Современная электронная библиотека ModernLib.Net

Физика на каждом шагу

ModernLib.Net / Детская образовательная / Яков Перельман / Физика на каждом шагу - Чтение (Ознакомительный отрывок) (стр. 2)
Автор: Яков Перельман
Жанр: Детская образовательная

 

 


– Ну, а если бы больший камень покоился на меньшем?

– Тогда он должен был бы увеличить его вес, если бы скорость его была больше. Но мы уже нашли, что если бы меньший груз падал медленнее, то уменьшил бы скорость большого груза; следовательно, составная масса двигалась бы медленнее своей части, что противоречит вашему допущению. Итак, разрешите принять, что большие и малые тела равного удельного веса движутся с одинаковою скоростью».

Замечательно, что подобные же мысли задолго до Галилея высказывал древнеримский поэт-ученый Лукреций Кар.

В своей большой поэме «О природе вещей» он утверждал, что свободно падающие вещи не могут давить одна на другую; кроме того, он ясно сознавал, что причина неодинаковой скорости падения различных вещей в воздухе или в жидкостях заключается в том, что вещи массивные встречают со стороны окружающей среды неодинаковое сопротивление.

Вот это поучительное место поэмы:

Если кто думает, будто тела, тяжелейшие весом,

прямо в пространстве пустом, проносясь с быстротою

великой,

падают сверху на более легкие и производят

этим толчки, что способны творящие вызвать движения, —

то уклоняются очень далеко от верной дороги.

Жидкой воды вещество, как и воздух весьма легковесный,

в равном размере падение тел всех замедлить не могут,

а уступают скорее дорогу телам с большим весом.

Но пустота никакому предмету, нигде, ниоткуда

не в состоянии вовсе оказывать сопротивленья,

так как всему поддаваться должна уж по самой природе.

Вследствие этого вещи, которые разнятся весом,

падать должны одинаково все в пустоте неподвижной.

Вверх по уклону

Мы так привыкли видеть тела, скатывающимися с наклонной плоскости вниз, что пример тела, свободно катящегося по ней вверх, кажется нам чудом. Нет ничего легче однако, как устроить такое мнимое чудо.

Возьмите два одинаковых кружка из легкого дерева и насадите их на валик, как колеса на ось (см. рис. 8). К валику прикрепите конец тонкой бечевки, к другому концу которой привязан груз. Намотав бечевку на валик так, чтобы груз вплотную примыкал к валику, поставьте колеса на наклонную дощечку; они сами покатятся, но не вниз, а вверх по уклону.


Рис. 8. Эти колеса могут катиться сами вверх по уклону


Причина понятна: груз, стремясь упасть, разматывает бечевку, заставляя тем самым вращаться колеса, которые и катятся вверх по уклону. Конечно, уклон должен быть не крутой. Здесь нет никакого нарушения законов физики. Внимательно проделывая опыт, вы можете заметить, что хотя колеса и вкатываются вверх, груз все же в конце пути не оказывается выше, чем в начале. Центр тяжести всего приборчика понизился.

Наш опыт можно обставить и еще занятнее. Обклейте колеса бумагой так, чтобы получился цилиндр, скрывающий свой нехитрый внутренний «механизм». Теперь, намотав бечевку на валик, поместите цилиндр посредине наклонной доски и спросите зрителей: куда покатится цилиндр – вверх или вниз? Все, разумеется, скажут, что вниз, и будут крайне изумлены, когда на их глазах цилиндр покатится вверх.

Как взвесили Землю

Прежде всего необходимо объяснить смысл выражения: «взвесить Землю». Ведь если бы даже было возможно взвалить земной шар на какие-нибудь весы, то где же весы эти установить? Когда мы говорим о весе какой-нибудь вещи, то в сущности речь идет о той силе, с какой вещь эта притягивается Землей или стремится падать к Земле, к ее центру. Но сама-то наша Земля не может же падать на себя! Поэтому говорить о весе земного шара бессмысленно, пока не установлено, что надо понимать под этими словами.

