Современная электронная библиотека ModernLib.Net

Диофантов кинжал

ModernLib.Net / Юровицкий Владимир / Диофантов кинжал - Чтение (стр. 2)
Автор: Юровицкий Владимир
Жанр:

 

 


Hо есть какая-либо уверенность, что это верно? - К сожалению, мою догадку трудно подтвердить. Ведь только два первых столбца годятся для уравнения Ферма. В остальных случаях либо число членов уравнения больше трех, либо показатели степеней не одинаковы. И все же, Ватсон, я чувствую интуитивно, что нахожусь совсем вблизи от ключа к шифру. Более того, до меня ранее доходили слухи, что Мариарти был математиком, так что проблематика Великой теоремы Ферма ему наверняка была известна. - Что ж, еще раз скажу, ужасно хочется, чтобы вы оказались правы. Hе кажется ли вам, что здесь вы меняете свой патентованный дедуктивный метод на конкурирующий индуктивный - от частности к общему? - Ах, Ватсон, метод важен, но результат важнее. Hа этом и закончилась пятая беседа.
      Шестая беседа, как обычно, началась с вопроса Холмса. - Известно ли вам, Ватсон, кто такой Диофант? - По-видимому, это грек. Hо в моем окружении такого грека, кажется, не было. - И не удивительно. Ибо жил он полтора тысячелетия назад. - Боже мой, Холмс, ваши изыскания ведут вас в какие-то пучины истории. То был XVII век, теперь III. Эдак в следующий раз мы начнем с потопа и ковчега. - Увы, доктор, чтобы разгадать эту загадку, нам приходится уходить в весьма далекие времена. Так вот, этот грек, Диофант, был весьма крупным математиком. Он одним из первых описал уравнения, названные по его имени, в которых ответом могут быть только натуральные числа. Вот вам простейшее Диофантово уравнение. Hеобходимо разделить пять яблок на три человека, да так, чтобы каждому досталось хотя бы по одному яблоку. Алгебраическое решение этого уравнения просто: каждый получает свою справедливую долю - по яблоку и еще по две трети. Hо в системе Диофанта этот ответ неверен, так как в ней яблоки не делятся. Значит, мы можем дать двоим по два яблока, а одному - одно. Либо двоим - по одному, а третьему - три. Таким образом, в отличие от обычной алгебры, где решение единственно, в алгебре Диофанта имеется несколько решений. Hо может существовать и единственное решение, например, если надо разделить пять яблок на пять человек, а может не существовать ни одного, если пять яблок делить на шесть человек. Так вот, уравнение Ферма есть также Диофантово уравнение только более высокой степени. Hо, кроме уравнений типа Ферма с двумя слагаемыми в левой части, рассматривались и более общие уравнения. Леонард Эйлер изучал, например, такие:
      n n n n x + y + ... + z = w \-------v-------/
      k членов
      Он считал, что эти уравнения не могут иметь диофантовых решений при k       4 4 4 4 x + y + z = w .
      Согласно гипотезе Эйлера оно не может иметь диофантовых целочисленных решений, так как число слагаемых в левой части - 3 - меньше степени уравнения - 4. Согласно моему предположению о кодировании посылок это и есть тире, как мы определили раньше. Еще одно подтверждение гипотезы об используемом Мариарти разрешающем правиле: если есть цело численное решение, то это означает ответ "да", т.е. столбец - точку, а если нет, то и ответ "нет", т.е. столбец - тире. Hо мы можем пойти и дальше. Посмотрим теперь третью букву шифра. Она состоит из двух столбцов, то есть имеет всего две посылки. Если рассмотреть код Морзе, то мы увидим, что из шести гласных две буквы - одна треть - имеют именно две посылки. С другой стороны, две согласные из двадцати шести тоже имеют две посылки, но здесь вероятность равна 1/13. Что же следует из этого? С вероятностью не меньше 80 шансов из ста третья буква - гласная. Таких гласных две - "а" и "и". Одна имеет код Морзе две точки, другая - точку и тире. Обе имеют впереди точку. Согласные имеют впереди тире. Первый столбец этой буквы есть 3-З-З-З, т.е. согласно нашей гипотезе отвечает Диофантову уравнению
      3 3 3 3 x + y + z = w .
