Этого и добиваются артиллеристы при всякой к тому возможности. Они знают, что на снарядах всегда имеются отметки, указывающие на отклонение их веса от нормального (рис. 197). Вот по этим отметкам они и сортируют снаряды и стреляют подряд только одинаково отмеченными снарядами, например только с отметкой «Н» (нормальный вес) или только с отметкой «-» (несколько меньше нормального).
Рис. 197. Бойцы подготавливают снаряды к стрельбе: они сортируют их по весу
Кроме того, и по форме – хотя это и незаметно на-глаз, – снаряды слегка отличаются друг от друга. Более шероховатый снаряд быстрее теряет скорость и ближе падает. Снаряды с разными очертаниями также испытывают различное сопротивление воздуха и падают в разных местах.
Наконец, на полете снарядов отзываются еще температура воздуха и ветер, его скорость и направление.
Предположим, первый выстрел пришелся на тот момент, когда облако прикрыло солнце и поднялся ветер, дующий навстречу снаряду. А перед вторым выстрелом солнце выглянуло из-за облака и ветер стих. Из-за этого второй снаряд залетит на несколько метров дальше, чем первый.
Тут, конечно, мы ничего не можем сделать: солнце и ветер не подчиняются нам.
Выводом из всего сказанного является одно: абсолютного единообразия условий стрельбы достичь невозможно.
Не существует и не может существовать такого орудия, которое бросало бы все свои снаряды в одну и ту же точку.
Как бы тщательно мы ни вели стрельбу, нацеливая орудие все время в одну и ту же точку, все равно снаряды упадут в разные места. Один упадет немного дальше, другой ближе, один правее, другой левее.
На рисунке 198 показаны траектории летящих снарядов, выпущенных из одного орудия в возможно одинаковых условиях. Все эти траектории образуют расходящийся сноп. Подобный сноп траекторий можно увидеть своими глазами, если стрелять так называемыми трассирующими снарядами, оставляющими за собой дымный след.
Рис. 198. Пучок траекторий снарядов
Разбрасывания снарядов – их рассеивания – избежать невозможно.
Значит, попадание третьим снарядом, как это удалось нашим артиллеристам, является несомненно достижением, и такая стрельба может быть названа точной.
Но если рассеивание снарядов неизбежно, это совсем не означает, что на него надо махнуть рукой. Отнюдь нет.
Все, что в наших силах, мы должны сделать.
Мы должны, во-первых, до предела уменьшить рассеивание снарядов. Чем и как этого достигают, вы уже знаете из только что рассказанного.
Мы должны, во-вторых, как-то приспосабливаться к рассеиванию снарядов, учитывать его заранее, чтобы оно не заставало нас каждый раз врасплох, не путало все наши расчеты и не причиняло нам непоправимого вреда.
Мы должны, в-третьих, выбирать на поле боя цель для стрельбы в соответствии с известным нам рассеиванием снарядов. Иначе, как мы скоро увидим, может получиться «стрельба из пушки по воробьям».
Очевидно, для того чтобы справиться с этими задачами, нам надо найти и изучить закон рассеивания снарядов.
Рассеивание снарядов подчиняется определенному закону
Невозможно предсказать точно, куда упадет выпущенный из орудия снаряд: тут в ваши расчеты вмешивается случайность.
Зато, если вы выпустите из орудия, не изменяя наводки, много снарядов, произведете по цели, скажем, сотню выстрелов или больше, то тут вы уже сможете предсказать, как упадут снаряды.
Результаты случайных явлений, оказывается, тоже подчиняются некоторой количественной закономерности. Рассеивание снарядов только на первый взгляд происходит совершенно беспорядочно. На самом же деле результаты рассеивания подчиняются определенному закону.
Итак, предположим, что вы действительно произвели из орудия подряд сто выстрелов. Ваши снаряды упали где-то на расстоянии нескольких километров от орудия, разорвались и вырыли в земле сто воронок.
Как расположатся эти воронки?