Смысл слов «вес Земли» может быть только таков. Вообразите, что из Земли вырезали куб в метр вышины и взвесили. Вес этого куба записали, а сам куб поместили на прежнее место; потом вырезали соседний кубический метр и тоже взвесили. Записав вес второго куба, установили его на свое место и вырезали третий. Если перебрать так один за другим все кубические метры, из которых состоит наша планета, взвесить их поодиночке, а затем все их веса сложить, мы узнаем, сколько весит все вещество, составляющее земной шар. Короче сказать, поступая указанным образом, мы взвесили бы Землю.

Само собою разумеется, что на деле выполнить такую работу немыслимо. Если бы мы даже могли изрыть всю поверхность земного шара, то забраться в его недра мы не в силах. Нигде еще человек не вкапывался в землю глубже 4 километров, – а ведь до центра земного шара свыше 6 000 километров… Значит ли это, что людям надо отказаться от надежды узнать вес своей планеты? Существует, однако, косвенный путь для взвешивания земного шара. Ученые пошли по этому пути и достигли полного успеха. Вот в чем состоит этот косвенный путь. Мы знаем, что вес вещи есть сила, с какою эта вещь притягивается Землею. Один кубический сантиметр воды притягивается Землею с силой одного грамма (ведь он весит один грамм). Если мы возьмем не кубический сантиметр воды, а кубический метр воды, заключающий воды в миллион раз больше, то он будет притягиваться в миллион раз сильнее: его вес будет 1 000 000 граммов, т. е. одна тонна. Но притяжение между взвешиваемою вещью и Землею зависит также от количества материи в ней, и если бы наша планета заключала в себе вещества в миллион раз больше, один грамм весил бы на такой Земле целую тонну. И наоборот, если бы Земля заключала в миллион раз меньше вещества, она притягивала бы все вещи во столько же раз слабее, и тогда один грамм весил бы на такой планете только миллионную долю грамма.

Косвенный путь взвешивания Земли состоял в том, что ученые изготовили как бы крошечную Землю и измерили, с какою силою она притягивает к себе 1 грамм вещества. Сделано это было примерно так. К одной чашке очень чувствительных и точных весов подвешивается шарик, и весы уравновешиваются гирей, поставленной на другую чашку. Затем под первую чашку подводят большой свинцовый шар, вес которого точно известен. При этом оказывается, что весы выходят из равновесия: большой шар притягивает к себе маленький шарик, подвешенный к чашке весов и заставляет ее опускаться. Чтобы снова уравновесить весы, нужно на другую чашку положить небольшой добавочный грузик. Этот добавочный грузик и измеряет ту силу, с какой большой шар притягивает к себе маленький. Мы можем теперь сказать, во сколько раз сила притяжения земного шара больше, чем сила притяжения свинцового шара. Но это еще не значит, что во столько же раз Земля тяжелее свинцового шара: надо принять в расчет и то, что подвешенный шарик отстоит от центра Земли на 6 400 километров, а от центра свинцового шара – всего только на несколько сантиметров. Ученым в точности известно, как ослабевает сила взаимного притяжения с увеличением расстояния; поэтому они смогли учесть влияние различия расстояния в нашем случае и определить, во сколько именно раз земной шар заключает в себе больше килограммов вещества, чем свинцовый. Короче сказать, они могли узнать, сколько весит Земля. А именно: узнали, что Земля весит круглым числом шесть тысяч миллионов миллионов миллионов тонн:


6 000 000 000 000 000 000 000 тонн.


Если бы мы отвешивали такую массу на весах и каждую секунду клали на чашку миллион тонн, то знаете, сколько времени должны были бы мы безостановочно, день и ночь, работать, чтобы закончить такое отвешивание? Двести миллионов лет! А ведь один миллион тонн во много раз тяжелее самых тяжелых сооружений, возведенных руками человека. Эйфелева башня весит всего 9 000 тонн, а корабли-исполины – линкоры и плавающие пассажирские дворцы – не тяжелее 30–50 тысяч тонн.

Тем удивительнее должна нам казаться научная изобретательность человека, который сумел измерить этот чудовищный груз, сумел взвесить ту планету, на которой он живет.

Конечно, в действительности опыт был обставлен не так просто, как мы изобразили. Чтобы сделать его суть понятнее, нам пришлось упростить его, отбросив все подробности. Притяжение свинцового шара настолько слабо, что для его обнаружения и измерения потребовался целый набор очень точных и сложных инструментов, устройство которых представляет интерес только для тех, кто намерен и имеет возможность сам повторить этот опыт.

