Современная электронная библиотека ModernLib.Net

Пришельцы? Они уже здесь!!!

ModernLib.Net / Эзотерика / Яблоков Максим / Пришельцы? Они уже здесь!!! - Чтение (стр. 15)
Автор: Яблоков Максим
Жанр: Эзотерика

 

 


Случаи же встречи Земли с астероидами не так уж и редки. Так, утром 9 декабря 1997 года космическая глыба весом в 50 тонн упала на Южный берег Гренландии. Рыбаки, наблюдавшие полет яркого болида, были оглушены взрывом и ослеплены яркой вспышкой света. В радиусе 100 км на какое-то мгновение наступил день. Взрыв мощностью в 10 мегатонн вызвал землетрясение, отмеченное сейсмическими станциями Норвегии, Швеции и Германии.

И только благодаря случайности да вращению нашей планеты, Архангельская область, находящаяся на одной широте с Гренландией, выскочила из-под удара космического монстра.

Расчеты архангельских астрономов подтвердил профессор Питер Шелус из Техаса. Он утверждает, что космический «родственничек» окажется от Земли в судный день на расстоянии 50 тысяч километров. Учитывая, что диаметр нашей планеты более 13 тысяч километров, такое «соседство» окажется очень тесным. Другие американские звездочеты не столь категоричны. Они нашли «звездный камушек» на старых фотопластинках и рассчитали, что в судный день он пролетит мимо Земли на расстоянии вдвое большем, чем от Земли до Луны.

И все же наши исследователи настаивают на своей точке зрения. Во-первых, надо учитывать влияние Марса и Венеры, полагают они. Во-вторых, траектория движения рокового астероида лежит почти в одной плоскости с орбитой Земли. Так что пути-дорожки нашей планеты и этого небесного странника регулярно пересекаются. Значит, «частике» для нашей цивилизации, о котором так много шумели в последнее время, возможно, неумолимо приближается. Но никому ведь, наверное, не хочется, чтобы мы повторили судьбу тех же фаэтонцев.

ОТКРЫТИЯ У ДАЛЕКИХ ЗВЕЗД

А тем временем открытия продолжают делать не только астрономы-теоретики, но и астрономы-наблюдатели. Долгое время им была известна только одна планетная система – из планет, которые вот уже несколько миллиардов лет вращаются вокруг Солнца. Предполагалось, что многие звезды, похожие на Солнце, также могут иметь планеты. В последние несколько лет астрономы обнаружили их у нескольких десятков звезд.

Есть многопланетные системы!

В августе 2000 года астрономы, собравшиеся на очередном съезде Международного астрономического союза в Манчестере (Великобритания), во всеуслышание объявили об открытии сразу десятка таких планет. Более того, им удалось получить доказательства существования первой много планетной системы, похожей на нашу Солнечную!

Таким образом, в течение последних пяти лет за пределами Солнечной системы уже обнаружено около четырех десятков звезд, имеющих свои планеты, а возможно, и планетные системы.

Правда, пока они не видны даже в наши телескопы – они еще слишком несовершенны, – а обнаружены косвенным путем, по изменению длины световых волн, излучаемых той или иной звездой. Исследователи предполагают, что эти изменения возникают из-за вибрации звезд, что в свою очередь обусловлено гравитационными полями планет, вращающихся вокруг звезды и раскачивающих ее.

Доктор Дебра Фриш из Беркли (США) перепроверила данные, полученные от 12 звезд, и обнаружила, что у некоторых на основную вибрацию звездного диска накладываются еще какие-то дополнительные помехи. Она сочла это доказательством существования у таких звезд сразу нескольких спутников – планет или так называемых коричневых карликов.

На сегодняшний день с большей или меньшей долей вероятности можно говорить о существовании по крайней мере трех многопланетных систем. Одна располагается у звезды Эпсилон Андромеды на расстоянии 44 световых лет от Земли. Вторая – в созвездии Паруса, на расстоянии 141 светового года от нас. И наконец, третья располагается у пока что безымянной звезды на расстоянии всего 10, 5 светового года.

Вновь открытая планетная система, по мнению астрономов из Техасского университета, работавших под руководством доктора Уильяма Кочрана, выглядит весьма необычно. Обе планеты представляют собой гигантские газовые пузыри, расположенные весьма близко к своей звезде. Один «пузырь» находится в 5 млн км от нее и делает полный оборот по круговой орбите всего за трое суток. У другого – орбита эллиптическая, а продолжительность местного года около 30 земных суток.