Прежде всего, участок, в котором заключаются воронки, образует некоторую геометрическую фигуру. Если вы очертите этот участок по всем крайним воронкам, то получите вытянутую в направлении стрельбы фигуру, похожую на эллипс (рис. 199). За границами этого эллипса воронок совсем не будет.
Но этого мало. Внутри эллипса воронки распределятся по некоторому, очень простому, правилу: чем ближе к центру эллипса, тем гуще, ближе одна от другой будут лежать воронки; чем дальше от центра, тем они будут лежать реже, а у самых краев эллипса их будет совсем мало.
Таким образом, в пределах площади рассеивания всегда будет такая точка, около которой окажется наибольшее число попаданий; точка эта совпадет с центром эллипса. Эта точка, около которой можно с наибольшей вероятностью ожидать падения снарядов, называется средней точкой падения (рис. 199). Ей соответствует средняя траектория снарядов, то-есть траектория, проходящая в середине снопа.
Если бы никакие случайности не вмешивались в стрельбу, то все снаряды полетели бы один за другим как раз по этой средней траектории и попали бы в самый центр эллипса.
Относительно средней точки падения все воронки будут группироваться, до известной степени, симметрично.
Если стать в том месте площади рассеивания, где наиболее густо расположились воронки, – в средней точке падения, – то можно заметить, что впереди этой точки упало снарядов примерно столько же, сколько и позади, а вправо примерно столько же, сколько и влево (рис. 199).
Таков закон рассеивания снарядов при стрельбе.
Без знания этого закона нельзя считать себя грамотным стрелком-артиллеристом.
Знание этого закона приносит артиллеристу большую пользу: оно подсказывает, сколько нужно выпустить снарядов по цели, чтобы рассчитывать на попадание.
Но чтобы извлечь из этого закона всю пользу, которая в нем таится, нужно его прежде всего сформулировать математически.
Сделать это совсем не трудно.
Для этого прежде всего проведите ось рассеивания по дальности (на рис. 199 линия АБ). Этой осью явится такая линия, перед которой и за которой число воронок будет одинаковым, то-есть по 50.
Рис. 199. Рассеивание снарядов; справа вверху – примерное распределение сотни воронок
Теперь отсчитайте 25 воронок, расположенных ближе других к оси рассеивания по одну ее сторону, и отделите эти воронки линией, параллельной оси рассеивания (рис.200). Ширина полученной вами полосы – очень важный показатель рассеивания; ее называют «срединным отклонением» по дальности. Действительно, если вы отложите такую же полосу по другую сторону оси рассеивания, то в двух этих полосах у вас будет заключена «лучшая» половина всех попаданий. Лучшая потому, что эти 50 попаданий легли густо около средней точки падения.
Рис. 200. Процентное распределение сотни воронок в эллипсе рассеивания
Если теперь вы будете дальше откладывать вперед и назад полосы, равные срединному отклонению, то можно будет установить математическое выражение закона рассеивания. Вы увидите, что таких полос получится у вас всего 8, по 4 в каждую сторону от оси рассеивания (рис. 200). И в каждой полосе окажется определенное число воронок, показанное на рисунке.
То же самое получится и в том случае, если вы проведете полосы не поперек, а вдоль эллипса (рис. 200).
25%, 16%, 7%, 2% – эти числа стоит запомнить, они вам пригодятся: ведь это и есть численное выражение закона рассеивания.
Из какого бы орудия вы ни стреляли, все равно попадания снарядов распределятся по этому закону.
Конечно, если вы произведете немного выстрелов, то вы получите, может быть, не совсем такие числа. Но чем больше выстрелов произведено, тем яснее будет проявляться закон рассеивания.
Закон этот действителен во всех случаях: стреляете ли вы по малой цели или по большой, далеко или близко, из такого орудия, которое очень сильно рассеивает снаряды, или из такого, которое рассеивает снаряды мало, – обладает, как говорят артиллеристы, большой «кучностью боя». Вся разница будет в том, что в одном случае у вас получится большой эллипс, а в другом – малый.
Чем больше эллипс, чем шире каждая из его восьми полос, тем, значит, рассеивание больше. Наоборот, чем эллипс меньше, чем каждая из его восьми полос уже, тем, значит, рассеивание меньше.
