Мечты об окончательной теории
ModernLib.Net / Физика и астрономия / Вайнберг Стивен / Мечты об окончательной теории - Чтение
(стр. 6)
Автор:
|
Вайнберг Стивен |
Жанр:
|
Физика и астрономия |
-
Читать книгу полностью
(547 Кб)
- Скачать в формате fb2
(285 Кб)
- Скачать в формате doc
(202 Кб)
- Скачать в формате txt
(196 Кб)
- Скачать в формате html
(281 Кб)
- Страницы:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
|
|
Это означает, что мы ничего не можем сказать об импульсе частицы; обе возможности реализуются с вероятностью 50 %. Обратно, если мы достоверно знаем, что частица находится в состоянии
стойс нулевым импульсом, тогда значение
идиволновой функции обращается в нуль, и, поскольку это значение равно разности значений
здесьи
там, они должны совпадать друг с другом. Отсюда следует, что мы ничего не можем сказать о том, находится ли частица
здесьили
там; вероятность каждого события равна 50%. Итак, существует полная дополнительность измерений состояний
здесь-
тами
стой-
иди: мы можем делать измерения любого типа, но как только выбор сделан, информация о результатах, которые получились бы при измерениях другого типа, полностью теряется. Мнения всех о том, как следует применять квантовую механику, согласуются, но в вопросе о том, как следует понимать то, что мы делаем, когда применяем ее, существуют большие разногласия. Тех, кого раздражает редукционизм и детерминизм ньютоновской физики, должны порадовать два аспекта квантовой механики. Во-первых, в ньютоновской физике человеческие существа не имеют особого статуса, а в рамках копенгагенской интерпретации квантовой механики люди играют существенную роль, придавая смысл волновой функции путем акта измерения. Во-вторых, там, где физик-ньютонианец говорит о точных предсказаниях, физик, приверженный квантовой механике, предлагает только вычисления вероятностей, что опять, похоже, дает возможность вспомнить о свободной воле или Божественном провидении. Некоторые ученые и писатели, например Фритьоф Капра
, приветствуют те стороны квантовой механики, которые, как они считают, дают возможность примирить научное познание с более тонкими проблемами нашего существования. Я бы тоже радовался, если бы считал такую возможность реальной, но полагаю, что это не так. Квантовая механика невероятно важна для физики, но я не могу обнаружить в ней каких-то откровений, касающихся жизни человека, принципиально отличающихся от тех, которые нам известны в рамках ньютоновской физики. Так как эти вопросы все еще вызывают споры, я пригласил для их обсуждения двоих хорошо известных личностей.
Диалог о смысле квантовой механики
Крошка Тим
. Я думаю, квантовая механика – замечательная наука. Мне никогда не нравилось, что в ньютоновской механике, зная положение и скорость каждой частицы в данный момент, вы можете полностью предсказать будущее поведение системы, так что при этом не остается места ни для свободной воли, ни вообще для особой роли людей. В квантовой механике все ваши предсказания расплывчаты и вероятностны, ничто не находится в определенном состоянии до тех пор, пока человеческие существа не совершат акт наблюдения. По-моему, что-то похожее говорили некоторые восточные мистики.
Дядюшка Скрудж. Э-э! Я, может быть, и поменял свое мнение насчет Рождества, но чепуху-то я всегда узнаю. Конечно, у электрона нет определенных значений положения и скорости в один и тот же момент времени, но это просто означает, что такие величины не подходят для описания электрона. В каждый момент времени и электрон, и любой коллектив частиц имеют волновую функцию. Если есть человек, наблюдающий частицы, то и состояние всей системы, включая человека, описывается волновой функцией. Эволюция волновой функции так же детерминирована, как и орбиты частиц в ньютоновской механике. На самом деле она еще более детерминирована, так как уравнения, определяющие то, как волновая функция меняется со временем, слишком просты, чтобы обладать хаотическими решениями
. Так где же твоя свободная воля?
