными принципами.
      При способе подпора нижняя часть гравия постоянно находится в питательном растворе, который может подниматься по капиллярам. Корни растений, конечно, могут беспрепятственно расти вниз до уровня питательного раствора, и эту возможность они очень активно используют.
      При способе периодического затопления (или увлажнения) питательный раствор подается в резервуар или корыто через определенные промежутки времени. При этом большая часть слоя гравия буквально затопляется и может полностью насытиться раствором (благодаря пористости субстрата). Если затем раствор будет снова удален (спущен или отсосан) и в пористое пространство слоя субстрата поступает совершенно свежий воздух, то снабжение корней растений кислородом становится действительно оптимальным.
      Последнее предложение четко обрисовывает наивыгоднейшую особенность гидрокультуры, безразлично, идет ли речь о подпоре или о затоплении, а именно самое благоприятное обеспечение воздухом подземных частей растений. В этом отношении гидрокультура, несомненно превосходит гидропонный метод. Вероятно, этим объясняется гораздо большее распространение гидрокультур в наше время по сравнению с гидропонным методом, и если гидропоника в этом перечне и поставлена на первое место, то только потому, что это очень древний метод.
      Хемокеультура, или культура сухих солей, – общий термин для всех методов, при которых растения укореняются в органическом субстрате, периодически увлажняемом питательном раствором. При этом не имеет значения, уложен ли субстрат на горизонтальной или вертикальной плоскости. Поэтому уже знакомое нам выращивание растений на стенках из мха или торфа представляет собой один из вариантов культуры сухих солей.
      Теперь перейдем к работе. Познакомимся для начала с несколькими видами гидрокультур, уже получивших большую популярность.

Батареи цветочных ящиков с автоматическим поливом

      Такая установка работает по принципу постоянного подпора. Начнем сразу с сути дела: разве плохо было бы избавиться от необходимости ежедневно поливать цветы, устранить постоянно происходящее при поливе переполнение водой горшков и ящиков, при котором пачкаются стены, подоконники и карнизы и волей-неволей возникает раздражение. Так вот: каждый деятельный любитель может осуществить это у себя. То, что будет описано ниже, в продажу не поступает и все нужно делать самому.
 
      Рис. 28. Серия цветочных ящиков c автоматической подачей раствора: 1 – резервуар с питательным раствором; 2 – цветочные ящики; 3 – контрольная и сливная трубка; 4 – уровень раствора в ящиках; 5 – Т-образный патрубок; 6 – крупный гравий; 7 – торфяная крошка; 8 – резиновый шланг.
 
      Для сооружения батареи цветочных ящиков с автоматическим поливом требуются водонепроницаемые ящики или короба. Лучше всего, если это будет асбоцементны или металлические ящики, но и те и другие не так легко достать, и стоимость их довольно высокая. Можно пользоваться также ящиками из дерева, которые можно превратить в водонепроницаемые при помощи не содержащих фенолов пластических пленок. Для начала возьмем в качестве исходных ящики из асбоцемента, которые можно везде приобрести, и покроем их слоем битумной краски, чтобы устранить возможность обменных реакций с питательным раствором в последующем. Затем в ящиках с обеих сторон (как показано на рис.28) нужно сделать отверстия, диаметр которых соответствует диаметру заготовленных нами заранее резиновых пробок. Эти пробки должны быть просверлены так, чтобы в них можно было вставить стеклянные трубки с просветом 12 мм. После того как пробки с трубками будут тщательно подогнаны к отверстиям в ящиках, мы соединяем трубки соседних ящиков короткими отрезками резинового шланга. В последнюю пробку вставляют отрезок изогнутой под прямым углом стеклянной трубки, которая служит контролем, указывающим высоту уровня раствора, а если ее повернуть на 180о вниз, то также и для сливания раствора. Этим заканчивается устройство системы централизованного снабжения ящиков питательным раствором.
      Далее, нам нужен подходящий питающий резервуар для раствора с герметически закрывающимся горлом. Для этого вполне пригодны чистая канистра или жестяная банка с завинчивающейся пробкой и уплотняющим кольцом. Их изолируют обычной битумной краской, наливая ее внутрь и поворачивая сосуд так, чтобы краска покрыла все стенки. Естественная работа, для которой может потребоваться помощь со стороны, это припаривание у основания канистры или банки трубки для раствора (внутренний диаметр трубки 12 мм). После этого можно начинать монтаж всей установки.
 