По срединному отклонению вы можете, таким образом, судить о величине рассеивания, о кучности боя орудия.
Из рисунков ясно видно, что срединное отклонение боковое всегда меньше, чем срединное отклонение по дальности. Это значит: всякое орудие больше рассеивает снаряды по дальности (вперед-назад), чем в стороны (вправо-влево).
Мы уже знаем, что траектории снарядов, если смотреть на них от орудия, имеют вид расходящегося снопа (рис. 198).
Ясно, что траектории разойдутся тем больше, – а в связи с этим и рассеивание будет тем больше, – чем на большую дальность мы стреляем.
Примерные размеры эллипсов рассеивания для двух наших орудий при стрельбе на разные дальности показаны на рисунке 201.
Рис. 201. Чем больше дальность стрельбы, тем больше и рассеивание. У гаубицы рассеивание снарядов по дальности меньше, чем у пушки
В бою всегда приходится помнить о рассеивании и считаться с ним.
Именно поэтому, прежде чем начать стрельбу по какой-нибудь цели, артиллерист должен продумать, сколько приблизительно понадобится снарядов, чтобы эту цель поразить, есть ли вообще смысл тратить на эту цель такое количество снарядов.
Цель маловажная – да еще малых размеров – не должна соблазнять артиллериста. Стрельба по такой цели приводит только к лишнему расходу снарядов и времени. А в бою очень дороги каждый снаряд и каждая минута.
Стрелять из артиллерийского орудия в боевой обстановке – это совсем не то, что стрелять из ружья в садовом тире, где много занимательных фигур – целей. В тире вы можете стрелять по любой цели. В бою же от артиллериста требуется не только умение стрелять, но еще и умение правильно выбирать цель.
Вот, например, какой-то всадник противника показался на дороге, удаленной на 5 километров от нашей дивизионной пушки. В бинокль его отлично видно на фоне неба. Вот он остановился, как будто изучает поле боя. Быть может, это крупный вражеский начальник? Имеет ли, однако, смысл открыть по этой цели огонь из пушки? Посмотрите на рисунок 201. На дальность в 5 километров наша пушка дает эллипс рассеивания длиной 232 метра и шириной 25 метров. Можно ли при этих условиях рассчитывать на попадание в отдельного всадника не только целым снарядом, но даже отдельным осколком или шрапнельной пулей? Очевидно, для этого понадобились бы очень много снарядов, и то без всякой уверенности в успехе стрельбы. А так как цель эта в данный момент ничем особо не вредит нашим войскам, стрельба по ней явно не имеет смысла – это была бы действительно «стрельба из пушки по воробьям».
Бессмысленность стрельбы по мелким, неважным удаленным целям – не единственный результат рассеивания. Бывают случаи, когда рассеивание причиняет крупные неприятности.
Вот, например, случай, когда наша и неприятельская пехота приходят в близкое соприкосновение друг с другом: тут уж рассеивание может послужить даже причиной «стрельбы по своим».
Когда цель находится недалеко от нашей пехоты, некоторые снаряды вследствие рассеивания могут не долететь до цели, упасть ближе, чем нужно, в наше расположение. Так, например, если наша артиллерия ведет стрельбу через нашу пехоту, примерно на 3-4 километра, то находиться ближе 200—250 метров от цели уже опасно. В этом случае наша пехота может быть поражена не только осколками (от них еще можно укрыться), но и целыми снарядами. Поэтому, как только наша пехота подойдет к цели ближе чем на 250 метров, артиллерия, стрелявшая через пехоту, сейчас же переносит огонь несколько дальше и предоставляет пехоте бороться с ближними целями своими средствами.
Поэтому-то, между прочим, пехота и имеет свою собственную артиллерию, которая передвигается вместе с пехотой и в такие моменты поражает важные ближние цели своим метким огнем.
Если же артиллерия стреляет не фронтальным, а фланговым огнем, то-есть с позиции, находящейся сбоку (рис. 202), то своя пехота может подойти к цели значительно ближе: в этом случае опасным является рассеивание снарядов только в стороны, а оно, как мы знаем, всегда значительно меньше, чем рассеивание в направлении стрельбы.