Крошка Тим. Меня поражает, что вы отвечаете столь ненаучным образом. Волновая функция не представляет объективной реальности, так как ее нельзя измерить. Например, если мы наблюдаем, что частица находится
здесь, мы не в силах из этого заключить, что волновая функция
донаблюдения имела нулевое значение
там; у нее могли быть любые значения
здесьи
тами нам просто посчастливилось обнаружить частицу
здесь, а не
тамв результате акта наблюдения. Но если волновая функция не реальна, то почему же вы придаете так много значения тому, что она эволюционирует детерминированным образом? Все, что мы когда-либо можем измерить, это величины типа положения, импульса или спина, и для них мы можем получить только вероятностные предсказания. При этом до тех пор, пока какой-нибудь человек не вмешивается с тем, чтобы измерить эти величины, мы вообще не можем сказать, что частица находится в каком-то определенном состоянии.
Дядюшка Скрудж. Мальчик мой, похоже, ты проглотил безо всякой критики родившуюся в девятнадцатом веке доктрину, называемую позитивизмом, которая утверждает, что наука должна иметь дело только с теми вещами, которые можно реально наблюдать. Согласен, что ни в одном эксперименте невозможно измерить волновую функцию. Ну и что? Много раз повторив измерения для одного и того же начального состояния, ты можешь узнать, какой должна быть волновая функция этого состояния и применять результаты для проверки наших теорий. Чего же еще требовать? Тебе, на самом деле, нужно привести свои мысли в соответствие с двадцатым веком. Волновые функции реальны настолько же, насколько реальны кварки и симметрии: их просто удобно включить в наши теории. Любая система находится в определенном состоянии,
независимо от того, наблюдает ее какое-либо человеческое существо или нет; состояние описывается не своими положением или импульсом, а волновой функцией.
Крошка Тим. Не думаю, что мне стоит спорить о том, что реально, а что нет, с тем, кто проводит вечера, прогуливаясь с духами. Позвольте мне только напомнить вам серьезную проблему, с которой сталкиваешься немедленно, как только представляешь, что волновая функция реальна. Эта проблема была упомянута во время той атаки на квантовую механику, которую предпринял Эйнштейн на Сольвеевском конгрессе 1933 г. в Брюсселе, а затем в 1935 г. была изложена им письменно в знаменитой статье совместно с Борисом Подольским и Натаном Розеном. Представьте систему, состоящую из двух электронов и приготовленную таким образом, что в какой-то момент времени электроны находятся на известном большом расстоянии друг от друга и обладают известным суммарным импульсом. (Это не нарушает соотношение неопределенностей Гейзенберга. Например, можно с любой желаемой точностью измерить расстояние между электронами, послав от одного к другому пучок света очень короткой длины волны; это, конечно, исказит импульс каждого из электронов, но в силу закона сохранения импульса, не изменит их
полныйимпульс.) Если затем кто-то измеряет импульс первого электрона, то импульс второго также можно немедленно найти, поскольку известна сумма импульсов. С другой стороны, если кто-то измеряет положение первого электрона, то и положение второго становится немедленно известным, так как измерено расстояние между ними. Но все это означает, что наблюдая состояние первого электрона, вы можете мгновенно изменить волновую функцию, так что второй электрон станет обладать определенным положением или определенным импульсом,
даже несмотря на то, что вы и близко не подходили ко второму электрону. И что же, вы продолжаете настаивать на реальности волновой функции, которую можно менять таким способом?
Дядюшка Скрудж. Я готов все это принять. Точно так же, меня не беспокоит проблема с выполнением закона специальной теории относительности, запрещающего распространение сигналов со скоростью, большей скорости света; нет никакого противоречия и с этим законом. У физика, который измеряет импульс второго электрона, нет способов узнать, не исказилось ли значение, измеренное им, в результате наблюдения первого электрона. Все, что ему известно, что электрон перед измерением мог в том числе иметь и определенное положение, и определенный импульс. Даже Эйнштейн не смог бы воспользоваться измерениями подобного рода, чтобы послать мгновенный сигнал от одного электрона к другому. (Можно было бы заметить, что Джон Белл сравнительно недавно столкнулся с еще более фантастическими следствиями квантовой механики, касающимися атомных спинов, а физики-экспериментаторы показали
, что спины в атомных системах ведут себя так, как предсказывает квантовая механика, т.е. на самом деле законы квантовой механики отражают устройство самого мира.) Мне кажется, что ничто из сказанного не может заставить нас отказаться от мыслей о волновых функциях как о реальности; просто волновая функция ведет себя непривычным для нас образом, допуская мгновенные изменения, влияющие на волновую функцию всей Вселенной. Я думаю, что тебе надо перестать выискивать в квантовой механике глубокие философские откровения и предоставить мне возможность пользоваться ею.