Прыжки вверх

Прыжок с места на высоту одного метра считался в легкой атлетике довольно хорошим достижением, а прыжок на высоту полутора метров являлся уже рекордным[3]. Но как следует при этом мерить высоту прыжка?


Казалось бы, естественнее всего определять, на какое наибольшее расстояние удаляется от земли нижняя точка тела. Если так оценивать величину прыжка вверх, то из трех прыжков, изображенных на рис. 9, самый высокий – прыжок через барьер (крайняя правая фигура). Ведь это подъем на высоту чуть не полутора метров, между тем как на второй фигуре мы видим прыжок всего на высоту каких-нибудь 30–40 см.

Может быть, иной физкультурник так и расценит эти прыжки. Но если вы предложите оценить их физику, он удивит вас заявлением, что все три прыжка одинаковы по затраченной мускульной энергии. Почему? Потому что во всех случаях центр тяжести тела поднят на одну и ту же высоту. Центр тяжести человеческого тела находится там, где поставлено черное пятнышко на нашем рисунке. И вы видите, что три пятнышка прыгающих фигур находятся на одном и том же уровне, несмотря на различное положение тела прыгунов. А затрачиваемая энергия зависит только от того, как высоко поднят центр тяжести тела.


Рис. 9. Прыжки через барьер. Черное пятнышко на фигурах обозначает центр тяжести человеческого тела

Удар

Сталкиваются ли между собою две лодки, два трамвайных вагона, два крокетных или биллиардных шара, несчастный ли это случай или только очередной ход в игре, – физик обозначает такое происшествие одним коротким словом: удар. Удар длится миг, но если ударяющиеся предметы, как обычно и бывает, упруги, то в это краткое мгновение успевает совершиться весьма многое. В начале удара оба столкнувшихся предмета сжимают друг друга в том месте, где они соприкасаются. Наступает момент, когда взаимное сжатие достигает наибольшей степени; внутреннее противодействие, возникшее в ответ на сжатие, мешает дальнейшему сжатию, уравновешивая надавливающую силу. В следующий момент сила противодействия, стремясь восстановить форму тела, расталкивает предметы в противоположные стороны: ударяющий предмет получает свой удар обратно. И мы действительно наблюдаем, что если, например, биллиардный шар ударяет в другой такого же веса, но неподвижный, то налетевший шар останавливается на месте, а шар, бывший в покое, откатывается со скоростью первого шара.

Очень интересно следить за тем, что происходит, когда шар налетает на цепь соприкасающихся шаров, расставленных прямой шеренгой. Удар, полученный крайним шаром, как бы проносится через цепь, но все шары остаются на своих местах, и только крайний шар, самый далекий от места удара, отлетает в сторону: ему нечему передать удар и получить его обратно.

Этот опыт можно проделать с крокетными шарами, но он хорошо удается и с шашками или с монетами. Расположите шашки в прямой ряд – можете и очень длинный, но так, чтобы они плотно примыкали одна к другой. Придержав пальцем крайнюю шашку, ударьте по ее ребру деревянной линейкой: вы увидите, как с другого конца отлетит крайняя шашка, а все промежуточные сохранят свои места.

Яйцо в стакане

Клоуны в цирках изумляют иногда публику тем, что сдергивают скатерть с накрытого стола, – но, к общему изумлению, все тарелки, стаканы, бутылки невредимо остаются на местах. Здесь нет ни чуда, ни обмана, – это дело ловкости, которая изощряется продолжительным упражнением.

Такого проворства вам конечно не достичь. Но проделать подобный же опыт в маленьком виде будет нетрудно.

Приготовьте на столе стакан, до половины налитый водой, и почтовую карточку (еще лучше половину ее); далее, раздобудьте колечко от ключей и яйцо, сваренное для безопасности вкрутую. Расположите эти четыре предмета так: стакан с водой покройте карточкой, на нее положите кольцо, на которое стоймя опирается яйцо. Можно ли выдернуть карточку так, чтобы яйцо не покатилось на стол?