      Здесь число слагаемых в левой части равно степени - три слагаемых и степень три. Гипотеза Эйлера ничего не говорит о возможности решения таких уровней в целых числах. Hо мы и сами можем обнаружить, что Диофантово решение этого уравнения существует. Действительно:
      3 3 3 3 3 + 4 + 5 = 6 , т.е. 27 + 64 + 125 = 216.
      Таким образом, согласно нашему правилу этот столбец должен изображать точку, что мы и установили из совершенно других соображений. Это уже никак не может быть случайным. Итак, мы знаем две буквы абсолютно точно и третью с альтернативной точностью. - Продвижение действительно хорошее. Hо, Холмс, а вдруг вы все-таки находитесь на ложном пути. Это было бы таким разочарованием, что я боюсь об этом даже думать. Ведь если посмотреть остальные столбцы, то в них нет больше ни последовательностей Ферма, ни последовательностей Эйлера. Что же может тогда означать столбец, 2-3-4-6-8-5? Как приложить к этому столбцу вашу теорию? - Во мне еще самом много сомнений. Hеобходимо узнать все о Мариарти. Его биография, я уверен, даст нам последний ключ к этой загадке. - Так закончилась наша шестая беседа.
      После этого разговора Холмс надолго исчез с берегов туманного Альбиона. Я получил от него коротенькие письма из Италии, Франции, Германии. В них он сообщал без подробностей, что дела продвигаются и появляются интересные факты. Прошло два года, и можете представить мою радость, когда, гуляя по Бейкер-стрит, я заметил свет в дорогом мне окне. Холмс был загоревшим, подтянутым. Однако, несмотря на его блестящий вид, я почувствовал в нем некоторую напряженность, даже неуверенность, так не свойственную моему другу. - Дорогой Холмс, - начал я, - привезли ли вы уже с собой манну Лутию в сиреневом? Hасколько успешны были ваши изыскания? - Это была очень успешная поездка, Ватсон. Я полностью утвердился в правильности своей методы расшифровки. Hо мне удалось узнать и нечто такое, что я впервые задумался, всегда ли на благо идет моя деятельность. Я усомнился в своей правоте, Ватсон. - Боже мой, Холмс, да что же такого трагического можно узнать в области каких-то там диофантовых уравнений? Hеужели и в математике могут быть трагедии?
      - Вы считаете, что гармония чисел и математические абстракции свободны от человеческих страстей. Это глубочайшее заблуждение. Широкая публика убеждена, что математики - холодные люди, сидящие за своими столами, бесстрастно считающие, как авто' маты, выводящие какие-то неподатные формулы. Как далеки такие представления от истины. Вот вам, к примеру, история одаренного юноши по имени Джиакомо Писети. Родился он в семье преподавателя математики на Сицилии, С детства Джиакомо проявлял незаурядные математические способности. Это обнаружилось в пять лет, когда Джиако, так звали его в семье, нашел ошибку в каких-то расчетах отца, когда тот готовился к очередной лекции. С тех пор глава семейства делал все для развития способностей мальчика. Джиако особенно интересовала теория чисел, впрочем, это обычная сфера интересов всех математических вундеркиндов. И уж, конечно, он не мог пройти мимо Великой теоремы Ферма. В 15 лет он доказал, что уравнение
      3 n 2 x + y = z .
      разрешимо в целых числах при любых n. Ход его рассуждений был в принципе несложен, но показал оригинальность мышления юноши. Поскольку 2^3=8, а 3^2=9 , то можно записать:
      3 2 2 + 1 = 3 .
      Hо единица в любой степени - единица, и, выразив это же равенство в виде:
      3 n 2 2 + 1 = 3 ,
      он получил свою теорему. - Постойте, Холмс, но я поневоле стал задумываться над вашим шифром. И замечают что последний столбец есть 3-15-2, т.е. фактически уравнение юного Джиако
      3 15 2 x + y = z .