      Рис. 29. Для автоматической подачи раствора в отдельный цветочный ящик достаточен небольшой сосуд: 1 – питательный раствор; 2 – Т-образный патрубок.
 
      Для начала запасемся резиновым шлангом, достаточно длинным, чтобы присоединить резервуар с питающим раствором к первому ящику. Затем на расстоянии 10-15 см от резервуара с раствором перережем шланг и вставим в отрезанные концы Т-образную стеклянную трубку (диаметром 12 мм) так, чтобы длинный ее конец был направлен вверх и слегка в сторону, как показано на рисунке 29.
      Для чего это делается будет понятно из дальнейшего изложения процессов, происходящих после наполнения резервуара и подачи раствора.
      При помощи зажима перекрываем шланг между резервуаром и Т-образным патрубком и заполняем резервуар питательным раствором до отказа. После того как пробка резервуара будет завинчена, можно снять зажим. Что же произойдет?
      Во все ящики начнет поступать раствор, поскольку через открытый конец Т-образной трубки в резервуар может проникать замещающий его воздух. Уровень раствора во всех ящиках будет повышаться медленно и равномерно до тех пор, пока он не достигнет открытого конца Т-образного патрубка, как это бывает в любых сообщающихся сосудах. После этого подача раствора в ящики мгновенно прекращается. Это явление нетрудно объяснить: после того как воздух извне перестает поступать в резервуар через открытый конец Т-образной трубки, не может происходить и вытекания раствора. Иначе в резервуаре создавалось бы безвоздушное пространство.
 
      Рис. 30. Гидропонные цветочные ящики для балконов: вверху – системы Герер; внизу – системы Шрофф.
 
      Далее нам следует позаботиться о такой расстановке пока пустых ящиков, чтобы уровень раствора в них был на одинаковой высоте. Надо также отрегулировать положение Т-образной трубки (ее верхнего открытого конца) так, чтобы приток раствора прекращался, когда раствор во всех ящиках будет находиться на высоте 2,5-3,0 см. После этого можно заполнять ящики субстратом.
      На самое дно слоем толщиной 2 см укладывают более крупный гравий, чтобы обеспечить свободное движение воды даже в совершенно заполненном ящике. Сверху на этот гравий укладывают тонкий слой волокнистого торфа, чтобы помешать фильтрации мелких частиц субстрата на дно ящика. Остальное пространство заполняют подготовленным гравием или чистой торфяной крошкой. Если растения намечено выращивать на гравии, то их необходимо снабжать питательным раствором с самого начала. Если же в качестве субстрата выбран торф, то тогда при заполнении ящиков на каждые 10 л торфа нужно подмешивать 30 г стандартного полного удобрения. Этого основного удобрения хватит на первые 3-4 недели, и в этот период из резервуара в ящики подается только вода, но в дальнейшем переходят на подачу питательного раствора нормальной концентрации.
      Тот, кто будет строго следовать всем этим предписаниям, получит большое удовлетворение, наблюдая развитие растений в своих ящиках. Цветы растут в них исключительно хорошо, поскольку они получают воду и питание в требуемом количестве. Ведь как только уровень раствора в ящиках в результате испарения и использования растениями понизится настолько, что полностью освободится открытый конец Т-образной трубки, воздух проникнет в резервуар и вытекающая из него жидкость снова поднимет уровень раствора во всех ящиках, причем это будет повторяться до тех пор, пока в резервуаре будет оставаться раствор. Практика показывает, что в зависимости от времени года, экспозиции и от вида растений расход раствора составляет 0,5-2,0 л в сутки на 1 погонный метр длины балконных ящиков. Исходя из этой величины, мы можем легко рассчитать, насколько часто (в зависимости от емкости резервуара) нужно производить замену раствора. Один резервуар может без затруднений снабжать раствором 5-6 цветочных ящиков нормальной величины (рис.30)

Отдельные ящики для цветов, витрины и террариумы

      Рис. 31. Вверху – общий вид цветочной витрины; внизу – схема. 1 – контрольная трубка; 2 – жестяная ванна; 3 – сливной кран; 4 – дренажная трубка; 5 – субстрат; 6 – деревянная обшивка.
 
