Современная электронная библиотека ModernLib.Net

100 великих - 100 великих научных достижений России

ModernLib.Net / Биографии и мемуары / В. М. Ломов / 100 великих научных достижений России - Чтение (Ознакомительный отрывок) (стр. 3)
Автор: В. М. Ломов
Жанр: Биографии и мемуары
Серия: 100 великих

 

 


В мирное время подобные кумулятивные снаряды, только удлиненные, оказались весьма эффективными при ремонте магистральных нефтепроводов.

Ученый всю жизнь занимался «теорией взрыва», находя ей все новые и новые практические применения. Многие «взрывные» труды Лаврентьева стали основой мирной деятельности человека – направленный взрыв, та же сварка взрывом, гидроимпульсная техника. Благодаря Лаврентьеву взрыв вообще широко вошел в народное хозяйство – при автоматическом отключении тока, рыхлении мерзлого грунта, штамповке деталей и т. д. Направленный взрыв, предложенный ученым, многократно применялся для переброса грунта при строительстве ГЭС, противоселевых плотин и других искусственных заграждений.

Своими работами по приближенным и численным методам и математическому программированию ученый заложил основы машинной математики. Первые образцы отечественных малых ЭВМ (МЭСМ) были созданы также им – еще при решении атомной проблемы. «Лаврентьев… пришел к выводу, что необходимые кадры в данной области не живут в Москве. Их надо было поселить в столице, против чего резко возражала московская городская администрация. Тогда Лаврентьев обратился лично к Сталину. Сталин приказал увольнять с работы тех, кто отказывал Лаврентьеву» (М.А. Елфимов, А.И. Арустамян).

Сам же Лаврентьев любил решать «бросовые» проблемы – которые другие ведущие ученые отчаялись решить или вообще не брались за них. Так, например, и по сию пору математики изумляются тому, как изящно справился математик с целым рядом вопросов мирового класса. В качестве примера его коллеги любили приводить работу Лаврентьева «К теории длинных волн», а также его исследования динамической потери устойчивости стержня.

К середине 1950-х гг. Лаврентьев зарекомендовал себя выдающимся ученым и блестящим организатором науки. Он был создателем и руководителем отдела теории функций Математического института им. Стеклова, главой советской школы теории функций, основоположником и директором Института точной механики и вычислительной техники им. С.А. Лебедева АН СССР, одним из основателей Московского физико-технического института.

Начавшееся в это время интенсивное освоение Сибири, разведка ее недр, развитие промышленности и сельского хозяйства потребовали научного осмысления множества возникших проблем. Поэтому когда М.А. Лаврентьев вместе с академиками С.Л. Соболевым и С.А. Христиановичем выдвинул идею создания нового научного центра под Новосибирском, она тут же нашла отклик в научной среде и была поддержана правительством. Прообразом такого образования послужили научный центр Геттингенского университета (Германия) и Кавендишская лаборатория (Великобритания).

18 мая 1957 г. Совмин принял постановление об организации СО АН СССР, Лаврентьев стал председателем отделения, вице-президентом АН СССР, директором созданного им Института гидродинамики.

В основание СО АН были положены три принципа – «треугольник Лаврентьева»: комплексное решение больших проблем современной науки, тесная оперативная связь с народным хозяйством и подготовка научных кадров.

Сибирское отделение стало первым в стране крупным комплексным центром, объединившим организационно и территориально разнопрофильные институты.

Помимо самого отделения, состоявшего из 17 академических институтов, был выстроен Академгородок для 50 000 жителей, в котором по тем временам были созданы самые благоприятные условия для жизни и работы. Помимо институтов были образованы Новосибирский государственный университет, Физико-математическая школа, стали проводиться всесибирские физико-математические олимпиады школьников.

Создание Академгородка позволило с блеском решить актуальнейшую проблему науки – омолаживание кадров. На стыке разных специальностей, разных научных школ было совершено множество открытий и решено много научных проблем. При этом благодаря заботам Лаврентьева математика буквально прошивала все научное поле отделения, неизбежно повышая общий уровень решенных задач.