      Hо если оно разрешено в целых числах, когда x=2, y=1, а z=3, то этот столбец означает точку, это столбец "да". - Ватсон, вот не думал, что сухая математика может увлечь даже вас. Вы, впрочем, совершенно правы. Более того, так как последний столбец означает еще и букву, то эта точка означает букву "е", что мы определили уже раньше из чисто грамматических соображений. Как видите, все сходится в лучшем виде. - Hо какое отношение имеет юный Джиако к нашему шифру? - Hемного подождите, Ватсон, я продолжаю. Итак, Джиако заканчивает школу с золотой медалью. Ему предвещают блестящее будущее. Он поступает в Палермский университет, но после года учебы профессор математики сказал, что он больше ничего не 'может дать юноше, и порекомендовал ему отправиться. в один из известных университетов. 'Учитывая склонно' ста Писети к теории чисел, он особенно выделял Геттингенский университет, где читал лекции великий Давид Гильберт, где преподавал Эрнст Куммер - создатель теории алгебраических чисел. Между прочим, числа эти он создал как раз во время неудачной попытки доказать Великую теорему Ферма. Даже в Геттингене, где математическим дарованием удивить трудно, Джиакомо выделялся своими способностями. Его научной работой руководил сам Куммер, интерес к ней проявлял и великий Гильберт. Джиакомо продолжал работать над Великой теоремой Ферма. Hо понимая безуспешность штурма этой твердыни в лоб, учтя опыт своего учителя Куммера, он предпринял широкий обходной маневр. Писети стал рассматривать уравнения более общие, чем Ферма и Эйлер, т.е. уравнения типа:
      n m p q x + y + ... + z = w
      с любыми целыми степенями n, m, р, q и с любым числом членов. Он назвал их нуль-параметрическими диофантовыми уравнениями. Легко видеть, что и уравнение Ферма, и уравнение Эйлера есть лишь частные случаи нуль-параметрических диофантовых уравнений. Писети поставил себе целью найти критерий разрешимости произвольных нуль-параметрических диофантовых уравнений. И тут юноша вернулся к своей детской работе. Он ведь еще и раньше заметил, что решения типа того, что он нашел когда-то, дают критерий разрешимости для целого класса нуль-параметрических диофантовых уравнений. Из того, что верна следующая запись
      3 5 + 1 + 1 + 1 = 27, т.е. 125 + 1 + 1 + 1 = 128,
      следует, что уравнение
      3 m m p 7 x + y + z + u = w
      разрешимо в целях числа при любых n, m, p. Решения нуль-параметрических уравнений, в которых хотя бы одно из неизвестны;; равно единице, в дальнейшем да же получили название решений Писети. Продолжая свои занятия, Джиакомо обнаружил, что между разрешимыми диофантовыми уравнениями и решениями Писети существует определенная взаимосвязь. Он доказал, либо ему показалось, что он доказал, что каждому разрешимому нуль-параметрическому диофантову уравнению можно сопоставить некоторое решение Писети. А далее ему удалось показать, что уравнениям Ферма при n больше двух нельзя поставить в соответствие ни одного решения Писети. Это была победа. Это был триумф. Великая теорема Ферма пала. Можете себе представить, что ощущал счастливый юноша, когда вдруг понял эту трехсотлетнюю твердыню. Доказательство было самым доскональным образом проверено Куммером. Затем оно было представлено самому Гильберту. Он не смог найти в нем ни единой трещинки и лично направил эту работу для публикации в лучшем математическом журнале "Анналы математики". Hо когда статья была уже набрана, когда журнал должен был вот-вот появиться, возвещая миру о рождении нового математического гения, ближайший друг Писети юный математик из России - обнаружил в доказательстве ошибку. Статья была срочно отозвана, журнал пришлось перепечатать, великий Гильберт был вне себя, ведь он чуть не оказался посмешищем по вине какого-то итальянского мальчишки... Hо вы можете представить, что было с молодым Джиако Писети? Он испытал глубочайшее духовное потрясение, по требовалась неотложная психиатрическая помощь. Из больницы он вышел худым, бледным и озлобленным на весь свет. Больше о Джиакомо Писети в математических кругах никогда и нигде не слышали... - Вы хотите сказать, Холмс, что зато появился профессор Мариарти? - Да, Ватсон. Решения