Крошка Тим. Прошу меня извинить, но я должен заметить, что если вы готовы признать мгновенные изменения волновой функции во всем пространстве, то, как я подозреваю, вы готовы признать что угодно. Кроме того, надеюсь, вы простите меня, если я скажу, что вы не очень последовательны. Вы сказали, что волновая функция любой системы эволюционирует во времени совершенно детерминированным образом и что вероятности появляются только тогда, когда мы производим измерения. Но, согласно вашей точке зрения, не только электрон, но также измерительный прибор и человек, производящий с его помощью наблюдения, – все они образуют одну большую систему, описываемую волновой функцией с невероятно большим количеством значений, причем все эти значения меняются причинным образом даже во время измерения. Но если что-то происходит детерминированно, откуда же берется неопределенность в результатах измерений? Откуда берутся вероятности, когда производятся измерения?
* * *
Я испытываю симпатию к обеим сторонам в этом споре, хотя мне ближе реалист Скрудж, а не позитивист Крошка Тим. Я предоставил Крошке Тиму последнее слово, потому что проблема, поднятая им в последних фразах, является одной из самых важных загадок в интерпретации квантовой механики. Ортодоксальная копенгагенская интерпретация, которую я до сих пор излагал, базируется на резком разграничении физической системы, управляемой законами квантовой механики, и прибора, используемого для изучения этой системы и описываемого классически, т.е. согласно законам доквантовой физики. Наша мифическая частица может иметь волновую функцию со значениями как
здесь, так и
там, но когда ее наблюдают, она каким-то образом становится с достоверностью равной либо
здесь, либо
там, причем совершенно непредсказуемым образом, если не считать вероятностей. Но это различие в подходах к системе, которую наблюдают, и прибору, которым это делают, есть несомненная фикция. Мы полагаем, что квантовая механика управляет всем во Вселенной, не только поведением отдельных электронов, но и поведением измерительных приборов и самих людей, использующих эти приборы. Если волновая функция описывает измерительный прибор, так же как и наблюдаемую систему, и при этом эволюционирует детерминированно по законам квантовой механики даже во время измерения, то, как спрашивает Крошка Тим, откуда же берутся вероятности? Неудовлетворенность искусственным разделением систем и наблюдателей в рамках копенгагенской интерпретации привела многих ученых к совершенно иной точке зрения, к интерпретации квантовой механики на основе идеи о
множественности мировили
множественности историй. Впервые такая интерпретация была представлена в диссертации Хью Эверетта из Принстона. Согласно этой точке зрения, измерения типа
здесь-
тамнад нашей мифической частицей представляют определенное взаимодействие между частицей и прибором, в результате которого волновая функция комбинированной системы перестраивается так, что имеет заметные значения лишь для двух конфигураций; одно значение соответствует конфигурации, в которой частица находится
здесьи указатель прибора указывает на
здесь, другое значение соответствует возможности, что частица находится
тами прибор показывает
там. Существует и определенная волновая функция, возникшая совершенно детерминированным образом по законам квантовой механики в результате взаимодействия частицы с измерительным прибором. Однако два значения волновой функции соответствуют двум состояниям с разной энергией, а так как измерительный прибор макроскопический, то разница в энергиях двух состояний очень велика и два значения волновой функции осциллируют на сильно отличающихся частотах. Наблюдение положения указателя на приборе напоминает случайную настройку на одну из двух радиостанций, WZ-ЗДЕСЬ и YX-TAM; если несущие частоты достаточно разделены, интерференция не возникает и вы принимаете ту или другую радиостанцию с вероятностью, пропорциональной интенсивности сигнала. Отсутствие интерференции между двумя значениями волновой функции означает, что, по существу, мировая история расщепилась на две истории, в одной из которых частица находится
здесь, а в другой –