Для сравнения напомним, что самая близкая к Солнцу планета Меркурий находится от светила на расстоянии порядка 60 млн км и оборачивается вокруг него за 88 суток.

И это еще не самая большая сенсация. Уже после манчестерского съезда, осенью 2000 года, ученые США и Испании обнаружили в космосе еще группу из 18 красных шарообразных объектов, излучающих слабый свет, Скорее всего, предполагают астрономы, это нарождающиеся планеты, которые почему-то оказались не «привязаны» ни к одной звезде, а свободно «разбрелись» по космосу.

И вот это обстоятельство, по мнению журнала «Сайенс», ставит под сомнение даже нынешнюю теорию возникновения Солнечной системы.

Столь сенсационное заявление объяснялось якобы тем, что каждая из девяти планет нашей Солнечной системы, как и те почти полсотни других больших планет, известных современной науке, имеют свою звезду, вокруг которой дисциплинированно вращаются. Недавно открытые шарообразные сгустки газа таким «примерным» поведением не отличаются, а попросту слоняются по созвездию Орион. Причем каждая из протопланет превышает по своей массе самую большую планету нашей Солнечной системы Юпитер примерно в 5 – 12 раз.

Напомним, что это созвездие, находящееся на расстоянии 1500 световых лет от Земли, достаточно молодо (не более 5 млн лет), особенно в сравнении с Солнцем, которое светит почти 5 млрд лет. Специалисты считают, что подобные объекты, хотя и были неизвестны им ранее, вполне могут обнаружиться и в нашей галактике.

Американский ученый Алан Босс считает, что обнаруженные «шарики», или «пузыри», нельзя назвать планетами, так как у них нет «звезд-мам». Однако, по его словам, они слишком малы, чтобы являться несветящимися звездами, скажем, теми же коричневыми карликами. А потому он предлагает зачислить их в ранг планет. А испанский астроном Мариа Роза Эаатеро Осорио прямо, без обиняков назвала недавно открытые объекты «молодыми гигантскими планетами».

Но тогда, быть может, и наша Солнечная система образовалась вовсе не так, как привыкли считать ученые. Не из единого пылевого облака вместе со светилом, а по отдельности. По крайней мере, группу планет-гигантов наше светило могло прихватить своим гравитационным полем из окружающего пространства уже практически в готовом виде.

Однако российские астрономы пока относятся настороженно к зарубежной сенсации. Например, по словам старшего научного сотрудника Государственного астрономического института имени П.К. Штернберга Анатолия Хлыстова, «возможное открытие планет без центральной звезды никоим образом не ставит под сомнение нынешние космогонические теории».

Факт существования шарообразных объектов можно объяснить на основании этих же теорий, если предположить, что исходная масса протопланетного облака была меньше самой маленькой звезды. Современные теории рождения звезд дают для этой массы величину около семи процентов от массы Солнца. В таком случае их массы попросту не хватает на строительство «полнометражной» планетной системы и со временем образуется всего лишь один-два «планетных пузыря».

Их дальнейшая судьба зависит от множества обстоятельств. Но скорее всего, рано или поздно они «причалят» к какой-нибудь звезде, станут ее сателлитами.

Таким образом, возможное открытие «бездомных» планет, скорее всего, не опровергает современных космогонических теорий, а лишь расширяет их рамки.

Экзопланеты

Тем не менее многие зарубежные астрономы продолжают настаивать на своем, предсказывая, что в скором будущем предстоит серьезная ревизия устоявшихся взглядов на происхождение планетных систем.

Они напоминают, что астрономы Михель Майер и Дидьер Келоз из Женевской обсерватории, выступая в октябре 1995 го – да на одной из научных конференций, произвели настоящий фурор, когда заявили об открытии планеты около звезды 51 созвездия Пегаса, удаленной от Земли на расстояние 50 световых лет.