Рис. 202. Фланговый огонь по пехоте противника, расположенной вдоль фронта, выгоднее фронтального огня. Пунктиром обведены площади рассеивания снарядов; видны воронки
По той же причине, как видно из рисунка 202, фланговый огонь артиллерии наносит гораздо большее поражение вытянутым вдоль фронта войскам (окопам) противника, чем огонь фронтальный.
Кроме рассеивания по дальности и рассеивания по направлению имеется еще рассеивание по высоте. Иначе и не может быть: ведь снаряды летят не по одной и той же траектории, а расходящимся снопом.
Если бы мы поставили на пути летящих снарядов большой деревянный щит так, чтобы каждый летящий снаряд пробил в нем отверстие, то мы увидели бы, как происходит рассеивание по высоте (рис. 203).
Рис. 203. Рассеивание траекторий по высоте
Вертикальная площадь рассеивания и по размерам, и по форме будет иная, чем площадь рассеивания на горизонте. Рассеивание по высоте обычно будет гораздо меньшим, чем рассеивание по дальности, и все более и более резко будет отличаться от него по мере приближения цели к орудию.
Например, при стрельбе гранатой из 76-миллиметровой дивизионной пушки на дальность 1 600 метров рассеивание по высоте равно лишь 16 метрам, а рассеивание по дальности в этом же случае равно примерно 120 метрам (рис. 203).
Небольшое рассеивание по высоте позволяет легко поражать такие цели, которые выдаются над поверхностью земли и находятся при этом сравнительно недалеко от орудия. В таких условиях, например, происходит часто стрельба по танкам.
Здесь меньше всего сказывается вредное влияние рассеивания.
Для чего надо знать закон рассеивания
Понятия «рассеивание» и «кучность» противоположны друг другу.
Чтобы быстрее поражать цели, нужно прежде всего добиться от орудия наибольшей возможной для него кучности боя, то-есть наименьшего рассеивания снарядов.
А для этого, как мы говорили уже, нужно очень бережно обращаться с орудием, очень тщательно и однообразно наводить его, подбирать по весу снаряды, тщательно заряжать и так далее. Только при этих условиях снаряды упадут кучно, ближе один к другому, и вы получите менее расходящийся сноп траекторий.
Рис. 204. Средняя траектория – перед целью
Рис. 205. Средняя траектория проходит через цель
Рис. 206. Хотя средняя траектория – перелетная, снаряд все же не долетел до цели – это результат рассеивания траекторий
Но всего этого еще мало для успешного поражения цели: орудие может посылать снаряды очень кучно, и все же большая часть этих снарядов, а, быть может, даже все, не попадут в цель. Так получится, если вы не метко стреляете, то-есть взяли неправильный прицел или ошиблись в направлении. Иными словами, так получится в том случае, когда средняя точка падения (центр эллипса рассеивания) не совпадет с целью (рис. 204).
Метким артиллеристом мы называем такого стрелка, который умеет свои снаряды (сноп траекторий) направить так, чтобы средняя траектория проходила через цель (рис. 205). Только в этом случае можно ожидать быстрого поражения цели, так как цель окажется как раз в той части эллипса рассеивания, где снаряды упадут наиболее густо.
Тут может возникнуть вопрос: как же во время стрельбы узнать, что средняя траектория прошла через цель или близко от нее? Ведь это какая-то воображаемая траектория в середине снопа. По каким же признакам можно догадаться, где прошла эта средняя траектория?
При отсутствии рассеивания вопрос этот решился бы совсем просто. Если бы вы получили при первом выстреле разрыв перед целью, то-есть недолет, вы знали бы наверняка, что недолет этот не случайный, а вызванный ошибкой в ваших расчетах. Вы измерили бы расстояние от первого разрыва до цели и соответственно этому расстоянию увеличили бы установку прицела на нужное число делений. Тогда, наверное, траектория прошла бы совсем близко от цели и даже, может быть, через цель. Так просто поступили бы вы, если бы не существовало рассеивания.