      Рис. 32. Принцип устройства террариума на гидропонике: 1 – стеклянный ящик; 2 – откидное оконце; 3 – подача корма; 4 – контрольная трубка; 5 – субстрат; 6 – дренажная трубка; 7 – сливной кран; 8 – водонепроницаемый лоток или ванна.
 
      Такие ящики можно, конечно, использовать и без автоматического питания. Необходимо только предусмотреть отверстие в стенке у дна, в котором укрепляется в качестве контрольной или спускной изогнутая под прямым углом стеклянная трубка. Когда эта контрольная трубка покажет, что уровень раствора в ящике значительно понизился, нужное количество его подливают прямо в ящик. По этому же принципу устраиваются весьма распространенные цветочные витрины и террариумы на гидрокультуре.
      Цветочные витрины на гидрокультуре представляют собой не только деталь обстановки, обеспечивающую хорошее местообитание для растений, но они могут одновременно служить книжным шкафом или винным погребком, а террариумы на гидрокультуре дают возможность любителям этих устройств украшать их пышно растущими декоративными растениями, ни в коей мере не усложняя обычного режима ухода за животными. Сами животные также не будут потревожены. Конечно, в таком террариуме нельзя содержать роющих животных. На рисунке 31 и 32 показаны внешний вид и устройство витрин и террариумов.
      Для таких устройств нужна прежде всего водонепроницаемая, изолированная покрытием ванна, длина и ширина которой полностью соответствует нашим требованиям. Она должна быть такой глубины, чтобы слой субстрата после заполнения был толщиной не менее 25 см. На дно ванны по всей ее длине укладывают перфорированную (также покрытую изолирующей краской) трубу, предназначенную для дренирования и ускорения движения жидкости при подаче и спуске раствора. В месте, где труба опирается на край ванны, приделывают сливной краник. Витрина с гидрокультурой снабжается в одном из углов вертикальным отрезком трубы, служащим контрольной трубкой и патрубком для подачи питательного раствора. Высоту уровня раствора в субстрате легко определяют при помощи стержня, опускаемого в контрольную трубку.
      В террариуме с гидрокультурой, в отличие от цветочной витрины, трубки для подачи раствора нет, но на конце дренажной трубы, противоположном сливному крану, монтируется согнутая под прямым углом контрольная трубка диаметром 3 см, годная вместе с тем и для подачи раствора. При помощи этого приспособления, находящегося снаружи ванны (рис.32), мы можем заменять питательный раствор, не вскрывая для этого террариум.
      На дно ванны витрины или террариума насыпают сначала слой довольно крупного гравия, а остальное пространство заполняют обычным субстратом ( с диаметром частиц 2-10 мм). Ванна на 1/3 высоты должна быть всегда заполнена питательным раствором. Смену всего раствора производят каждые 2-3 недели, чтобы иметь уверенность в постоянном наличии пищи для растений.

Гидрогоршки для декоративных растений

      Такие горшки служат для выращивания горшечных растений без почвы в условиях квартиры или служебного помещения. В торговой сети имеются уже довольно многочисленные модели горшков, которые можно разделить на две большие группы.
      Гидропонные горшки, в которых корневая система растений погружена в питательный раствор.
      Горшки для гидрокультуры, где местообитанием растений служит цветочный горшок, наполненный гравием. Этот горшок частично погружен в питательный раствор так, что пористый гравий может обеспечить капиллярное поднятие жидкости (способ подпора).
 