там, и с этого момента две истории развиваются без взаимодействия друг с другом
. Применяя правила квантовой механики к комбинированной системе из частицы и измерительного прибора, можно на самом деле доказать, что вероятность обнаружить частицу
здесь, а указатель прибора в положении
здесь, пропорциональна квадрату значения
здесьволновой функции частицы перед тем самым мгновением, когда она начала взаимодействовать с измерительным прибором, что как раз и постулируется в копенгагенской интерпретации квантовой механики. Однако вопрос Крошки Тима все еще остается без ответа. При вычислении вероятности того, что комбинированная система из частицы и измерительного прибора имеет одну из двух конфигураций, мы неявно все-таки протащили наблюдателя, который считывает показания прибора и обнаруживает надписи
здесьили
там. Хотя при этом прибор рассматривается квантово-механически, наблюдатель считается классическим; он обнаруживает, что указатель совершенно определенно указывает либо на
здесь, либо на
там, причем это нельзя предсказать заранее иначе как вероятностным образом. Конечно, можно и наблюдателя рассматривать квантово-механически, но ценой введения другого наблюдателя, который детектирует результаты наблюдений первого, читая, например, статью в физическом журнале. И так далее. Множество физиков работало над тем, чтобы очистить основы квантовой механики от любых утверждений о вероятностях
или каком-то ином интерпретирующем постулате, различающем системы и наблюдателей. То, что требуется, это квантовомеханическая модель с волновой функцией, описывающей не только различные изучаемые системы, но и как-то учитывающей наличие сознательного наблюдателя. Имея такую модель, можно попытаться показать, что в результате
повторяющихсявзаимодействий наблюдателя с отдельными системами волновая функция комбинированной системы с достоверностью эволюционирует к конечной волновой функции, причем наблюдатель в этом конечном состоянии уверен, что вероятности индивидуальных измерений совпадают с предсказаниями в рамках копенгагенской интерпретации. Я не убежден, что такая программа исследований успешно завершена, но думаю, что это может произойти рано или поздно. И тогда реализм Скруджа одержит полную победу. Самое удивительное в том, насколько все это не имеет значения. Большинство физиков использует квантовую механику в повседневной работе, не заботясь о фундаментальных проблемах ее интерпретации. Будучи здравомыслящими людьми, имеющими очень мало времени на то, чтобы успевать следить за новыми идеями и данными в своей собственной области, они совершенно не тревожатся по поводу всех этих фундаментальных проблем. Недавно Филип Канделас (с физического факультета Техасского университета) ждал вместе со мной лифт, и разговор зашел о молодом теоретике, подававшем надежды на старших курсах и затем исчезнувшем из вида. Я спросил Фила, что помешало бывшему студенту продолжать исследования. Фил грустно покачал головой и сказал: «Он попытался понять квантовую механику». Философия квантовой механики настолько не имеет отношения к ее реальному использованию, что начинаешь подозревать, что все глубокие вопросы о смысле измерения на самом деле пусты, порождены несовершенством нашего языка, который создавался в мире, практически управляющемся законами классической физики. Но я признаю, что ощущаю некоторый дискомфорт, всю жизнь используя теорию, которую никто толком не понимает. Нам ведь на самом деле необходимо лучше понимать квантовую механику, если мы хотим заниматься квантовой космологией, т.е. применением квантовой механики ко Вселенной в целом, когда даже вообразить нельзя, что существует какой-то внешний наблюдатель. Сейчас Вселенная слишком огромна для квантовой механики, чтобы это имело значение, но, согласно теории Большого взрыва, в прошлом было время, когда частицы находились настолько близко друг к другу, что квантовые эффекты должны были быть существенными. В наши дни никто даже не знает правил применения квантовой механики в подобной ситуации. С моей точки зрения, еще интереснее вопрос о том, является ли квантовая механика с необходимостью