Но рассеивание и тут сильно осложняет дело.
Если первый разрыв оказался недолетным, то это еще вовсе не значит, что прицел взят неправильно и средняя траектория снарядов недолетная. Недолет мог быть случайным: недолеты имеют место и тог да, когда установка прицела взята правильно и средняя траектория проходит как раз через цель; недолет может случиться даже и при перелетной средней траектории.
На рисунке 206 показан как раз такой случайный недолет, когда средняя траектория-перелетная, то-есть проходит за целью.
Вы видите, что в этом случае, при недолете, нужно было бы не прибавлять, а, наоборот, убавлять прицел, чтобы подвести среднюю траекторию к цели.
Таким образом, по одному недолету или перелету еще нельзя с уверенностью решить, где именно проходит средняя траектория, какой прицел будет правильным. Это можно решить только тогда, когда будет выпущено несколько снарядов.
Действительно, если бы при том положении траектории, как она показана на рисунке 206, было сделано несколько выстрелов, то что мы могли бы наблюдать?
Мы увидели бы, что большая часть разрывов оказалась за целью и только меньшая часть – перед целью. Это получилось бы потому, что на основании закона рассеивания большая часть разрывов сгруппировалась бы поблизости от средней точки падения, – а она во взятом примере перелетная.
Отсюда можно вывести правило: получение при одной установке прицела большего числа перелетов, нежели недолетов, служит признаком перелетной средней траектории. И наоборот – при недолетной средней траектории недолетов будет получаться больше, чем перелетов (рис. 207).
Рис. 207. Процентное распределение перелетов и недолетов, когда средняя траектория проходит за целью на два срединных отклонения, и когда средняя траектория недолетная на одно срединное отклонение (для наглядности цель показана не в масштабе рисунка, а значительно крупнее)
Ну, а если средняя траектория проходит как раз через цель? Тогда разрывы распределятся численно симметрично относительно средней точки падения (цели), они дадут приблизительно равное число как недолетов, так и перелетов. Это и будет признаком того, что стрельба ведется правильно (рис. 208).
Рис. 208. При стрельбе гранатой равенство недолетов и перелетов указывает, что средняя траектория проходит как раз через цель
Чтобы добиться этого, приходится обычно не один раз изменять установки прицела и испытывать их несколькими выстрелами. Чтобы быстрее решить эту задачу, артиллеристы пользуются специально разработанными правилами.
Рис. 209. Если при стрельбе шрапнелью (разрывы в воздухе) средняя траектория проходит через цель, то недолетов будет больше, чем перелетов
Нужно, однако, сказать, что равенство недолетов и перелетов характеризует правильную стрельбу только в том случае, если разрывы происходят на земле, то-есть если огонь ведется гранатой. Когда же разрывы происходят в воздухе, – а это бывает при стрельбе шрапнелью, – выгоднее, чтобы недолетов было больше, чем перелетов.
На рисунке 209 показан сноп траекторий шрапнелей и средняя их траектория, проходящая через цель. Разрывы происходят в воздухе. Пунктирная линия, проведенная вертикально над целью, отделяет недолетные разрывы от перелетных. Недолетных разрывов, как видно, больше, чем перелетных, хотя прицел взят правильно.
Итак, знание закона рассеивания помогает решать основной вопрос, как надо стрелять, чтобы поразить цель быстро, при наименьшем расходе снарядов.
С какой вероятностью можно ожидать попадания в цель
Артиллериста всегда интересует еще и такой вопрос: какая часть выпущенных им снарядов попадет, по всей вероятности, в цель, а какая может пролететь мимо? Иначе говоря: с какой вероятностью можно ожидать попадания в цель?
Ответ на этот вопрос дает все тот же закон рассеивания снарядов.
Вероятность попадания выражают обычно в процентах. Так, например, если говорят: вероятность попасть в цель-20%, то это означает, что на каждые сто выпущенных снарядов можно ждать двадцать попаданий, остальные же восемьдесят снарядов, вероятно, дадут промах.
Для определения вероятности попадания приходится учитывать:
величину площади рассеивания (срединные отклонения),
размеры цели,
удаление средней точки падения (средней траектории) от цели,
направление стрельбы относительно расположения цели.