      Рис. 33. Самодельный гидрогоршок.
 
      Внимательный читатель, рассмотрев рисунки 33 и 34, безусловно, без труда сумеет собрать такие же гидрогоршки, используя простейшие средства. Для этого необходима по возможности более емкая пузатая ваза (конечно предварительно покрытая изолирующим слоем, если он необходим), в которую вставляется подходящий по диаметру, высоте и форме цветочный горшок. Однако можно сделать еще проще. Для первых опытов достаточны даже такие подсобные материалы, как широкогорлые стеклянные банки, жестяные консервные банки и обычные цветочные горшки. Суть дела заключается в том, чтобы растения имели возможность укоренения и достаточный запас питательного раствора. Нужно лишь всегда иметь в виду следующее.
      Внешний горшок или ваза, то есть сосуд для питательного раствора, должен быть по возможности сферическим, чтобы раствора хватало на больший срок. В гидрогоршке хорошей емкости замена раствора производится не чаще чем через две недели, а в промежутках, при сильном испарении, может потребоваться одно-, максимум двукратное добавление обычной воды. В этом и заключается работа по уходу – огромное преимущество комнатного цветоводства без почвы!
      В питательном растворе при доступе к нему солнечного света очень скоро поселяются водоросли. Поэтому гидрогоршки промышленного изготовления всегда имеют особую окраску, препятствующую образованию водорослей. Развитие водорослей совершенно нежелательно: они не только портят весь вид, но и конкурируют с выращиваемыми растениями в отношении минеральных солей и углекислоты. Поэтому, пользуясь для своих опытов стеклянной тарой, ее нужно обернуть светонепроницаемой бумагой или покрыть снаружи слоем непрозрачной краски.
 
      Рис. 34. Различные гидрогоршки для гравийной и водной культур: 1 – гравий; 2- наружная керамическая ваза; 3 – цветочный горшок; 4 – боковые дренажные отверстия; 5 – питательный раствор; 6 – контрольные отверстия.
 
      Мы не будем придерживаться правил постановки опытов, целесообразных при проведении строго научного исследования. Они подробно изложены в справочнике Шроппа "Водные культуры", и заинтересованные могут там с ними познакомиться. Однако и для нас остается много возможностей любительского экспериментирования с сосудами, с чем мы и начнем знакомиться.
      До сих пор мы имели дело с методикой, при которой применяется так называемый способ подпора или подпитывания. Мы упоминали также гидропонные горшки. Обратимся же теперь к способу периодического "затопления".
      Затопление можно проводить и на малых установках с гидрокультурами. В чем заключается его сущность? Повторяем, что при этом способе питательный раствор не остается в сосудах на длительное время, а подается в них периодически. Благодаря этому достигается хорошая аэрация зоны роста корней и одновременно обеспечивается питание растений, так как пористый, обладающий хорошей водоудерживающей способностью субстрат – гравий или торф – при напуске раствора может запасать его в изобилии. Как же рационально использовать эти преимущества?
 
      Рис. 35. Пользуясь двумя ведрами, можно производить подачу раствора методом периодического затопления (напуска): 1 – ведро с питательным раствором; 2 – ведро с субстратом; 3 – цоколь радиолампы; 4 – зажим на шланге.
 