Рис. 10. Удар в различных опытах


На первый взгляд это так же трудно, как выдернуть скатерть, не уронив расставленной на ней посуды. Но вы проделаете эту замысловатую вещь, вышибив карточку удачным щелчком. Она полетит на другой конец комнаты, а яйцо… яйцо оказывается невредимым в стакане с водой! Вода смягчает удар и охраняет скорлупу от поломки.

Объяснение этого маленького чуда в том, что вследствие краткости удара яйцо не успевает получить от вышибаемой карточки заметной скорости; между тем сама карточка, получившая удар, успевает выскользнуть. Оставшись без опоры, яйцо падает отвесно в подставленный стакан.

Если опыт не удастся вам сразу, напрактикуйтесь в выполнении более легкого опыта того же рода. Положите на палец почтовую карточку (лучше – половину ее), а поверх нее монету потяжелее (пятак). Щелчком вышибаете карточку из-под монеты: бумага выскользает, монета же остается на пальце. Хорошо удается опыт, если вместо карточки взять железнодорожный билет.

При известной ловкости можно ухитриться также вышибить ножом или ребром линейки нижнюю шашку высокой стопки, не нарушая целости всего сооружения.

Необычайная поломка

Фокусники выполняют нередко красивый опыт, который кажется необычайным, хотя объясняется довольно просто. На два бумажных кольца подвешивается шест, опирающийся на них концами; сами же кольца перекинуты: одно – через лезвие бритвы, другое – через хрупкую курительную трубку. Фокусник со всего размаху ударяет по шесту палкой. И что же? Шест ломается, а бумажные кольца и трубка остаются невредимыми!

Объяснение опыта – то же, что и предыдущего. Удар настолько быстр, действие его настолько кратко, что ни бумажные кольца, ни даже концы ударяемого шеста не успевают получить перемещения. Движется только та часть шеста, которая непосредственно подверглась удару, и шест от этого переламывается. Секрет успеха, следовательно, в том, чтобы удар был очень быстр, отрывист. Медленный, вялый удар не переломит шеста, а разорвет бумажные кольца.


Рис. 11. Действия быстрого удара


Я не предполагаю у вас такой ловкости, чтобы советовать проделать подобный фокус. Вам придется примириться с более скромным видоизменением его.

Положите на край низкого стола или скамейки два карандаша так, чтобы часть их свободно выступала, и на эти свободные концы положите хрупкую палочку. Сильный и быстрый удар ребром линейки по середине палочки переломит ее, но карандаши, на которые она опиралась концами, останутся на местах.

Множество явлений обыденной жизни находят себе объяснение в этой кратковременности удара, т. е. в том, что сила, даже значительная, не может заметно сдвинуть тело, если время ее действия чересчур кратко. Орех невозможно расколоть плавным, хотя и сильным давлением ладони, но легко раздробить резким ударом кулака: в последнем случае удар не успевает распространиться по мясистой части кулака, и тогда мягкие мускулы наши, не уступая напору ореха, действуют на него, как жесткое тело.

По той же причине пуля пробивает в окне маленькую круглую дырочку, а камешек, брошенный рукой, разбивает в осколки все стекло. Еще более медленный толчок сможет повернуть оконную раму в петлях; ни пуля, ни камешек этого не сделают.

Пример такого же явления представляет перерезывание стебля ударом прута. Напирая медленно прутом, хотя бы с большой силой, вы не перережете стебля, а только отклоните его в сторону. Ударив же с размаху, вы перережете его наверняка, если стебель не слишком толст. И здесь, как в предыдущих случаях, быстротой движения прута достигается то, что удар не успевает передаться всему стеблю. Он как бы сосредоточивается на небольшом, непосредственно затронутом участке, который и принимает на себя все последствия удара.

Вот наконец еще один опыт, столь же простой, сколько и поучительный. Положите шест (например, от половой щетки) на створки раскрытой двери, привяжите к нему бечевкой тяжелый груз (чем тяжелее, тем лучше), а к грузу на другой бечевке – планку, за которую удобно было бы тянуть, ухватившись руками. Какая бечевка разорвется, если вы потянете обеими руками за планку: верхняя или нижняя? Оказывается, что от вас самих зависит устроить так, чтобы разрывалась то верхняя, то нижняя бечевка. Если потянете медленно, оборвется верхняя, если быстро – рвется нижняя.