Исключительно плодотворной была также идея комплексного подхода ученых разных институтов к решению определенной научной проблемы – это касалось и создания ускорителей, и сверхзвукового пассажирского самолета, и дезинфекции от паразитов семенного фонда пшеницы…

Академгородок стал в мире образцом удачного решения организации науки. По его примеру были построены научные центры в ряде стран: в Японии (центр Цукуба близ Токио), во Франции (Научно-исследовательский сектор Гренобльского университета) и др.

Созданные Лаврентьевым школы в математике и механике до сих пор успешно развивают его идеи. «Из рук» академика под его любимую поговорку – «Нет ученых без учеников» – вышла целая плеяда всемирно известных ученых – М.В. Келдыш, Л.И. Седов, А.И. Ишлинский, А.И. Маркушевич, А.В. Бицадзе и др.

Ныне СО РАН состоит из Новосибирского и еще 8 научных центров (НЦ). Помимо уникальной Государственной публичной научно-технической библиотеки и Центрального Сибирского ботанического сада, СО РАН насчитывает 102 института. Половина из них сосредоточена в Новосибирском НЦ.

Гордостью отечественной науки стали сибирские научные школы академиков С.Л. Соболева, А.И. Мальцева, Л.В. Канторовича, А.Д. Александрова, А.Г. Аганбегяна, И.Н. Векуа, Л.В. Овсянникова, А.А. Ляпунова, П.Я. Кочиной, Г.И. Марчука, Б.В. Войцеховского, Р.И. Солоухина, А.А. Дерибаса и десятков других выдающихся ученых.

ТЕОРИЯ ВЕРОЯТНОСТЕЙ КОЛМОГОРОВА

Математик, философ, педагог; основатель огромной научной школы; реформатор школьного математического образования; профессор МГУ; академик, академик-секретарь отделения физико-математических наук АН СССР, почетный член нескольких десятков европейских академий и научных сообществ; заведующий кафедрами математики, теории вероятностей, математической логики, математической статистики в МГУ и других вузах, ректор Института математики и механики при МГУ; основатель и руководитель лаборатории атмосферной турбулентности Института теоретической геофизики АН СССР, межфакультетской лаборатории вероятностных и статистических методов; президент Московского математического общества; главный редактор журналов «Успехи математических наук», «Теория вероятностей и ее применения», редакции математики и механики в Издательстве иностранной литературы и т. д.; лауреат Ленинской и Сталинской премий, лауреат Международных премий – Бальцано (аналога Нобелевской по математике), Лобачевского, Вольфа, Премии им. Чебышёва АН СССР; кавалер 7 орденов Ленина, ордена Трудового Красного Знамени, других отечественных и зарубежных орденов и медалей, почетный член нескольких десятков европейских академий и научных сообществ; Герой Социалистического Труда, Андрей Николаевич Колмогоров (1903–1987) является автором фундаментальных трудов по теории функций, математической логике, топологии, дифференциальным уравнениям, функциональному анализу, теории вероятностей и теории информации.


Из двух десятков областей математики, где успешно работал Колмогоров, возьмем одну – теорию вероятностей. Ученый считал ее своей главной специальностью, хотя иногда и называл «теорией неприятностей». Эта «наука о случае» взрастила в нем великого математика и сама приобрела благодаря его научным трудам завершенный вид и стала по математическим понятиям истинной красавицей.

Возникнув в Средневековье как попытка анализа азартных игр, теория вероятностей в XVII в. обрела в трудах Б. Паскаля, П. Ферма, Х. Гюйгенса тот вид, с которым в дальнейшем имели дело уже не предсказатели, а математики. За 100 лет теория вероятностей превратилась в чисто академическую дисциплину, на практике интересовавшуюся разве что теми же азартными играми. Игра в кости, в свою очередь, стимулировала ее развитие. В XIX–XX вв. теория вероятностей, проникнув в астрономию, физику и биологию, начала использоваться в сельском хозяйстве, промышленности, медицине, а с изобретением телевидения и компьютеров стала неотъемлемой частью жизни как основа средств получения и передачи информации. В астрономии нашел применение один из методов этой теории – метод наименьших квадратов, в физике – статистическая механика, в сельском хозяйстве – теория планирования экспериментов и дисперсионный анализ; в промышленности – методы статистического контроля (контрольные карты Шухарта); в социальных науках – теория игр и т. д.