      Нам потребуется два сосуда, из которых один будет служить для выращивания растений, а другой – резервуаром для питательного раствора.
      Первый опыт потребует лишь незначительных расходов. Оборудованием для него послужат два широких цилиндрических ведра, которые везде можно приобрести. Каждое ведро снабжается внизу сливной трубкой, которую нетрудно изготовить самому из гнезда для радиолампы, закрепив его контргайкой и снабдив двумя резиновыми уплотнителями. После этого ведра соединяют резиновым шлангом и одно из них заполняют субстратом, а другое – питательным раствором, который примерно каждые две недели нужно полностью заменять. Отработанный раствор, все еще содержащий какие-то питательные вещества, может быть с успехом использован для подкормки других растений в саду. Следующей рабочей операцией является посадка в ведро с субстратом молодого раствора. При этом нужно следить за тем, чтобы ведро с растением всегда находилось выше ведра с раствором. Когда мы приподнимаем ведро с раствором выше ведра с растением, раствор через шланг поступает в гравий, к которому в данном случае при наполнении добавляют не больше 1/3 торфа, не слишком затруднять движение раствора. Эту операцию мы повторяем в зависимости от времени года 2-3 раза в сутки. Крупные растения в самое теплое время года требуют, конечно, больше пищи, чем мелкие растения при облачном небе. При определении суточных порций раствора это необходимо учитывать.
      Работу при подаче раствора можно еще больше упростить, воспользовавшись зажимом или перекрывающим краном на шланге. Тогда можно на какое-то время оставлять раствор в ведре с растением даже после опускания ведра с раствором. Примерно через 20 минут, когда пористый гравий полностью насытится раствором, кран или зажим ослабляют и раствор снова стечет в пустое ведро (рис.35). Это простое и дешевое устройство заслуживает внимания, поскольку многие любители выращивают этим способом великолепные растения томатов, обильно покрытые высокачественными плодами.
      Вряд ли стоит говорить о том, что по тому же принципу можно соорудить много сходных установок, для чего у каждого достаточно собственной фантазии. Поэтому, не задерживаясь. Перейдем к более совершенной любительской установке.

Небольшая автоматическая установка системы Рёшлера

      Такая установка для выращивания растений без почвы на сегодняшний день во всех отношениях аналогична современным производственным крупным установкам, но только ее масштабы значительно уменьшены. Сначала внимательно познакомимся со схемой производственной установки, изображенной на рис 36, с тем, чтобы извлечь все нужное для себя.
 
      Рис. 36. Схема устройства гидропонной установки системы Рёшлера:
      1 – резервуар с субстратом; 2 – отделительная стенка; 3 – спуск раствора; 4 – сливной кран; 5 – запирающий стакан; 6 – аварийный сброс; 7 – отводная трубка; 8 – дренажная трубка; 9 – противовес; 10 – блок; 11 – подающая труба; 12 – терморегулятор (температура воздуха в помещении); 13 – терморегулятор (температура раствора); 15 – часовой включающий механизм; 16 – насосный агрегат; 17 – фильтры; 18 – электроды; 19 – кабель для подогрева раствора; 20 – бассейн с раствором; 21 – поплавок; 22 водопроводная вода; 23 – сеть аварийного сигнала; 24 – аварийный сигнал; 25 – перепускная труба: а – уплотняющее кольцо; б – направляющие; в – отверстие в дне стакана.
 