Рис. 12. Где оборвется бечевка: над или под книгами?


Причину долго искать не придется; вы достаточно подготовлены, чтобы указать ее безошибочно. При медленном натяжении обрывается верхняя бечевка, потому что на нее действует не только сила руки, по также и вес груза; на нижнюю же действует одна лишь сила вашей руки. Иное дело при быстром рывке: груз не успевает за этот краткий миг получить заметного движения, и, значит, верхняя бечевка почти не растягивается; вся сила натяжения приходится на нижнюю бечевку – она и разрывается, даже в том случае, если толще верхней.

Рычаги

Когда приходится приподнимать тяжелый груз, например, большой валун на поле, часто поступают так: подсовывают прочную палку одним концом под валун, подкладывают близ этого конца небольшой камень, полено или что-нибудь другое для опоры и налегают рукой на другой конец палки. Если валун слишком тяжел, то таким способом удается его приподнять с места.

Такая прочная палка, могущая поворачиваться вокруг одной точки, называется «рычагом», а точка, вокруг которой рычаг поворачивается, – его «точкой опоры». Надо запомнить также, что расстояние от руки (вообще от точки, где приложена сила) до точки опоры называется «плечом рычага»; так же называется расстояние от места, где на рычаг напирает камень, до точки опоры. У каждого рычага, следовательно, два плеча. Эти названия частей рычага нам нужны для того, чтобы было удобнее описать его действие.


Рис. 13


Испытать работу рычага нетрудно: вы можете превратить в рычаг любую палочку и пробовать опрокидывать ею хотя бы стопку книг, подпирая свой рычаг книгой же. При таких опытах вы заметите, что, чем длиннее плечо, на которое вы напираете рукой, по сравнению с другим плечом, тем легче поднять груз. Вы можете на рычаге небольшою силою уравновесить большой груз только тогда, когда действуете на достаточно длинное плечо рычага, – длинное по сравнению с другим плечом. Каково же должно быть соотношение между вашею силою, величиной груза и плечами рычага, чтобы сила ваша уравновешивала груз? Соотношение таково: ваша сила должна быть во столько раз меньше груза, во сколько раз короткое плечо меньше длинного.

Приведем пример. Предположим, нужно поднять камень весом 180 кг; короткое плечо рычага равно 15 см, а длинное – 90 см. Силу, с которой вы должны напирать на конец рычага, обозначим буквой х. Тогда должна существовать пропорция:


х: 180= 15: 90.


Отсюда:


Значит, вы должны напирать на длинное плечо с силою 30 кг.

Еще пример: вы в состоянии налегать на конец длинного плеча рычага с силою только 15 кг. Какой наибольший груз можете вы поднять, если длинное плечо равно 64 см, а короткое – 28 см?

Обозначив неизвестный груз через х, составляем пропорцию:


15: х = 28: 84,


откуда



Значит, вы можете таким рычагом поднять не больше 45 кг.

Сходным образом можно вычислить и длину плеча рычага, если она неизвестна. Например, сила в 10 кг уравновешивает на рычаге груз в 150 кг. Какой длины короткое плечо этого рычага, если его длинное плечо равно 105 см?

Обозначив длину короткого плеча буквою х, составляем пропорцию:


10: 150 = х: 105,


откуда


Короткое плечо равно 7 см.

Тот вид рычага, который был рассмотрен, называется рычагом первого рода. Существует еще рычаг второго рода, с которым мы теперь познакомимся.

Предположим, нужно поднять большой брус (рис. 14). Если он слишком тяжел для ваших сил, то вы засовываете под брус прочную палку, упираете ее конец в пол и тянете за другой конец вверх. В данном случае палка является рычагом; точка его опоры на самом конце; ваша сила действует на второй конец; но груз напирает на рычаг не по другую сторону от точки опоры, а по ту же сторону, где приложена ваша сила. Иными словами, плечи рычага в данном случае: длинное – полная длина рычага и короткое – часть его, засунутая под брус. Точка же опоры лежит не между силами, а вне их. В этом отличие рычага 2-го рода от рычага 1-го рода, у которого груз и сила расположены по разные стороны от точки опоры.