истинной наукой. Квантовая механика имела феноменальный успех при объяснении свойств частиц, атомов и молекул, так что мы уверены, что она является очень хорошим приближением к истине. Но вопрос заключается в том, не существует ли другой логически возможной теории, предсказания которой очень близки, но все же отличаются от предсказаний квантовой механики. Легко придумать способы небольшого изменения почти всех физических теорий. Например, ньютоновский закон тяготения, утверждающий, что сила тяготения между двумя частицами убывает обратно пропорционально квадрату расстояния между ними, можно немного изменить, предположив, что сила убывает по закону, содержащему другую степень расстояния, которая близка, но все же отличается от степени ?2. Чтобы экспериментально проверить теорию Ньютона, следует сравнить наблюдения над телами Солнечной системы с теми предсказаниями, которые получаются в случае силы, убывающей по закону с некоторой неизвестной степенью расстояния, и таким образом установить предел того, насколько этот закон может отклоняться от закона обратных квадратов. Даже общую теорию относительности можно немного изменить, например включив более сложные малые слагаемые в уравнения поля или введя в теорию новые слабовзаимодействующие поля. Поразительно, что до сих пор не удалось найти логически непротиворечивой теории, которая была бы близка к квантовой механике, но при этом отличалась от нее. Несколько лет тому назад я сам попытался построить такую теорию. У меня не было серьезных намерений предложить альтернативу квантовой механике. Я всего лишь хотел построить хоть какую-нибудь теорию, предсказания которой были бы близки, но не совпадали с предсказаниями квантовой механики и которую можно было бы экспериментально проверить. Для этой цели я попытался предложить физикам-экспериментаторам идею такого эксперимента, который мог бы служить интересным количественным тестом справедливости квантовой механики. Когда речь идет о проверке само?й квантовой механики, а не какой-то конкретной квантовомеханической теории вроде стандартной модели, то для того, чтобы экспериментально различить квантовую механику и альтернативную теорию, следует проверить выполнение какого-то весьма общего свойства любой конкретной квантовомеханической теории. В поисках альтернативы квантовой механике я вцепился в одно общее свойство этой теории, всегда казавшееся несколько более произвольным, чем другие, а именно в свойство
линейности. Нужно сказать несколько слов о смысле линейности. Вспомним, что значения волновой функции любой системы меняются со скоростями, зависящими от этих значений, а также от природы системы и окружающей среды. Например, скорость изменения значения
здесьволновой функции нашей мифической частицы равна некоторой константе, умноженной на значение
здесь, плюс другая константа, умноженная на значение
там. Динамический закон такого конкретного вида называется линейным, так как если начать менять одно значение волновой функции в произвольный момент времени и построить график любого значения волновой функции в любой последующий момент в зависимости от меняющегося значения, то при прочих равных условиях этот график будет прямой линией. Грубо говоря, отклик системы на любое изменение ее состояния пропорционален этому изменению. Одним из очень важных следствий такой линейности, как отмечал Скрудж, является то, что в квантовой механике не возникает хаотического поведения; малое изменение начальных условий приводит только к малым изменениям значений волновой функции в любой последующий момент времени. Существует множество классических систем, линейных в указанном смысле, но линейность в классической физике никогда не бывает точной. Наоборот, в квантовой механике предполагается, что она линейна при любых обстоятельствах. Если кто-то собирается поискать способы изменения квантовой механики, то естественнее всего попробовать исследовать возможность, что эволюция волновой функции не точно линейна. После некоторых усилий я построил слегка нелинейную альтернативу квантовой механике, казавшуюся физически осмысленной и легко проверяемой с очень высокой точностью. Тестом служило общее следствие линейности, заключающееся в