      С самого начала оговоримся: система Рёшлера рассчитана на полную автоматизацию всех процессов по уходу за растениями. Здесь все это решено довольно удачно, потому что в подобной установке любителю собственно остается лишь посадить растения, следить за тем, чтобы они не страдали от болезней и вредных насекомых, убрать урожай и, наконец, очистить установку от послеуборочных остатков. Попробуем же достигнуть таких же результатов на миниатюрной установке.
      Что же можно прочитать на схеме? Мы видим водопроницаемый резервуар (корыто или поддон) (1), наполненный гравием и оборудованный дренажным устройством (8) для ускорения движения питательного раствора. Поперечная торцовая перегородка (2) отделяет массу субстрата для того, чтобы сток раствора происходил беспрепятственно. В особом бассейне (20) хранится питательный раствор, который через фильтры (17) засасывается насосной установкой с электрическим приводом (16) и подается через питающий трубопровод (11) либо непосредственно в резервуар с субстратом, либо перегоняется через возвратную трубу (25) назад в бассейн. (Последнее целесообразно в тех случаях, когда для компенсации использованного раствора к нему добавляется концентрат, потому что путем перекачки всей жидкости достигается более быстрое и тщательное перемешивание). Работа насосной установки регулируется часовым включающим (15), и обслуживающему персоналу не нужно заботиться о включении и выключении насоса.
      Сливное отверстие (3) в резервуаре с субстратом также перекрывается автоматически, так как запирающий стакан (5), снабженный снизу уплотнителем а, заполняется тонкой струей раствора из проходящего над ним ответвления (7) питающего трубопровода. При наполнении раствором стакан становится тяжелее и перевешивает противовес (9), соединенный с ним через ролик (10). Стакан опускается и закрывает сток. Для правильной центровки стакана в сточном отверстии он снабжен снизу направляющими б.
      Производительность насоса в производственных условиях рассчитывается на полное заполнение резервуара с субстратом за 20 минут. Через этот промежуток времени автомат (15) снова выключает насос. Сбросная (аварийная) труба (6) предупреждает переполнение резервуара раствором, отводя избыток его к фильтрам в сливной трубе.
      Питательный раствор должен оставаться в резервуаре примерно 20 минут для полного насыщения гравия и только после этого снова освобождать резервуар. Как же достигается автоматизация в этом случае? Оказывается очень просто: в дне запирающего стакана (5) просверлено маленькое отверстие в (рис.36, увеличенная деталь схемы в правом верхнем углу), через которое из стакана медленно и непрерывно вытекает раствор. Отверстие должно быть именно такого диаметра, чтобы прим6ерно через 20 минут вес пустеющего стакана стал меньше веса уравновешивающего его груза (противовеса) (9), и тогда стакан поднимается кверху, открывая выход для раствора.
      В резервуаре с субстратом есть еще одно сливное отверстие (4), служащее для полного освобождения установки. Для этого дно резервуара делается с 1%-ным уклоном в сторону сливного отверстия.
      Воду, теряющуюся из бассейна с раствором и из всей системы, со временем пополняют за счет свежей воды из водопровода (22). При этом нет необходимости следить за пополнением уровня жидкости в бассейне (20). Для контролирования уровня раствора в бассейне имеется сигнальное устройство (21). При критическом уровне поплавок (21) замыкает цепь (23) аварийного сигнала (24), предупреждающего обслуживающий персонал.
      Что еще можно увидеть на схеме? В бассейн (20) опущены два электрода (18) контрольного прибора (14), постоянно показывающего, все ли в порядке в отношении концентрации питательного раствора ( о концентрации подробнее говорится в разделе о питательном растворе). Кроме того, там же имеется спираль или кабель (19) для электроподогрева раствора до желательной температуры. Этот процесс регулируется самостоятельно дистанционным терморегулятором (13). Второй терморегулятор (12) контролирует работу обогревательной системы и, следовательно, температуру помещения.
      Давайте же посмотрим, как исходя из описанного образца, мы могли бы соорудить миниатюрную установку, по возможности в точности воспроизводящую ту, что показана на схеме.
      Начнем с резервуара для субстрата. Он должен иметь глубину не менее 25 см, а длину и ширину мы можем выбрать произвольно. Конечно, этот резервуар, так же как и бассейн для хранения раствора, мы покроем изолирующим слоем. Весьма рекомендуется монтировать резервуар на какой-либо подставке с четырьмя ножками, как у стола. Тогда под резервуаром можно разместить бассейн для раствора, имеющий равные с резервуаром габариты. Кроме того, поднятие гряды субстрата облегчает все операции по уходу за растениями.
      Система расположения труб ясно показана на схеме, и ее детали можно не описывать. Вместо металлических труб можно воспользоваться резиновыми шлангами. Автоматическое перекрытие стока из резервуара также ничего сложного из себя не представляет. Нужно лишь проследить, чтобы стакан даже в опущенном состоянии был примерно на 1 см выше отверстия сбросной (аварийной) трубы, иначе отверстие для стока не будет открываться. Диаметр отверстия в дне стакана указать невозможно, поскольку он должен быть найден экспериментальным путем. Сначала просверливают совсем узенькое отверстие и расширяют его до тех пор, пока стакан (при наполненном резервуаре) не поднимется вверх после примерно 20-минутного вытекания из него раствора. (На стакан влияет не только противовес, но еще в большей степени выталкивающее действие воды на все больше и больше пустеющий сосуд.)
      Аварийное устройство с сигналом для регулирования уровня жидкости в бассейне с раствором по причинам безопасности может работать только от источника слабого тока. От него вообще можно отказаться, потому что не так уж трудно пополнять незназничетельную убыль воды из бассейна и незачем подводить к нему жесткую систему труб. Она может понадобиться лишь в редких случаях.
      От насоса с электрическим приводом отказываться, конечно, не следует, да это и не требуется, поскольку у нас в распоряжении имеются полноценные насосы для аквариумов. (Один искусный любитель сумел приспособить даже старый автомобильный шестеренчатый насос.) Если производительность насоса окажется слишком высокой, всегда можно приоткрыть кран возвратной трубы настолько, чтобы насос мог заполнить резервуар за 20 минут.
      Вместо обогревательного кабеля в большинстве случаев достаточен обычный электрический кипятильник, который в сочетании с терморегулятором будет поддерживать температуру питательного раствора на уровне 18-20о. растения, особенно если их выращивают в течение всего года, реагируют на такой подогрев превосходным ростом. В торговой сети имеется масса хороших термостатов, и все их здесь описать невозможно. Поэтому следует строго придерживаться прилагаемой к каждому из них инструкции, а в случае необходимости обратиться к специалисту-электрику. Это, впрочем, следует делать во всех случаях, если вы незнакомы с электротехникой. Вовремя полученные от специалиста совет или помощь страхуют также от несчастного случая.
      Об устройстве и принципе действия прибора для измерения концентрации питательного раствора будет говориться ниже в разделах, относящихся к растворам. Остается, таким образом, говорить лишь о часовом включающем механизме, и это наиболее больной вопрос. Все, о чем мы до сих говорили, можно найти в собственном хозяйстве, изготовить самому или купить по невысокой цене. Расходы на насос, кипятильник и термостат также лежат еще в пределах доступного, однако реле времени – это уже дорогостоящий прибор. Поэтому может быть следует отказаться от этой последней ступени автоматизации и попробовать за счет других мероприятий придать нашей установке законченный вид. Тогда нам легче будет примириться с необходимостью ручного включения и выключения насоса.
 