Допустим, что нужно обстрелять рощу, в которой укрываются танки и пехота противника. Роща занимает в глубину 300 метров и в ширину 100 метров (рис. 210). 76-миллиметровая дивизионная пушка стреляет гранатой. Дальность стрельбы-4 000 метров. На эту дальность площадь рассеивания в глубину будет около 160 метров, а по ширине-20 метров. Таким образом, площадь рассеивания меньше площади цели. Значит, если прицел взят правильно и средняя траектория пройдет через середину рощи, то сколько бы ни было выпущено снарядов, все они непременно попадут в рощу. В этом случае можно сказать: вероятность попадания в рощу равна 100%.
Рис. 210. Площадь рассеивания меньше площади рощи и средняя траектория проходит через центр рощи – все снаряды попадут в цель
Рис. 211. Площадь рассеивания меньше площади рощи, но средняя траектория проходит через край рощи – в цель попадет 50% снарядов
Нужно ли быть метким стрелком, чтобы попасть в такую большую цель?
Конечно, нужно. Ведь если стреляющий возьмет не совсем верный прицел и направит среднюю траекторию не в центр рощи, а скажем, в ее передний край, то половина всех снарядов не попадет в цель, не долетит до рощи. Вероятность попадания будет тогда всего 50% (рис. 211).
Возьмем теперь цель, размеры которой меньше площади рассеивания, и рассчитаем опять-таки вероятность попадания. Мы увидим, что для поражения такой цели большое значение будет иметь не только совпадение средней траектории с серединой цели, но еще и кучность боя орудия.
Требуется, например, сделать проход в проволочном заграждении, причем глубина этого заграждения 20 метров. Положим, что стреляет 122-миллиметровая гаубица на 3 200 метров; при этом срединное отклонение по дальности равно 20 метрам.
Спрашивается: какова вероятность попадания в проволочное заграждение, если средняя траектория проходит через его передний край?.
На рисунке 212 показано положение площади рассеивания и цели. Площадь рассеивания разделена на полосы (срединные отклонения), в каждой полосе проставлена вероятность попадания в процентах.
Рис. 212. «Средняя» траектория проходит через передний край проволочного заграждения. При дальности стрельбы 3 200 метров вероятность попадания 25%
Рис. 213. Средняя траектория проходит через передний край проволочного заграждения. При дальности стрельбы 1 600 метров вероятность попадания 41%
Рассматривая рисунок, вы видите, что цель накрывается одной полосой, содержащей 25% попаданий.
Таким образом, можно ожидать, что из 100 выпущенных снарядов в проволоку попадет 25, а остальные пролетят мимо, то-есть вероятность попадания-25% и вероятность промаха-75%.
Если дальность до цели будет не 3 200 метров, а меньше, например 1600 метров, то при стрельбе из того же орудия рассеивание будет меньше и вероятность попадания возрастет. Положение площади рассеивания и цели для этого случая показано на рисунке 213, где срединное отклонение по дальности взято равным 10 метрам. Проволочное заграждение глубиной в 20 метров покрывается уже не одной, а двумя полосами – с 25% и с 16% попаданий. Вероятность попадания в этих условиях составляет 25% + 16% = 41%.
Таким образом, с уменьшением дальности стрельбы вероятность попадания становится больше, так как увеличивается кучность боя. Вероятность попадания была 25%, а стала 41%.
Попробуйте рассчитать сами вероятность попадания в такое же проволочное заграждение на дальности 1 600 метров, но в условиях более меткой стрельбы, когда средняя траектория проходит как раз через середину цели. Вы увидите, что вероятность попадания еще возрастет. Она будет равна 50%.
Сделать подсчет вероятности попадания всегда полезно, особенно при стрельбе на большие дальности и по небольшим целям; такая стрельба сопряжена со значительным расходом снарядов.
Представим себе, например, что 122-миллиметровая гаубица стреляет по блиндажу, который находится на расстоянии 5 километров от нее. Какова вероятность попадания в этот блиндаж, если он имеет размеры всего около 20-25 квадратных метров?