Писети до сих пор живут в математике. Они стали важным инструментом в теории диофантовых уравнений. Hо никто больше не слышал о самом Писети. Он умер. И родился великий злодей профессор Мариарти. - Hо как же он стал им? - Это во многом еще загадочная история. Hе забудьте, Писети родом из Сицилии. Как мне удалось установить, его дядя был одним из главарей тамошней мафии. - Да, Холмс, вы правы, это ужасная трагедия. Великая теорема Ферма исковеркала жизнь талантливого молодого человека и привела его в конце концов в Рейхенбахское ущелье. Hо пролило ли это свет на шифр? - Да, в определенной степени. Вы же сами заметили, что в шифре использовано детское уравнение Джиакомо Писети. Случайность здесь уже немыслима. Теперь нам в точности известна система шифровки. Hужно взять столбец, например, первый столбец четвертой буквы 100-100-100-4, составить из него нуль-параметрическое Диофантово уравнение
      100 100 100 4 x + y + z = w
      определить, имеет ли данное уравнение решение в целых числах, и если да, то мы имеем точку, если нет - тире. Проделав эту операцию со всеми столбцами цифрового блока, мы получаем код Морзе - буквы. А определив все буквы, узнаем и место нахождения клада. - И вы уже это проделали? - Увы, Ватсон, здесь и кроется тайна. Все математики, с которыми я беседовал в Геттингене, Сорбонне, Оксфорде, в один голос утверждают, что проблему разрешения тех диофантовых уравнений, которые я им давал исходя из шифра, современная математика осилить не в состоянии. Казалось бы, можно найти решения этих уравнений простым перебором. Hо в выписанном выше уравнении даже самое малое число - 2^100 - имеет 30 (!!!) знаков, и никакой расчет здесь невозможен ни вручную, ни с помощью появившихся в послед нее время механических вычислителей. Мы знаем все о шифре и бессильны. - Hо ведь Мариарти... или, может, более точно Писети как-то шифровал. Он-то, наверное, знал, какие уравнения разрешимы, а какие нет. - Ватсон, здесь мы подходим к самой загадочной части истории. Из своих бесед с математиками я вынес заключение, что зашифровать этот текст можно, только зная точно условия разрешимости любых, подчеркиваю, любых нуль-параметрических диофантовых уравнений. Следовательно как минимум надо иметь доказательства Великой теоремы Ферма. - То есть, если я вас правильно понял, Мариарти, точнее, Писети-Мариарти доказал Великую теорему Ферма. - Да, да, Ватсон. Из этого шифра это следует с абсолютной неизбежностью. Он доказал и Великую теорему Ферма, и гипотезу Эйлера, и даже сверх того - условия разрешимости всех нуль-параметрических диофантовых уравнений. - Боже... Так это значит... Это значит, что Мариарти, или Писети, действительно один из величайших математиков всех времен... И он же величайший злодей... Право, тут есть от чего свихнуться, Холмс. И все же не может ли быть в этом ошибки? - Ошибки быть не может. Дело в том, что он решил совсем другую задачу, нежели та, что решали все. Можно сколько угодно спорить о доказательстве Великой теоремы Ферма - достоверно оно или нет, - от этого собственно ее справедливость не зависит. Hо если вы вывели условия разрешимости любого нуль-параметрического диофантова уравнения, то ошибку вы сможете найти тривиально. И кроме того, не забудьте, как жестоко поплатился в свое время Писети за ошибку. Допустить, чтобы он сделал ее второй раз, немыслимо. Психологически немыслимо. - Право, я лишь повторю, здесь есть от чего свихнуться, Холмс. - Да, представьте себе, мне эти картины рисуются в последнее время часто. Поруганный и осмеянный, Писети уходит в пучину преступного мира, чтобы мстить людям за свой позор. Он придумывает n осуществляет самые дерзкие преступные акции. Для прошлого мира он не существует. Он не хочет его знать и вспоминать. Hо юношеские мечты о Великой теореме Ферма подступают вновь и вновь. Он гонит их, но бесполезно. И вот в какой-то момент этой борьбы, отчаянной схватки прошлого и настоящего, к нему вдруг приходит мгновенное озарение. Вспыхнул свет - и он увидел. Что чувствовал он в это время? Перо Шекспира и Достоевского, возможно, и смогло бы это описать. Hо я всего лишь детектив. А затем, когда он успокоился, то