А.Н. Колмогоров


В 1933 г. Колмогоров опубликовал на немецком языке одну из главных своих работ – «Основные понятия теории вероятностей» (на русском – в 1936 г.). По мнению профессора В.М. Тихомирова, это, «наверное, самое известное произведение Андрея Николаевича, оказавшее столь же огромное влияние на все дальнейшее развитие этой науки, как труды Я. Бернулли и Лапласа».

К тому времени ученого знал весь математический мир. Ведь в него Андрей вступил очень рано даже по меркам математики. Любимцем математики он оставался всю свою жизнь. Да и не только одной царицы наук – скажем, за классические работы по турбулентности математик выдвигался на Нобелевскую премию по физике. Среди ученых ходит афоризм И.М. Гельфанда: «Математика – это марафон». Колмогоров, по мнению коллег, был не только «марафонцем», но и «спринтером», в считаные дни с потрясающей скоростью даже в 80 лет решавший проблемы, с которыми другие ученые бились годами.

Первую работу, снискавшую мировую известность, о «ряде Фурье, расходящемся почти всюду», Колмогоров создал в 19 лет, а к 22 годам был уже автором полутора десятков печатных трудов по теории функции действительного переменного.

Еще на четвертом курсе МГУ математик занялся теорией вероятностей – разделом математики, изучающим закономерности случайных явлений: случайные события, случайные величины, их свойства и операции над ними. Начал Андрей с закона больших чисел, представляющего собою «общий принцип, в силу которого совокупное действие большого числа случайных факторов приводит, при некоторых весьма общих условиях, к результату, почти не зависящему от случая». Над законом в свое время бились лучшие математики мира – Г. Больцман, Р. Мизес, А. Ломницкий и др. Все их попытки получить наиболее общие условия применимости этого закона к последовательности случайных величин оказались тщетными. Пальму первенства они и их последователи отдали аспиранту МГУ Колмогорову, который очень удачно использовал хорошо развитые (в том числе и им самим) методы теории функций действительного переменного. Это случилось в 1926 г. В 1930 г. увидело свет еще одно центральное исследование математика – «Об аналитических методах теории вероятностей».

В книге «Основные понятия теории вероятностей» Андрей Николаевич сформулировал в законченном виде аксиоматику (схему логического обоснования) теории: концепцию вероятности, всевозможные ее интерпретации, сферы применимости и т. д. Прекрасное знание многих областей математики – теории множеств, теории интеграла, теории функций и др. – позволило ученому сформулировать простую систему аксиом, давшую этой науке строгий вид нового раздела математики. Аксиоматику Колмогорова, применимую в самых разнообразных областях естественных, технических и гуманитарных наук, называют еще «моделью Колмогорова».

«Значение монографии А.Н. Колмогорова определяется не только предложенной в ней схемой (ставшей универсально принятой) логического обоснования математической теории вероятностей. Ее роль также и в том, что содержащиеся в ней новые концепции, понятия и результаты (такие как условное математическое ожидание, теорема о существовании случайного процесса с заданной системой конечномерных распределений, закон нуля или единицы и др.) открыли новую эру и в развитии самой теории вероятностей, и в расширении сферы ее влияния и областей применения» (Ю.В. Прохоров, А.Н. Ширяев).

В дальнейшем автор, используя свое открытие, заложил основы теории марковских случайных процессов с непрерывным временем, развил теорию стационарных случайных процессов.

Со студенческих лет Колмогоров старался направить свои научные разработки в практическое русло, чем оказал сильнейшее влияние на ряд прикладных разделов математики: историю этой науки и методы ее преподавания, а также на кибернетику, информатику, небесную механику, гидромеханику, метеорологию, кристаллографию, биологию, теорию стрельбы, теорию лингвистики и даже теорию стиха.

В годы Великой Отечественной войны, например, по заданию Главного артиллерийского управления армии ученый на базе своих исследований по теории вероятностей вычислял траектории рассеивания снарядов при стрельбе. После войны разработал статистические методы контроля массовой продукции, тут же востребованные всеми отраслями народного хозяйства СССР. Но тогда же он творил и «чистую» науку, разрешая фундаментальные проблемы математики – по малым знаменателям в задачах классической механики, внедрению понятия энтропии в различные области математики, представлению функций в виде суперпозиций. Отдал он дань и теории вероятностей – ее экстремальным задачам, равномерным предельным теоремам с точки зрения распределений в функциональных пространствах и др.