Тогда особое волнение среди ученых вызвали характеристики планеты: ее масса оказалась равной половине массы Юпитера, а орбита пролегала всего в 8 млн км от звезды – это почти в 7 раз ближе, чем удаление крошки Меркурия от нашего Солнца. Странная планета делала полный оборот вокруг своей звезды всего за 4, 2 суток. Чтобы оценить всю ее необычность, достаточно напомнить, что Юпитер, Сатурн, Уран и Нептун располагаются на расстоянии в сотни раз большем от Солнца, чем открытая планета, и им требуются годы, Юпитеру – целая дюжина летя чтобы сделать один оборот вокруг своей звезды. Еще большие затруднения у астрономов вызвала попытка объяснить, как вообще такая планета может существовать.

До открытия экзопланет (такое общее название получили пла неты, обнаруженные у других звезд) мы автоматически переносили на иные звездные миры все теоретические построения полученные при изучении нашей Солнечной системы. Ведущая теория ее формирования гласила, что более 5 млрд лет назад все началось с вращающегося облака межзвездного газа и пыли которое благодаря гравитации начало сжиматься, а в его центре образовался очень плотный газовый шар. Сила тяготения заставляла облако вращаться все быстрее и быстрее, оно становилось плоским и приобрело форму диска. Во все более уплотняющемся центре начались ядерные реакции – так родилось Солнце. На внешних же частях диска частицы пыли сталкивались и слипались вместе, образуя со временем большие сферические твердые тела – планеты.

Неослабевающее давление солнечного ветра «выметало» более легкие газы (водород, кислород) и водяные пары на окраины Солнечной системы, оставляя в непосредственной близости к нашему светилу лишь небольшие тела, образовавшиеся из пыли, – планеты земной группы.

На окраинах же системы скапливалось такое количество газа и пыли, что начали образовываться планеты-гиганты, которые действовали как своеобразные пылесосы, подчищая пространство вокруг себя от пыли и газов и наращивая свой объем.

Такая схема до недавнего времени вполне удовлетворяла ученых, но вот последовало открытие экзопланет, и все пошло кувырком… Как могла образоваться такая гигантская планета в непосредственной близости к звезде 51 Р? Почему ее не поглотила звезда? Откуда взялись в таком количестве рядом со звездой пыль и газ для ее формирования? Сплошные вопросы!

В общем, стало ясно, что схема выноса солнечным ветром газа на окраины Солнечной системы нуждается в какой-то корректировке. Трудно согласиться с тем, что такая огромная планета образовалась только из пыли. Конечно, нашлись умные головы, которые пытались объяснить существование столь невероятных планет. Так, Д. Лин из Калифорнийского университета еще в 1982 году предполагал, что планеты, подобные Юпитеру, могут мигрировать из внешней части Солнечной системы по направлению к своим звездам. Идея заключалась в том, что в процессе образования такое огромное небесное тело по мере накопления массы начинает все сильнее расчищать пространство вокруг себя.

В результате в дисковидном облаке зарождающейся Солнечной системы появляется чистая от вещества полоса, как бы разделяя его на две части – внешнюю и» внутреннюю, с планетой-гигантом между ними. Внешняя и внутренняя части такого облака обладают достаточной гравитацией, которая воздействует на планету. Так как движение во внешней части диска медленнее, чем планеты, она стремится затормозить планету. А это толкает ее на спиралевидный спуск к звезде.

В свою очередь, внутренняя часть диска вращается быстрее, стремится ускорить движение планеты и вышвырнуть ее на окраину. Кто победит в этой борьбе? Хотя взаимодействие здесь довольно сложное, внешняя часть диска почти всегда выигрывает Значит, планета устремляется по направлению к звезде, буквально «продираясь» сквозь пыль внутренней части диска.

Таким образом, еще до открытия экзопланет Лин считал, что такая миграция в конечном счете приводит к поглощению планеты звездой. Поэтому открытие планеты у звезды 51 Р его сильно удивило.

Буквально в течение недели после объявления об открытии первой экзопланеты астрономы Петер Боденхеймер и Дерек Ричардсон представили две версии миграции экзопланеты и причин ее остановки. Так, согласно одной из них, вся звездно-планетная масса в процессе строительства планетной системы вращалась очень быстро. Поэтому образовавшаяся протопланета в итоге попадает под воздействие энергии вращения всей системы. Возникает центростремительная сила, которая стремится отбросить планету во внешнюю область диска. Силы, действующие по направлению к звезде и от нее, уравновешиваются, и гигантская планета занимает свою постоянную орбиту. Хотя существующие гипотезы не объясняют всего того, что наблюдают астрономы, они все же являются довольно правдоподобными.