      Рис. 37. Гидропонная установка в миниатюрной тепличке: 1 – субстрат; 2 – терморегулятор; 3 – кабель обогрева; 4 – петли; 5 – откидная фрамуга для облегчения работы и для вентилирования; 6 – светящиеся трубки; 7 – включение освещения.
 
      Сначала совершим прогулку и очень внимательно осмотрим какую-нибудь, доступную для нас, садовую теплицу. После этого мы будем в состоянии соорудить над нашим резервуаром модель теплицы (рис.37), безупречную с точки зрения специальных требований. Для этого требуется несколько досок, рейки, немного оконного стекла – и тепличка готова. Любой стекольщик поможет нам советом и делом. Обе верхние поверхности кровли двускатной теплички укрепляют на петлях, чтобы их можно было высоко поднять. Это очень облегчит уход за растениями и другие работы в тепличке.
      При достаточной внимательности при посещении теплицы мы, конечно, заметим систему труб водяного обогрева, обычно монтируемых вдоль длинных стен теплицы. Сделаем у себя то же самое. В нашей модели мы укрепим подобным же образом кабель электрообогрева, который будет совершенно автоматически включаться и выключаться установленным на нужную температуру терморегулятором. (В данном случае эта температура зависит от культуры или культур, которые намечено выращивать в тепличке.) После этого мы будем иметь даже преимущество в системе обогрева по сравнению с большинством крупных теплиц, не располагающих еще столь современными устройствами.
      Монтаж описанного обогревательного устройства позволит выращивать так называемые тепличные растения, которые трудно сохранить в комнатах с обычной системой обогрева. Уже по этой причине новая система заслуживает внимания. Конечно, тепличку следует делать возможно более герметичной, чтобы избежать слишком больших потерь тепла.

  • Страницы:
    1, 2, 3, 4, 5, 6, 7