том, что частоты колебаний любой линейной системы не зависят от способа возбуждения этих колебаний. Например, Галилей заметил, что частота колебаний маятника не зависит от того, насколько велик размах колебаний. Это верно потому что пока амплитуда колебаний достаточно мала, маятник является линейной системой; скорости изменения его отклонения и его импульса пропорциональны, соответственно, импульсу и отклонению. Все часы используют это свойство колебаний линейных систем, идет ли речь о маятниковых, пружинных или кварцевых часах. Несколько лет назад, после разговора с Дэвидом Уайнлендом из Национального бюро стандартов, я понял, что вращающиеся вокруг своей оси ядра, используемые в Бюро для создания эталонов времени, позволяют осуществить превосходный тест линейности квантовой механики; в моей слегка нелинейной альтернативной теории частота, с которой направление спина ядра прецессирует вокруг направления магнитного поля, должна очень слабо зависеть от угла между спином и магнитным полем. Из того факта, что в Бюро стандартов никогда не наблюдали подобного эффекта, я сделал вывод, что любые нелинейные эффекты в изучавшемся ядре (изотопе бериллия) не могут привести к изменению энергии ядра на величину, большую, чем 10
?18(в относительных единицах). После этой моей работы Уайнленд и другие экспериментаторы из Гарварда, Принстона и других лабораторий улучшили точность измерений, так что сейчас мы знаем, что нелинейные эффекты давали бы еще меньший вклад. Таким образом, даже если линейность квантовой механики приближенна, это приближение очень хорошее. Все это не вызывает особого удивления. Даже если существуют малые нелинейные поправки к законам квантовой механики, нет никаких оснований полагать, что эти поправки окажутся достаточно заметными, чтобы быть обнаруженными в первой же серии нацеленных на это экспериментов. Что меня действительно разочаровало, так это то, что нелинейная альтернатива квантовой механике, как оказалось, содержит внутренние теоретические трудности. Сначала я не сумел найти способ распространить нелинейную версию квантовой механики на теории, основанные на специальной теории относительности Эйнштейна. Затем, уже после того, как была опубликована моя работа, Н. Гизин из Женевы и мой коллега Джозеф Польчински из Техасского университета независимо показали, что в мысленном эксперименте Эйнштейна–Подольского–Розена, упоминавшемся Крошкой Тимом, нелинейные свойства альтернативной теории
могутбыть использованы для мгновенной посылки сигналов на большие расстояния, что безусловно запрещено специальной теорией относительности
. В конце концов к настоящему времени я прекратил всякую работу над этой проблемой; я просто не знаю, как можно немного изменить квантовую механику, не разрушив ее в результате до основания. Этот крах теоретической попытки найти приемлемую альтернативу квантовой механике в еще большей степени, чем точные эксперименты по проверке линейности, убеждает меня, что квантовая механика такова, какова она есть, потому что любое ее малое изменение обязательно приведет к логическим противоречиям. Если это так, то квантовая механика должна быть постоянной частью физики. Иными словами, квантовая механика должна выжить не как приближение к более глубокой истине, подобно тому, как ньютоновская теория тяготения сохранилась как приближение к эйнштейновской общей теории относительности, а как точно выполняющееся свойство окончательной теории.
Глава V. Рассказы о теории и эксперименте
Когда мы стареем,
Мир нам кажется странным. Все сложнее
Понять смерть и жизнь. Ведь жизнь
Не вспышка без до и после,
А пожар без конца и начала.
Т. Элиот. Ист Кокер
Я хочу теперь рассказать три истории об успехах физики ХХ в. Из всех этих историй можно извлечь поучительный вывод: физики очень часто руководствуются чувством прекрасного, причем это проявляется не только при создании новых теорий, но даже тогда, когда они судят о применимости уже созданных. Похоже, что мы постоянно учимся тому, как предугадывать красоту природы на самом глубоком уровне. Нет ничего прекраснее сознания, что мы действительно продвигаемся вперед к раскрытию окончательных законов природы.