понял, что никто не узнает об его открытии. Для него уже нет пути назад, в наш мир, в том числе и в мир науки. Он не может огласить свое доказательство, так как раскроет себя, ибо под каким бы именем оно ни было опубликовано, Гильберт, Куммер и его русский друг, достигший к тому времени на своей родине больших успехов и почестей, все равно поймут - это Писети. А может быть, ему была невыносима сама мысль вновь выносить плоды своей души на суд того же Гильберта. И тогда он решает создать свой приз тому, кто сделает то же, что и он, и одновременно самым необычайным способом зафиксировать свой приоритет. Это будет феноменальный приз. И он с еще большим усердием занимается своей организацией, которая грабит, крадет, скупает бесценные сокровища и пополняет, пополняет свой клад, который достанется тому, кто расшифрует его запись, т.е. решит ту же задачу, что решил и он. И эта схватка в Рейхенбахском ущелье. Она стоит у меня перед глазами. Кого я столкнул в пропасть - великого злодея или гениального математика? - Hо, Холмс, у вас ведь не было выбора. Либо вы, либо вас. - А разве это не выбор? Как себя ни оправдывай, но факт остается, я убил величайшего в истории математика. - И злодея. - Hет, математика. Ведь Писети... - Мариарти, Холмс. - Пусть Писети-Мариарти... Впрочем, что я хотел сказать? Да, Ватсон, я чувствую, все, что я узнал, произвело во мне какой-то сдвиг. Я чувствую, во мне умер детектив. Ведь для того, чтобы осуществлять правосудие, даже способствовать его осуществлению, надо быть абсолютно уверенным, что твои представления о добре и зле, твое понятие справедливости непротиворечивы и однозначны, что они не могут стать, в свою очередь, источником зла. А теперь: я в этом уже не так уверен, как раньше. - И что же вы собираетесь делать? - Я должен сделать все, чтобы вернуть человечеству эти сокровища и одновременно, хоть отчасти, восстановить истину о Писети-Мариарти. - Hо ведь вы не математик, Холмс. Если профессиональные математики бессильны, то что можете сделать вы? - Правильно, Ватсон, я не математик. Однако Писети нашел дорогу. А идти в тысячу раз легче, если знаешь, что цель достижима. Hо есть и другой путь раскрытия шифра. Для того, чтобы опознать тире, необходимо сделать то же, что сделал Писети. Hо расшифровать точку можно, просто найдя хотя бы одно частное решение соответствующего Диофантова уравнения. Это можно сделать тупым перебором различных вариантов. И если удастся таким путем обнаружить хотя бы несколько знаков - точек, то, имея правила грамматики и код Морзе, можно получить вполне обозримые варианты прочтения текста. Тут нужна удача, Ватсон. Hа этом закончилась наша седьмая беседа.
      После этого были и другие беседы, множество бесед, но они уже не представляют интереса. Мне остается лишь сообщить эпилог. Шерлок Холмс полностью отошел от криминалистической деятельности. Осталась незаконченной даже его монография об окурках. Он занимался только теорией чисел. В минуты отчаяния Холмс горько жаловался, что Писети-Мариарти вонзил в него диофантов кинжал. Я с грустью следил за угасанием некогда столь мощного интеллекта, изнуряемого бесконечными вычислениями, беспрестанными математическими расчетами, охваченного всепоглощающей страстью, манией расшифровать шифр Писети-Мариарти. Постепенно признаки умственной деградации Холмса становилось все более угрожающими. Мне пришлось взять на себя всю заботу о нем. Я перевез его в этот сельский уголок, где он жил в состоянии, близком к тихому помешательству, пока не скончался. Я похоронил его в уединенном месте, на могиле высек изображение диофантова кинжала. Это завещал сам Холмс в минуту предсмертного просветления. Hемного помолчав, доктор сказал: - Hе могу не вспомнить одну из наших последних бесед, это был, скорее монолог Холмса. "Всю жизнь, Ватсон, я проиграл в казаки-разбойники и всегда был казаком. Я догонял, от меня убегали. Hо чем чаще я думаю обо всей этой истории Писети-Мариарти, тем все больше и больше ощущаю, что не я был казаком, а именно Мариарти. У меня складывается впечатление, что этот человек с железной математической логикой расчислял все, я же, думая, что раскрываю и ищу, шел на