Рис. 14. Рычаги 1-го и 2-го рода: груз и сила расположены по разные стороны от точки опоры

Несмотря на это отличие, соотношение сил и плеч на рычаге 2-го рода такое же, как на рычаге 1-го рода: сила и груз обратно пропорциональны длинам плеч[4]. В нашем случае, если для непосредственного поднятия двери нужно, например, 27 кг, а длина плеч 18 см и 162 см, то сила х, с которой вы должны действовать на конец рычага, определяется из пропорции


х: 27= 18: 162,


откуда


Ваше усилие должно быть не меньше 3 кг (не меньше потому, что сила в 3 кг только уравновешивает сопротивление двери).

Билетный автомат

Для продажи билетов, дающих право выйти на платформу, поставлены на некоторых вокзалах билетные автоматы; вы бросаете в щель автомата 10-копеечную монету – и из другой щели тотчас же выскакивает билет. Многие думают, что внутри автомата сложный механизм. Между тем приспособление здесь довольно простое: не что иное, как видоизменение известного уже вам рычага.

Взгляните на рис. 15, и секрет билетного автомата станет для вас ясен. Монета скатывается на конец рычажка и своим весом (и ударом) заставляет его опускаться. От этого противоположный, более короткий конец рычажка приподнимается, увлекая за собой пластинку, за которой на косом основании лежит стопка билетов. Пластинка поднимается ровно настолько, чтобы через образовавшуюся щелочку как раз мог проскользнуть один билетик. Вот и все нехитрое устройство автомата. Конечно, нужно подобрать длину плеч рычага так, чтобы вес и удар 10-копеечной монеты были достаточны для надлежащего поднятия пластинки. Монета меньшего веса не произведет этого действия. А кружок того же веса, но из другого материала будет иметь ведь другие размеры и, значит, не пройдет через монетную щелочку автомата.


Рис. 15. Устройство билетного автомата

Ворот и шпиль

Кому не случалось видеть, как из глубоких колодцев поднимают полные ведра с помощью «ворота», при этом вращается вал, на который наматывается веревка: она-то и вытягивает ведро с водою.

Почему же таким способом легче вытаскивать тяжелое ведро, чем просто руками? Рассмотрим ворот внимательнее (рис. 16). Когда поворачивают колесо А в направлении стрелки, то в том же направлении поворачивается и вал.


Рис. 16. Как работает ворот


Проведем прямую NM через ось вала. Эту прямую мы можем рассматривать как рычаг, который вращается вокруг точки О. Сила приложена в точке М, а поднимаемый груз – в N (силы по разные стороны от точки опоры: это рычаг 1-го рода). Следовательно, сила, приложенная в точке М (т. е. к колесу), во столько раз меньше силы, приложенной в N (т. е. к валу), во сколько раз ON (радиус вала) меньше ОМ (радиуса колеса). Но радиус вала всегда в несколько раз меньше радиуса колеса; следовательно, на колесо приходится действовать с силою в несколько раз меньшею, чем вес полного ведра. Отсюда ясна выгода ворота. Если, например, радиус колеса 60 см, а радиус вала 11/2 см, то ведро с водой весом 12 кг можно уравновесить силою х, которая определяется из пропорции:


х: 12 = 7 1/2: 60,


откуда


Существуют вороты, приспособленные не для поднятия грузов, а для волочения; такой ворот называется шпилем, или кабестаном. Здесь вал – стоячий, а не лежачий, а вместо колеса имеются длинные шесты – «водила», которыми вращают вал. Нетрудно сообразить, что сила, с какой приходится напирать на конец водила, во столько раз меньше сопротивления груза (его трения об опору), во сколько раз радиус вала меньше длины водила.

Пусть, например, нужно передвигать груз, требующий без шпиля усилия в 500 кг; имеется шпиль с валом радиуса 21 см и с водилами длиною 3 1/2 м. Тогда усилие х, которое нужно приложить к концу водил, чтобы тащить груз, найдем из пропорции:


х: 500 = 21: 350,


откуда

Золотое правило механики

На вороте или на шпиле можно, значит, небольшою силою привести в движение значительный груз. Но скорость этого движения в таких случаях бывает невелика, – меньше, чем скорость, с какою движется приложенная к вороту сила.