И расчеты показывают, и практика подтверждает, что в этих условиях вероятность попадания будет около 2%. Таким образом, при стрельбе по такой небольшой цели, как блиндаж, может потребоваться для его разрушения более сотни снарядов.
И при этом расходе снарядов можно рассчитывать в среднем только на 2-3 попадания.
Успех подобной стрельбы зависит не только от стреляющего командира, то-есть от его умения вести стрельбу, но и в большой степени от наводчика, выполняющего команды во время стрельбы. От наводчика всегда требуется возможно большая точность наводки при каждом выстреле.
Глава десятая
Выстрел
Из походного положения – в боевое
Полковая пушка только что прибыла на позицию.
Запряжка из четырех лошадей отъехала в сторону, на заранее выбранное для нее укрытое место. А пушку в это время установили на ровной горизонтальной площадке дулом к противнику.
Походная жизнь пушки кончилась. Настал тот момент, когда пушка должна приступить – к боевой работе.
Послышалась команда: «К бою!».
Бойцы, обслуживающие пушку, – орудийный расчет – быстро и сноровисто принялись выполнять эту команду. Как же это делается?
Наводчик прежде всего снимает чехол с прицела, берет прибор для наводки, называемый панорамой, и устанавливает его на прицеле (рис. 214).
Все остальные бойцы – замковый, правильный, заряжающий и ящичные – выполняют свои обязанности, помогая наводчику: снимают с лафета те принадлежности, которые были закреплены на время похода, снимают чехлы, откидывают правило (рычаг для поворота орудия) и так далее.
Все выполняется строго по уставу, быстро и согласованно. Каждый боец знает свое место у орудия и работает без суеты, без лишних движений.
Рис. 214. Что делает орудийный расчет по команде «К бою!»
Хорошо обученному орудийному расчету, работающему при полковой или дивизионной душке или при дивизионной гаубице, чтобы привести орудие в боевое положение, нужно совсем немного времени: всего 30-40 секунд.
Существуют, правда, и такие орудия, для приведения которых из походного в боевое положение требуются не секунды, а минуты или даже часы. Но это – тяжелые орудия крупных калибров, их устанавливают обычно на хорошо укрытых позициях, и вступают они в бой позже полковых и дивизионных орудий.
Полминуты истекло. Орудие готово к бою. Теперь надо навести его в цель.
Горизонтальная наводка
Надо прежде всего повернуть орудие вправо или влево так, чтобы его ствол «глядел» как раз в ту сторону, где находится цель. Называется это горизонтальной наводкой.
Еще полсотни лет тому назад артиллерийские орудия наводили очень просто: примерно так, как мы сейчас прицеливаемся из винтовки. К стволу орудия того времени была прикреплена мушка (рис. 215), а на казенной части находился выдвижной прицел с целиком, снабженным прорезью. Наводчик глядел через эту прорезь на мушку, а правильный по его указанию поворачивал в это время орудие. Как только взор наводчика упирался в цель, правильный останавливал орудие: ствол орудия был направлен тогда в сторону цели.
Рис. 215. Как изменилось артиллерийское орудие за 50 лет
На стволе современного орудия вы не найдете ни целика, ни мушки. И, однако, горизонтальная наводка его производится очень быстро и точно. Достигается это с помощью специальных оптических прицельных приспособлений, которые находятся не на самом стволе, а рядом, с левой его стороны. Они связаны со стволом, и если ствол поворачивать, то и они поворачиваются вместе с ним.
Основным прибором прицеливания орудия является панорама (рис. 216).
Рис. 216. Прицельные приспособления полковой пушки
Панорама похожа на перископ: окуляр ее расположен ниже, чем ее объектив. Окуляр находится за щитом орудия, а «головка» панорамы, направляющая лучи света в объектив, выдается над щитом, когда верхняя его часть опущена, или смотрит в специальное окно в щите. Благодаря этому наводчику не нужно высовываться из-за щитового прикрытия. Он может видеть цель, оставаясь в то же время защищенным от пуль и мелких осколков снарядов противника.