Особым вкладом Колмогорова в развитие советской математики стало создание им научной школы в области теории вероятностей и теории функций. Академик воспитал не один десяток замечательных математиков – А.И. Мальцева, М.Д. Миллионщикова, С.М. Никольского, Ю.В. Прохорова, А.М. Обухова, А.М. Яглома, В.М. Тихомирова, И.М. Гельфанда и др.

Андрей Николаевич прославился не только созданием своей математической школы, но и грандиозной реформой школьного математического образования в 1960-е гг. Проведенная по инициативе и под руководством Колмогорова, реформа сделала советское математическое образование населения лучшим в мире. Нынешние старшее и среднее поколения россиян обучались по учебникам, созданным под руководством и рецензированием Колмогорова (сам он написал учебник геометрии для 6–8-х классов, алгебры и начал анализа для 9–10-х классов), – лучшим учебным пособиям по математике в мировой практике и по сей день. В 1990-х гг. прекрасно зарекомендовавшая себя система школьного математического образования «по Колмогорову» стала «дереформироваться», а нынешние реформы «по Фурсенко», похоже, и вовсе сведут ее на нет. И хотя колмогоровские учебники в школе еще действуют, их одних для решения задачи инновационного развития России будет явно недостаточно.

Ученый мир уже давно поставил имя Колмогорова «рядом с именами Пуанкаре, Гильберта, Ломоносова, Менделеева». Выдающийся математик XX в. Н. Винер, отец кибернетики, признался как-то: «Вот уже в течение тридцати лет, когда я читаю труды академика Колмогорова, я чувствую, что это и мои мысли. Это всякий раз то, что я и сам хотел сказать».

ТОПОЛОГИЯ ПОНТРЯГИНА

Математик, педагог, общественный деятель, публицист, заведующий отделом Математического института им. В.А. Стеклова АН СССР, профессор МГУ, академик АН СССР, вице-президент Исполнительного комитета Международного математического союза, почетный доктор наук Салфордского университета (Великобритания), почетный член Лондонского математического общества, Международной академии «Астронавтика», Венгерской АН, лауреат Сталинской, Государственной и Ленинской премий, лауреат Международной премии им. Н.И. Лобачевского, кавалер четырех орденов Ленина, орденов Октябрьской Революции, Трудового Красного Знамени, «Знак Почета», Герой Социалистического Труда, Лев Семенович Понтрягин (1908–1988) прославился на весь мир своими трудами по теории дифференциальных игр и теории размерности, теории непрерывных групп и теории обыкновенных дифференциальных уравнений, теории колебаний и регулирования, теории оптимального управления техническими и производственными процессами. Главным научным достижением математика стали его работы по топологии и топологической алгебре.


Начиная с Л. Эйлера, историю развития отечественной (а значит, и мировой) математики можно разбить на эпохи, привязанные к имени ученого, внесшего в нее самый значительный вклад. Это не означает, что у эпохи будет только одно имя. К примеру, конец XIX – начало XX в. можно назвать и эпохой Крылова, и эпохой Стеклова, и эпохой Чаплыгина…

На этом основании второй трети прошлого века можно дать имя эпохи Понтрягина. В то время ученый активно занимался одним из новейших разделов математики – топологией и топологической алгеброй (совокупностью вопросов, пограничных между алгеброй и топологией), развитием которых стали «дальнейшее триумфальное развитие теории когомологических операций и появление таких достижений топологии, как спектральная теория гомологий расслоенных пространств, созданная французскими математиками, и теория систем М.М. Постникова». По словам академика П.С. Александрова, 33 года возглавлявшего Московское математическое общество, Понтрягин, создавший свое собственное направление в математике, был «самым крупным (в международном масштабе) представителем… топологической алгебры».