Но пока все эти гипотезы «отметает» заявление астронома Дэвида Грея из университета Западного Онтарио. Он считает, что планеты в созвездии Пегаса вообще не существует… Его утверждение базируется на том, что Майер и Келоз никогда не наблюдали планету у звезды 51 Р напрямую. Представляется невероятным, что такую крупную планету невозможно увидеть в телескоп при расстоянии 50 световых лет. Астрономы наблюдали только ритмичное изменение линий спектра звезды и на этом основании сделали вывод о существовании планеты и определили ее параметры. Проведенный Греем анализ свечения звезды 51 Р говорит о том, что это пульсация самой звезды искажает линии спектра. Хотя Грея считают очень серьезным ученым, его заявление не послужило препятствием для открытия новых и самых невероятных экзопланет.

Астрономы из университета в Сан-Франциско вскоре обнаружили еще по крайней мере шесть новых планет. Три из них кружились по орбитам вокруг звезд, удаленных от Земли на расстояния 44, 49 и 54 световых года, и так же, как и первая экзопланета, были невероятно близки к звездам и имели огромную массу. Две другие планеты располагались на более приличном расстоянии от звезд, но двигались вокруг своих светил по довольно необычной, не круговой, а очень вытянутой орбите. По-видимому, открытые объекты не планеты, а звезды-карлики, Х0тя карлики должны быть по меньшей мере раз в десять массивнее Юпитера. Однако такие звездочки, вероятно, могут иметь массу гораздо меньше предполагаемой. Если это так, то астрономы в данном случае обнаружили системы двойных звезд, что и объясняет странные особенности их орбит.

Однако такое объяснение нельзя отнести к шестой планете, ведь ее масса равна лишь половине массы Юпитера и звездой-карликом она не может быть. Теоретик Фред Расио так объясняет особенности орбиты этой планеты. Существует вероятность образования в молодой Солнечной системе далекой звезды трех или четырех планет, подобных Юпитеру, при достаточном количестве исходного материала. Компьютерное моделирование такого сценария дает два вероятных варианта развития дальнейших событий:

1) столкновение образовавшихся планет приведет к возникновению всего одной планеты, которая обретет в результате этого крайне вытянутую орбиту;

2) в результате столкновения одна из планет будет просто выброшена за пределы Солнечной системы и начнет свое скитание по галактике, другую же отбросит по направлению к звезде и она обретет сильно вытянутую, как у комет, орбиту.

Впрочем, такая орбита не сможет существовать долго, и с каждым кругом планета под влиянием тяготения будет все ближе подходить к звезде. В конечном счете она окажется на круговой орбите вокруг нее на таком же близком расстоянии, как и экзопланета в созвездии Пегаса. Если данный сценарий соответствует истине, то Расио не только объяснил все странности открытых экзопланет, но и показал, что наша Солнечная система является скорее исключением во Вселенной, нежели правилом…

Из всех новых открытых экзопланет только одна может считаться планетой-гигантом с приблизительно круговой орбитой почти на таком же удалении от звезды, как у нашего Юпитера. «Фактически еще рано делать обобщения, – считает Расио, – ho в определенной степени у нас сложилось впечатление, что ни °Дна из вновь обнаруженных солнечных систем вовсе не похожа на нашу».

Увы, странности экзопланет имеют и свою печальную сторону, ведь планеты-гиганты, двигаясь по спирали, могут разрушать планеты, подобные Земле, а это в какой-то мере уменьшает наши шансы найти во Вселенной братьев по разуму. Хотя Д. Лин, к счастью, все же считает, что планеты-гиганты вполне могут облетать планеты-малышки в глубине космоса, не причиняя им вреда.

Пока ученые полагают, что у них еще мало информации, чтобы делать глобальные выводы и обобщения, хотя, видимо, теоретикам не придется долго ждать – среди астрономов развернулась настоящая охота за экзопланетами. Идет наработка большого массива данных, которые позволят ученым создать более определенную и достоверную теорию образования планет и солнечных систем. А кроме того, ученые весьма надеются на помощь нового поколения астрономических приборов, которые, возможно, позволят воочию увидеть планеты у чужих звезд. Вот что, к примеру, сообщает по этому поводу французский научно-популярный журнал «Science & Vie».