* * *
Мой первый рассказ – об общей теории относительности (ОТО), иначе говоря эйнштейновской теории тяготения. Эйнштейн создал свою теорию в 1907–1915 гг. и представил ее миру в серии статей 1915–1916 гг. Если говорить очень коротко, то вместо ньютоновской картины тяготения как притяжения между всеми массивными телами общая теория относительности описывает тяготение как эффект, обусловленный кривизной пространства-времени, которую создают и вещество, и энергия. К середине 1920-х гг. эта революционная теория стала общепринятой как правильная теория тяготения, и с тех пор такая точка зрения не изменилась. Как это случилось? Сразу же, в 1915 г., Эйнштейн заметил, что его теория разрешает старый конфликт между наблюдениями в Солнечной системе и ньютоновской теорией. Еще в 1859 г. было установлено, что поведение орбиты планеты Меркурий не укладывается в рамки ньютоновской теории. Если предположить, что во Вселенной нет ничего, кроме Солнца и одной единственной планеты, то, согласно механике Ньютона и его же теории тяготения, эта планета должна двигаться вокруг Солнца по идеальному эллипсу. Ориентация эллипса, т.е. расположение его большой и малой полуосей в пространстве, никогда не изменяется; все выглядит так, как будто орбита планеты закреплена в пространстве. На самом деле в Солнечной системе имеются другие планеты, которые несколько искажают гравитационное поле Солнца, так что в результате эллиптические орбиты всех планет прецессируют
, т.е. медленно поворачиваются в пространстве. В XIX в. стало известно, что орбита Меркурия поворачивается на угол, равный примерно 575 угловым секундам за сто лет. (Напомним, что один градус равен 3 600 угловых секунд.) Однако ньютоновская теория предсказывала, что орбита Меркурия должна прецессировать на угол, равный всего лишь 532 угловым секундам за сто лет. Таким образом, возникло расхождение в 43 угловых секунды за столетие. Другой способ осознать этот результат таков: если вы подождете 225 000 лет, то эллиптическая орбита Меркурия, совершив полный оборот на 360°, вернется в исходное положение, в то время как ньютоновская теория предсказывает, что это займет 244 000 лет. Казалось бы, расхождение не так уж и велико, но оно тревожило астрономов на протяжении более чем полувека. Когда Эйнштейн в 1915 г. начал рассматривать следствия своей новой теории, он сразу же сумел объяснить дополнительную прецессию орбиты Меркурия, равную 43 угловым секундам за сто лет. (Один из эффектов, дающих вклад в эту прецессию в теории Эйнштейна, это дополнительное гравитационное поле, порожденное энергией самого гравитационного поля. В ньютоновской теории тяготения гравитационное поле порождается только массой, а не энергией, поэтому такого добавочного гравитационного поля не возникает.) Позднее Эйнштейн вспоминал, что, получив этот результат, он в течение нескольких дней был вне себя от радости. После Первой мировой войны астрономы подвергли общую теорию относительности дальнейшей экспериментальной проверке, измерив отклонение световых лучей Солнцем во время полного солнечного затмения 1919 г. Согласно эйнштейновской теории фотоны в световом луче отклоняются гравитационными полями. Это похоже на поведение кометы, прилетевшей в Солнечную систему с далекого расстояния. Комета отклоняется гравитационным полем Солнца, совершает вокруг Солнца оборот и в результате опять уходит в межзвездное пространство. Конечно, отклонение луча света намного меньше, чем отклонение кометы, так как свет распространяется намного быстрее. Быстрые кометы тоже отклоняются меньше, чем медленные. Если общая теория относительности верна, то отклонение светового луча, проходящего вблизи поверхности Солнца, должно составлять 1,75 угловых секунды или примерно пять десятитысячных долей градуса. (Чтобы измерить отклонение луча, астрономы вынуждены ждать солнечного затмения, потому что они пытаются наблюдать искривление световых лучей, приходящих от далеких звезд и проходящих вблизи Солнца. Понятно, что трудно увидеть звезды вблизи Солнца, если только солнечный свет не экранируется Луной, как это и бывает во время затмения. Таким образом, астрономы измеряют положение нескольких звезд на небесной сфере за шесть месяцев до затмения, когда Солнце находится на другой стороне неба, а затем шесть месяцев ждут этого затмения и измеряют, насколько лучи света от тех же самых звезд искривили свой путь в результате прохождения рядом с Солнцем, что проявляется в сдвиге видимого положения звезд на небе.) В 1919 г. британские астрономы снарядили экспедиции для наблюдения солнечного затмения в двух местах: в маленьком городе в северо-восточной части Бразилии и на острове в Гвинейском заливе. Они обнаружили, что в пределах экспериментальных погрешностей отклонение лучей света от нескольких звезд соответствует предсказаниям Эйнштейна. С этого момента общая теория относительности получила шумную известность во всем мире и стала предметом бесед в салонах.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
|
|