Бюст Л.С. Понтрягина на стене дома на Ленинском проспекте в Москве, где он жил с 1938 по 1988 г. Скульптор В.М. Клыков


По определению, топология – это «раздел математики, занимающийся изучением свойств фигур (или пространств), которые сохраняются при непрерывных деформациях, таких, например, как растяжение, сжатие или изгибание. Непрерывная деформация – это деформация фигуры, при которой не происходит разрывов (то есть нарушения целостности фигуры) или склеиваний (то есть отождествления ее точек)».

Соотнесение Понтрягина с Л. Эйлером не случайно. Они оба были математиками от Бога, оба изучали топологию, оба были незрячие. Свыше 150 теоретических работ, насыщенных сложнейшими исследованиями, громоздкими формулами и выражениями, Понтрягин создал «в уме», не прибегая к бумаге.

Из-за несчастного случая (взорвался примус) Лев в 14 лет потерял зрение. И только благодаря своей матушке, Татьяне Андреевне, подросток не отчаялся и стал тем, кем стал. Много лет Татьяна Андреевна была личным секретарем сына – «читала ему вслух научную литературу, вставляла формулы в его научные рукописи, правила корректуру его работ и т. п. Для этого ей пришлось, в частности, научиться читать на иностранных языках».

Как Эйлер, Лев Семенович занимался не только теоретическими, но и прикладными исследованиями. Достаточно упомянуть, что его работы содействовали успешному конструированию ракет дальнего действия и развитию космонавтики, за что автор был избран в 1966 г. почетным членом Международной академии астронавтики. Открытый математиком т. н. «принцип максимума» стал универсальным математическим средством поиска оптимальных режимов всевозможных процессов: расходования топлива при запуске ракеты, экономичной работы ядерного реактора, наилучшей схемы электропривода и т. д. А в самой математике этот «принцип» лег в основу новой ее области – теории оптимального управления. Монографии «Теория оптимальных процессов. I. Принцип максимума» (1961) была присуждена Ленинская премия. Многие работы математика легли в основание вариационного исчисления.

Топологическими проблемами Понтрягин увлекся на семинаре П.С. Александрова. В топологии ученый открыл общий закон двойственности и построил теорию характеров непрерывных групп. В 1938 г. вышла монография ученого «Теория топологических коммутативных групп» («Непрерывные группы»). Книгу тут же перевели на английский и другие языки и затем неоднократно издали за рубежом. В 1941 г. за эту работу автору была присуждена Сталинская премия. Коммутативные группы назвали «группами Понтрягина».

Эта теория стала «первым выдающимся достижением в новом математическом направлении – топологической алгебре и одним из фундаментальных продвижений всей математики XX столетия». За 15 лет, с 1935 по 1950 г., Понтрягин создал методы, вызвавшие бурный расцвет алгебраической топологии, не потерявшие своего значения и сегодня. Математиком был предложен метод оснащенных многообразий, открыты классифицирующие пространства, создана теория когомологических операций.

Открытые математиком т. н. «характеристические классы Понтрягина» являются ныне одним из важнейших инструментов алгебраической топологии. Активно развивали работы своего учителя ученики академика – М.М. Постников, В.Г. Гамкрелидзе, Е.Ф. Мищенко и др.

Достижения Понтрягина в топологии сегодня востребованы повсюду – во многих разделах математики, в математической физике, химии, в интегральных микросхемах, локальных сетях соединений компьютеров и т. д.

В прошлом веке имя Понтрягина знал весь математический мир – не только за блестящие работы. Ученый неоднократно выступал с докладами на международных конференциях в Болгарии, Великобритании, Италии, Канаде, США, Финляндии, Франции, ФРГ, Швейцарии, Швеции. В ряде зарубежных стран Лев Семенович читал лекции, пользовавшиеся неизменным успехом.

Понтрягин был боец.

Для него ничего не значил «авторитет», если за ним не стояло личности. Уже на склоне лет Лев Семенович нашел в себе силы бороться против пресловутого проекта «поворота рек», дошел до ЦК КПСС, и во многом отказ от этой безумной затеи был осуществлен благодаря нему.

В 1970-х гг. Понтрягин принял деятельное участие в обсуждении проблемы преподавания математики в средней школе. Он резко протестовал против заимствованного на Западе нового стиля преподавания математики, против вновь созданных, в корне отличающихся от прежних учебников. (Ситуация удивительно напоминает сегодняшние времена!) И здесь ученый тоже победил! Благодаря Понтрягину Россия в последней четверти XX в. получила много достойных математиков, воспитанных не только в математической школе самого Понтрягина, но и в средних школах страны.