Астрономам, историкам и фантастам давно известна так называемая «формула Дрейка», позволяющая подсчитать число цивилизаций в нашей галактике. В ней довольно много составляющих: число звезд в галактике, доля тех, что имеют планеты, на скольких из последних могла возникнуть жизнь, и т. д. До недавнего времени только первый из сомножителей – число звезд в нашей галактике – считался достоверно установленным, другие же каждый конкретный аналитик выбирал на свое усмотрение – оптимисты старались, чтобы число цивилизаций получилось побольше, пессимисты стремились свести их к единице.

Но за последние пять лет за пределами Солнечной системы открыто около 60 планет – на порядок больше, чем их найдено за все время существования человечества! На пороге тысячелетий мы являемся свидетелями, может быть, одной из самых больших революций в истории науки, поскольку экзопланеты, то есть планеты, обращающиеся вокруг других звезд, а не нашего Солнца, переходят из мира идей в реальность.

Полвека их напрасно пытались отыскать с помощью телескопов, пока в 1995 году не произошло историческое открытие планеты 51 Р, о которой уже говорилось выше. Затем каждые два месяца находили по одной планете; начиная с 1997 года открытия следовали по одному в месяц, затем каждые две недели, и темп продолжает нарастать.

Этому явлению способствует технический прогресс, улучшение методик поиска и все возрастающее число астрономов, открывающих сезон охоты за планетами у чужих солнц. По прогнозам, к 2002 году будут известны около ста планет, к 2005 году – тысяча, еще спустя десяток лет – 100 000, а там и до миллиона недалеко.

Экстраполируя полученный результат, можно предположить, что совсем близко к Солнцу – на удалении от 40 до 150 световых лет – вскоре можно будет обнаружить умопомрачительное число планет – от 5 до 50 млрд по последним оценкам. Причем можно будет обнаружить эти планеты не только косвенными методами (измерить их расстояние до звезды, период обращения, эксцентричность орбиты, массу), но и увидеть их!

Правда, в видимом диапазоне звезда может оказаться ярче своей планеты примерно в миллиард раз, так что разглядеть ее довольно нелегко. Впрочем, разницу в масштабах свечения можно несколько уменьшить, если мы будем вести наблюдения в инфракрасном диапазоне, а также использовать специальные фильтры и приспособления, ослабляющие блеск звезды.

Однако такая методика применима только к газовым планетам-гигантам, похожим на Юпитер – именно их сейчас начинают открывать десятками. Астрономы же мечтают об открытии, а затем и наблюдении внесолнечных планет земной группы. Они должны быть маленькими, плотными, с твердой скальной поверхностью, вероятно – атмосферой. Короче – более или менее похожи на Меркурий, Венеру, Землю, Марс, Плутон, а также (почему бы и нет?) на Луну, Ио, – . Европу, Титан, поскольку эти спутники такие же крупные и сложные, как сами планеты.

Хотя еще никто не знает, существуют ли такие образования где-нибудь за пределами Солнечной системы, специалисты НАСА и ЕКА создают проекты устройств, способных вести детальные наблюдения этих планет и даже… обнаруживать на них признаки жизни! Энтузиасты по обе стороны Атлантики полагают, что это станет возможным, как только в космос будут выведены космические телескопы следующего за «Хабблом» поколения. А этот День уже не за горами.

Поиски в космосе

Американский проект так и назван – «Искатель земных планет» (Terrestial Planet Finder, TPF), европейский именуется «Дарвин». В реальности у обоих настолько велики трудности технической разработки и высока стоимость, что, вполне возможно, со временем они сольются в один крупный международный проект.

Сегодня «Дарвин» мыслится как гигантский космический интерферометр, то есть сеть из пяти телескопов по 1, 5 м в диаметре, размещенных в пространстве по 50-метровой окружности. Комплекс эквивалентен телескопу с 50-метровым зеркалом; этого вполне достаточно для выделения экзопланет из света их материнской звезды.

Интерферометр должен наблюдать звезды в инфракрасном диапазоне, на длинах волн от 6 до 18 мкм, но и в нем различие световых потоков настолько незначительно, что увидеть экзо-планету напрямую невозможно, наблюдается лишь специфическая интерференционная картина. Чтобы обнаружить планету, «Дарвин», медленно вращаясь вокруг своей оси, направленной на изучаемую звезду, будет модулировать слабый сигнал планеты по отношению к светлому фону.