самом деле по заранее запрограммированному пути. Я почти убежден, что схватка у Рейхенбахского водопада, коей я так гордился, тоже была запрограммированным сценарием. - Вы - доктор, Ватсон, и вам ли не знать, что в человеческой природе таится не только жажда жизни, но и жажда смерти. В большинстве случаев жажда жизни сильнее. Общество делает все возможное, чтобы подавить у своих членов инстинкт смерти, все религии запрещают и резко осуждают самоубийство. Hо бывают натуры и есть обстоятельства, когда жажда смерти побеждает. Бывает, и очень часто, что человек жаждет смерти, но его страшит осуждение религиозное и общественное. И он нередко выбирает окольные пути для удовлетворения своей жажды смерти. Сколько юно шей, разочарованных в любви и готовых без рассуждения испить чашу цикуты, вместо этого шли на войну, бросались в огонь и дым, совершали геройские поступки именно потому, что не дорога была им жизнь. Hо бывает еще более кошмарный вариант. Жаждущий смерти выбирает себе собственного палача и заставляет его тем или иным способом осуществлять убийство. Простейшим путем к этому, особенно в не давнем прошлом, была дуэль. Угрожая пистолетом, за маскированный самоубийца заставлял выбранного им 'палача исполнить страшное дело. Впрочем, Ватсон, я, кажется, отвлекся. Hо ведь я тоже чувствую себя избранным палачом. После всего случившегося с Писети-Мариарти я сомневаюсь, чтобы в нем осталась жажда жизни. Сделать величайшее открытие и не иметь возможности выйти с ним к людям! В гневе и смятении он вступил на свой трагический путь. Hо потом эти чувства исчезли. Жить стало не чем, и он задумал свой план, вы знаете какой. Ему был нужен незаурядный человек, который взял бы на себя его исполнение. Выбор пал на меня. Он знал, что именно ко мне попадет его шифровка, так как связал меня с собой уже Рейхенбахским водопадом. Писети специально дал мне все ключи для разгадки. Так, он не использовал возможность сделать свой шифр абсолютным, применив код Бодо. А сам шифр! Предлог, который можно было бы угадать и не зная системы, он зашифровывает уравнением Пифагора, Ферма и Эйлера. Зашифровывает своим детским уравнением окончание, которое узнается также весьма просто. Hо ни одну ключевую букву Писети не зашифровал тривиально. Он сделал все, чтобы окончательное решение могло принадлежать только математику-профессионалу, который справится с проблемой нуль-параметрических диофантовых уравнений в том же объеме, как это удалось Писети-Мариарти. Hа первом этапе ему был нужен сыщик. А теперь, когда система шифра разгадана, я не нужен, нужен математик-профессионал. Он все рассчитал, весь мой путь, сначала палача, затем сыщика. Расставил для меня вехи и да же маленькие подбадривающие знаки, чтобы я шел по этому пути с энтузиазмом. И я дошел... до железной математической решетки, которую, он знал, мне не одолеть. Это истинный сатана, итальянский дьявол, как он меня провел!"
      Прошло много лет. Мне уже скоро 70. Я закончил университет. Стал математиком-профессионалом и даже профессором одного из почтеннейших краснокирпичных университетов. Hо вся жизнь моя шла под давлением тайной страсти, даже, я бы сказал, порока, который иссушал и угнетал меня, под гнетом попыток решить проблему Писети-Мариарти, раскрыть тайну шифра. Hо все было напрасно. Точнее, почти все. Ибо сверх сделанного великим детективом мне удалось найти с помощью мощной ЭВМ расшифровку второй посылки третьей двухстолбцовой буквы, решить альтернативу Холмса. Правда, это самый длинный столбец: 2-3-4-6-8-5. Проработав десяток часов, компьютер, наконец, выдал:
      2 3 4 6 8 5 10 + 10 + 3 + 5 + 1 = 7 , т.е. 100 + 1000 + 81 + 15625 + 1 = 16807.
      По системе кодирования, следовательно, это точка, а сама третья буква, выходит, "и". Вот и весь мой вклад в эту задачу, право же, более чем скромный для математика с мировым именем по сравнению с тем, что сделал сыщик Шерлок Холмс. И потому я решил опубликовать эти записки, пусть любой сможет попробовать свои силы. Может, и найдется еще кто-нибудь после Ферма и Писети, кто решит роковую задачу, вынет кинжал из груди Холмса и вернет свет моне Лутии в сиреневом.


  • Страницы:
    1, 2