Научную деятельность Лев Семенович совмещал с активной преподавательской деятельностью. Ученый курировал издание математической литературы, занимался вопросами школьного образования, создал замечательный учебник по дифференциальным уравнениям, многократно издававшийся в СССР и за рубежом, удостоенный Государственной премии, написал для школьников несколько книг из серии «Знакомство с высшей математикой» – «Анализ бесконечно малых» и «Алгебра».

В конце этого небольшого очерка хотелось бы еще раз сказать о главном несчастье Понтрягина – его слепоте. Вот каким увидел ученого хорошо знавший его В.В. Кожинов: «Позволю себе высказать мнение (хотя его, возможно, будут оспаривать), что утрата зрения не только не мешала достижениям Льва Семеновича, но, напротив, как-то способствовала им, ибо вообще люди высшего уровня – чему есть немало примеров – способны превращать свои утраты и невзгоды в обретения и торжества. Правда, для этого потребны, конечно, поистине исключительные духовые силы…

Вообще можно с полным правом сказать, что Лев Семенович Понтрягин был едва ли не самым зрячим из своих коллег».

МАТЕМАТИЧЕСКИЙ КОСМОС КЕЛДЫША

Математик, механик, государственный деятель, организатор науки, профессор МГУ, директор Института прикладной математики АН СССР; академик и президент АН СССР, член 17 иностранных академий и научных обществ, почетный доктор 6 зарубежных университетов, председатель Комитета по Ленинским и Государственным премиям при Совете Министров СССР, депутат Верховного Совета СССР трех созывов; лауреат премии им. Гуггенгейма Международной академии астронавтики, Ленинской и двух Сталинских премий, кавалер 7 орденов Ленина, трех орденов Трудового Красного Знамени, Золотой медали им. К.Э. Циолковского АН СССР, Большой золотой медали им. М.В. Ломоносова АН СССР, высших орденов и медалей других стран, трижды Герой Социалистического Труда, Мстислав Всеволодович Келдыш (1911–1978) является автором многих открытий, послуживших основой для современной аэродинамики, вычислительной математики, ядерной и вычислительной техники. Главным научным достижением ученого стали его труды по развертыванию и проведению космических исследований, а также работы по ракетно-космической технике.


Математики – особый народ. Их труды вершатся в заоблачных высях теорий, которые часто оказываются основаниями сугубо практических дел – ракетно-ядерного оружия, например. Или крылатых и космических ракет и кораблей – именно им обязан Келдыш своим взлетом как математика, а они, в свою очередь, обязаны ему своим полетом.

Мстислав Всеволодович Келдыш – уникум, в 25 лет решивший ряд задач по предотвращению разрушения самолетов, которые не могли разрешить самые маститые ученые Европы и Америки, в 27 лет ставший доктором наук и в 35 лет – академиком АН СССР.

У Келдыша множество классических работ. Не будем утомлять их перечислением, скажем лишь, что труды ученого, посвященные теории функций действительного и комплексного переменного, уравнениям с частными производными, функциональному анализу и т. д. были востребованы сразу тремя направлениями науки и техники. На протяжении 40 лет авиационные конструкторы, физики-ядерщики и конструкторы космических объектов никак не могли поделить математика между собою. Может, поэтому он в каждом из них оставил свой след.

В авиации ученый победил флаттер (внезапную тряску самолета, за 1–2 секунды разрушающую корпус или отдельные его части) и шимми (колебания в системе «колесо-стойка» – «танец переднего колеса»). Эти проблемы, связанные с увеличением скорости полета, были камнем преткновения для ученых, занятых самолетостроением, пока Келдыш не решил их теоретически и не предложил инженерные варианты.