Примерно на тех же оптических принципах основан и TPF. Причем, чтобы обнаружить чрезвычайно слабый блеск планет земной группы (астрономы называют их светилами тридцатой звездной величины, то есть в 10 млрд раз слабее видимых невооруженным глазом), «Дарвину» и NPF потребуются исключительные условия для наблюдения. Поэтому наблюдательные комплексы планируется разместить не на околоземной орбите, как «Хаббл», а вывести их куда-нибудь подальше, например в район Юпитера за 800 млн км от Солнца.

За пять лет работы интерферометр просканирует около 200 звезд, похожих на Солнце и наиболее близких к нему. Но будет ли поиск удачным?.. Это зависит от многих факторов, в том числе и от элементарного везения.

Экзопланетологи все же надеются, что сумеют обнаружить несколько десятков «сестер» Земли. Потом начнется самое интересное – на самых перспективных планетах исследователи попытаются выявить признаки жизни.

Больше всего астрономов интересуют планеты, расположенные, по возможности, в «обитаемой зоне», то есть там, где вода может существовать в жидком состоянии.

По программе, сначала необходимо обнаружить в атмосфере такой планеты углекислый газ. Затем ученые будут искать в спектрах следы жидкой воды. И наконец, «охотники за жизнью» надеются найти на спектрограммах характерные признаки кислорода.

Если «Дарвин» и PTF успешно выполнят свою миссию – найдут планеты, похожие в той или иной степени на Венеру, Марс или Землю, то, вероятно, их исследование войдет в ряд крупнейших научных проблем следующего, XXII века. Чтобы различить детали строения обнаруженных планет, понадобятся еще более совершенные инструменты.

Французский астроном и оптик Антуан Лабейри окрестил их «гипертелескопами». По его мнению, эти инструменты способны показать удаленные экзопланеты так же четко, как телескопы наших высокогорных обсерваторий позволяют нам видеть Марс, Юпитер, Сатурн или Нептун.

Вероятно, исследователи XXII века смогут создать космический интерферометр, достаточно большой для того, чтобы наблюдать на экзопланетах, расположенных на расстоянии от 10 до 30 световых лет, детали, сравнимые с теми, которые «Хаббл» различает на поверхности планет Солнечной системы.

Так, скажем, гипертелескоп, названный «Exo-Earth Imager» («Наблюдатель земных экзопланет»), будет представлять собой сеть из 150 телескопов того же размера, что и «Хаббл».

Эта гигантская система должна быть установлена вдали от Земли – возможно, как и «Дарвин», на орбите Юпитера. Разрешение гигантского интерферометра позволит различить экзопланеты типа Меркурия или Луны, газовые гиганты, напоминающие Уран, Нептун, Сатурн или Юпитер; планеты земного типа обнаружат свою геологическую, вулканическую активность, и тогда астрономы легко распознают миры, обладающие атмосферой, покрытые водой – в ее твердом или жидком агрегатном состоянии… Будут заметны естественные спутники, сезонные изменения климата, а возможно (уж мечтать – так мечтать!) – и следы биологической активности.

Тем не менее даже с гипертелескопом до 1000 км в диаметре четкость деталей, видимых в других мирах, останется ограниченной. Можно ли пойти дальше, «увеличив» изображения экзопланет до тех размеров, которые предстали бы перед нами, если бы мы приблизились к этим телам на борту межзвездного корабля? В принципе – да. Ведь можно будет объединить их в одной «связке» и с околоземными приборами.

В общем, единственное ограничение интерферометра специалисты видят в дилюции. Говоря проще, оптический интерферометр эффективен до тех пор, пока отношение между его реальной (сумма площадей его индивидуальных телескопов) и виртуальной оптической поверхностью (она определяется максимальным расстоянием между телескопами) остается в разумных пределах.

Так что если «Exo-Earth Imager» обнаружит где-то в галактике планету, на которой, к примеру, окажутся отчетливо видны признаки растительности, то желание разглядеть детали может привести к созданию телескопов с газовыми зеркалами диаметром в 100 м! Интерферометр из 100 таких зеркал будет простираться в пространстве почти на 10 тыс. км. С его помощью можно различить архипелаги, озера, ледники и даже мегаполисы…

А жители? Можно ли будет их увидеть, однажды прильнув глазом к окуляру будущего гипертелескопа? Почему бы и нет, законы оптики, как и гравитация, универсальны. Расчеты показывают: чтобы в деталях увидеть циклопические инопланетные города и начать различать их жителей, необходимо располагать интерферометром диаметром «всего лишь» в 1 млрд км! Техника, подталкиваемая сильным любопытством, даже по современным понятиям способна создать такой инструмент за одно-два столетия.