Рассмотрим последний пример со шпилем: при одном полном обороте конец шеста, где приложена сила, описывает путь длиною


2 x 3,14 x 350 = 2200 см.


Тем временем вал сделает также один оборот, намотав на себя кусок веревки, длиною


2 x 3,14 x 21 = 130 см.


Следовательно, груз подтянется всего на 130 см. Сила прошла 2 200 см, а груз за то же время – только 130 см, т. е. почти в 17 раз меньше. Если сравните величину груза (500 кг) с величиною усилия, прилагаемого к шпилю (30 кг), то убедитесь, что между ними существует такое же отношение:


500: 30 = около 17.


Вы видите, что путь груза во столько же раз меньше пути силы, во сколько раз эта сила меньше груза. Другими словами: во сколько раз выигрывается в силе, во столько же раз теряется в скорости.


Рис. 17. Объяснение золотого правила механики


Это правило применимо не только к вороту или шпилю, но и к рычагу, и ко всякой вообще машине (его издавна называют «золотым правилом механики»).

Рассмотрим, например, рычаг, о котором говорилось на с. 51. Здесь выигрывается в силе в 3 раза, но зато, пока длинное плечо рычага (см. рис. 17) описывает своим концом большую дугу MN, конец короткого плеча описывает втрое меньшую дугу ОР. Следовательно, и в этом случае путь, проходимый грузом, меньше пути, проходимого в то же время силою, в 3 раза – во столько же раз, во сколько эта сила меньше груза.

Теперь вам станет понятно, почему в некоторых случаях выгодно пользоваться рычагами наоборот: действуя большою силой на короткое плечо, чтобы двигать маленький груз на конце длинного плеча. Какая выгода так поступать? Ведь мы теряем здесь в силе! Конечно, зато во столько же раз выигрываем в скорости. И когда нам необходима большая скорость, мы приобретаем ее этой ценой. Такие рычаги представляют кости наших рук (рис. 18): в них мускул прикреплен к короткому плечу рычага 2-го рода и приводит в быстрое движение кисть руки.


Рис. 18. Наша рука – рычаг. Какого рода?


В данном случае потеря силы вознаграждается выигрышем скорости. Мы были бы крайне медлительными существами, если бы кости нашего скелета были устроены как рычаги, выигрывающие в силе и, значит, теряющие в скорости.

Машины Архимеда

Учение о рычаге разработано было впервые древнегреческим математиком Архимедом, жившим в Сиракузах (Сицилия) за двести лет до нашей эры. Легенды, в которых, вероятно, кроется большая доля истины, повествуют о замечательных машинах, которые были придуманы им на основе рычага. Вот что рассказывает об этом древний историк Плутарх:

«Марцел (римский полководец) приближался и по суше и морем. На суше войско шло под командою Аппия, а сам Марцел плыл во главе шестидесяти галер, о пяти рядах весел, со всякого рода метательными снарядами и оружием. Восемь судов, соединенных вместе, составляли род обширного помоста, на котором возвышалась стенобитная машина. Так плыл он к городу, доверяясь громадности и могуществу приспособлений и своей славе. Это однако не смутило Архимеда. Что все это значило в сравнении с его машинами?

«Однажды Архимед написал царю (сиракузскому) Гиерону, которому он был родственник и друг, что данною силой можно подвинуть какой угодно груз. Увлеченный жаром и силой доказательств, он прибавил, что если бы была другая земля, то, перейдя на нее, он сдвинул бы с места нашу. Удивленный Гиерон просил Архимеда осуществить задачу на практике и показать ему случай передвижения огромного груза малою силой. Архимед выбрал одну из царских галер; с великим трудом, работою многих рук, перевел ее на землю, посадил на нее много народу и нагрузил, как обычно. Сам же сел на некотором расстоянии; потом без усилия стал потихоньку двигать конец машины, состоявшей из блоков и веревок, и тянуть галеру, которая пошла, не качаясь, как если бы плыла по ровной поверхности моря. Царь, пораженный виденным и оценив могущество науки, пригласил Архимеда построить машины, пригодные для осады в случае ли нападения, или обороны.


Рис. 19. Метательное орудие времен Архимеда: полевая баллиста


  • Страницы:
    1, 2, 3