М.В. Келдыш


Ракетной техникой Келдыш занялся во второй половине 1940-х гг., когда работал в Центральном аэрогидродинамическом институте (ЦАГИ) и одновременно возглавлял в курчатовской Лаборатории № 2 (ЛИПАН) математическое расчетное бюро. Параллельно ученый занимался еще разработкой методов работы на быстродействующих вычислительных машинах, а также руководил организацией вычислительного центра ПГУ. Мстиславу Всеволодовичу отводилась решающая роль в работах ядерщиков. По словам академика Н.Н. Семенова, «именно Келдыш должен был обеспечить наиболее ответственное из заданий Лаборатории № 2, связанное с решением ряда задач, необходимых для конструирования основного объекта (атомной бомбы. – В.Л.)». В середине 1950-х гг. Мстислав Всеволодович был председателем комиссии по приемке законченных проектов ракетного оружия. Спустя много лет, когда с ядерных работ была снята завеса секретности, в печати стали открыто писать, что «именно академику Келдышу принадлежит решающая роль в расчетах как атомной, так и водородной бомбы».

Что же касается трудов математика, связанных с расчетами полетов искусственных спутников Земли (ИСЗ), автоматических межпланетных станций и космических кораблей, практически все они были воплощены в конкретные дела и стали событиями мирового уровня.

Вывод первого в мире ИСЗ на околоземную орбиту 4 октября 1957 г.

Полет в сторону Луны первой ракеты «Луна-1» (1959).

Облет и фотографирование обратной стороны Луны ракетой «Луна-3» (1959).

Полет корабля «Восток», пилотировавшийся первым в мире летчиком-космонавтом Ю.А. Гагариным 12 апреля 1961 г.

Первый выход в открытый космос космонавта А.А. Леонова (1965).

1950–1960-е гг. называют ныне годами освоения космического пространства. Они достойно продолжили эпоху создания ядерного щита страны и совпали с временем мирного использования атомной энергии – «это был золотой век отечественной науки» (президент РАН Ю.С. Осипов).

Освоение космоса привело, в частности, к появлению целого ряда наук и технических устройств – космической физики, например, спутников-ретрансляторов и спутников связи, существенно улучшивших радио– и телевизионные передачи на всем земном шаре.

Каждый новый полет в космос был на слуху, о нем знал весь мир, хотя до поры до времени никто не ведал, что главными виновниками торжества советской космонавтики были два человека – главный конструктор С.П. Королев и «Теоретик космонавтики» – М.В. Келдыш.

Многие ученые той поры были своего рода айсбергами науки. Помимо открыто признаваемых заслуг у них были не меньшие – скрытые от общества. Так и Келдыш, являясь научным руководителем опытно-конструкторских работ, внес неоценимый вклад в расчет и конструирование беспилотных баллистических и крылатых ракет, в том числе межконтинентальных. Принципиально новые для того времени задачи баллистики, астронавигации и длительной теплозащиты сверхзвуковых крылатых аппаратов были решены им. Участвуя совместно с С.П. Королевым в создании межконтинентальной составной баллистической ракеты, Келдыш определил ее оптимальные схемы, характеристики и оптимальную программу управления.

По данным академика Т.М. Энеева, в кратчайшие сроки коллектив, руководимый Келдышем, получил главные результаты для успешного развития ракетно-космической техники.

«В 1953 г. был впервые предложен баллистический спуск космического аппарата с его орбиты на Землю…

В 1954 г. был предложен первый конкретный вариант системы гравитационной (пассивной) стабилизации и ориентации ИСЗ и построена теория такой стабилизации.

На базе ранее проведенных работ… была разработана методика расчета оптимальной программы выведения ИСЗ на его орбиту.

Была исследована динамика движения ИСЗ в поле тяготения Земли и разработана методика определения времени его пребывания на… орбите.

Наконец, были проведены первые в тот период работы по проблеме достижения Луны и окололунного пространства…

После запуска первого ИСЗ… в механике космического полета практически не было более или менее серьезных вопросов, которые в той или иной мере не были затронуты М.В. Келдышем и его сотрудниками».

Перечислим некоторые из них:

– обеспечение слежения за полетами ИСЗ и других космических аппаратов;

– определение орбиты ИСЗ;

– создание баллистического вычислительного центра, разработавшего многомашинные высокопроизводительные информационно-вычислительные комплексы;

– комплексное баллистическое проектирование полетов космических аппаратов к Луне, Марсу и Венере;


  • Страницы:
    1, 2, 3, 4, 5, 6, 7