В общем, как видите, XXI столетие мы начинаем с грандиозного переучета планет в обозримой нами Вселенной. В их полку все прибывает, так что с каждым годом возрастает реальность обнаружения небесных тел, весьма похожих на нашу родную Землю. Кто, интересно, там обитает?..

ЛЕД И ПЛАМЕНЬ

Обсуждая проблему существования жизни во Вселенной, нельзя не задать вопрос: «А какие физические и химические факторы способствуют ее возникновению?..» Оказывается, жизнь, как зеленый росток, нуждается во влаге и тепле.

Вода во Вселенной

Особое место в литературе о жизни во Вселенной занимают две книги нашего соотечественника, радиоастронома с мировым именем И. С. Шкловского: «Вселенная, жизнь, разум» и «Звезды. Их рождение, жизнь и смерть».

Отмечая роль новой астрономической техники, позволившей глубже проникнутое тайны мироздания, автор в первых изданиях книг с сожалением говорил, что до сих пор астрономами не освоены инфракрасный и субмиллиметровые участки спектра «Значение этого диапазона, – писал Шкловский, – определяется прежде всего тем, что в нем сосредоточена основная часть излучения Вселенной. Активные ядра галактик, квазары, гигантские звезды и протозвезды, облака космической пыли – все излучают преимущественно в инфракрасном и субмиллиметровом диапазоне. Этот диапазон имеет особое значение для исследования важнейшей проблемы происхождения звезд и планетных систем».

Да, действительно, вплоть до 80-х годов XX века наука о небе была подобна наблюдателю, смотрящему на мир через узкую щель, но не способному распахнуть ставни на окнах.

Космическая техника помогла раскрыть эти ставни. И уже в 1985 году в предисловии к последнему изданию своей книги И. С. Шкловский мог записать: «Первый инфракрасный спутник «IRAS» (запущен американо-голландской группой ученых в январе 1983 года. – Примеч. ред.) был направлен для калибровки на ярчайшую звезду северного неба – Вегу из созвездия Лиры. Поток инфракрасного излучения оказался в 10 – 20 раз больше ожидаемого. Далее выяснилось, что источник инфракрасного излучения, связанный с этой звездой, не точечный (как предполагали), а довольно протяженный. Короче говоря, оказалось, что Вега окружена кольцом, состоящим из роя частиц размером больше одного миллиметра. Эти частицы, нагретые излучением звезды до температуры 90° Кельвина, являются источником инфракрасного излучения».

Подобные исследования продолжаются и поныне. Так, скажем, в самом конце XX века на конференции в Париже несколько сотен астрономов из разных стран мира обсуждали один вопрос: что принес астрономии инфракрасный спутник «ISO», запущенный в конце 1995 года?

Рейнхард Генцель из германского Института внеземной физики сказал, что «с помощью такого космического телескопа мы можем исследовать небесные тела, которые темны и настолько холодны, что не испускают какого-либо видимого света».

Уже давно облака молекул и пыли, которые протянулись в космосе на сотни световых лет, астрономы считают инкубаторами, где рождаются звезды. Когда в таком облаке образуется сгущение вещества, возникает тяготение, направляющее пыль и молекулы из окрестностей в его сторону. Процесс длится миллионы лет, пока пылегазовые частички не сплотятся в светящийся шар – тепло он получает от беспрерывной бомбардировки новыми подлетающими частицами. Астрофизики задаются вопросом: почему не гаснет раскаленный шар? Казалось бы, он должен охладиться еще до того, когда вспыхнет ядерная реакция. Потому что зародыш звезды,, нагретый за счет кинетической энергии падающих на него частиц, передает свое тепло в окружающее пространство, то есть нагревает окружающий газ. Газ становится менее плотным, и число падающих молекул уменьшается. Дальнейший процесс нагревания должен бы прекратиться. И новое солнце не сможет родиться. Но звезды появляются именно из пылегазовых облаков.


  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22