Современная электронная библиотека ModernLib.Net

Внимание глубина

ModernLib.Net / Спорт / Тюрин В. / Внимание глубина - Чтение (стр. 2)
Автор: Тюрин В.
Жанр: Спорт

 

 


      Наверное; не требуется доказывать, что ныряние требует крепкого здоровья, физической тренированности, специальных навыков. Поговорим о физиологических возможностях ныряльщика.
      При нырянии с задержкой дыхания производится большая физическая работа: напряжение кислорода в крови быстро падает, напряжение углекислого газа быстро растет. Охлаждающее действие воды еще больше усиливает интенсивность потребления кислорода, и в организме быстро развивается кислородная недостаточность. Кроме того, при нырянии резко увеличивается давление на организм. Таким образом, возможности ныряльщика зависят прежде всего от того, как долго он способен задерживать под водой дыхание без возникновения кислородного голодания головного мозга, от того, способен ли он безболезненно переносить повышение окружающего давления со скоростью 0,1-0,12 кгс/см 2/в секунду.
      Длительность произвольной задержки дыхания у нетренированного человека невелика. У взрослых здоровых людей она в состоянии покоя после обычного вдоха составляет в среднем 54,5 секунды, а после обычного выдоха 40 секунд. Но тренировки и гипервентиляция значительно ее увеличивают.
      Японские морские девы “ама” после гипервентиляции остаются под водой до 4 минут. Отдельные же ныряльщицы - ловцы губок - по данным японских исследователей Терука и Течнока находились под водой на глубине 20-30 метров до 8,5 минуты.
      Еще больше увеличивает время задержки дыхания гипервентиляция кислородом. Исследования показали, что если гипервентиляция воздухом увеличивает время задержки дыхания в среднем в полтора раза, то гипервентиляция кислородом - в три раза. Шнейдером в 1930 году наблюдался случай, когда после предварительного усиленного дыхания кислородом задержка дыхания длилась 15 минут 13 секунд. По данным Одажлии (1965 год) здоровые молодые люди после дыхания кислородом могли задерживать его от 3,1 до 8,5 минуты. После 10-минутной гипервентиляции кислородом продолжительность задержки дыхания увеличивалась до 6-14 минут. Рэн считает, что после дыхания кислородом под абсолютным давлением равным 2 кгс/см 2человек может выдержать остановку дыхания в течение 30 минут при условии, если предшествовавшая гипервентиляция компенсирует накопление углекислого газа.
      Но нырять, не зная своих возможностей, опасно. Можно ли заранее теоретическим путем определить, на сколько времени безопасно для вас задерживать дыхание? Можно. Но предварительно давайте в общих чертах познакомимся с таким жизненно важным для организма человека процессом, как дыхание.
      Состав земной атмосферы постоянен и содержит кислорода 20,95, азота 78,08, углекислого газа 0,03 процента, гелия, аргона, неона, ксенона, криптона и водяных паров около 1 процента. Но атмосферный воздух не участвует непосредственно в газообмене организма. Венозная кровь вступает в газообмен с альвеолярным воздухом легких, состав которого существенно отличается от атмосферного. Атмосферный же воздух служит лишь для так называемого внешнего дыхания, т.е. для вентиляции альвеолярного воздуха.
      Таблица 1. Состав альвеолярного воздуха.
Наименование газов Содержание в % Парциальное давление в мм рт.ст. Кислород 13,0-14,4 100-110 Углекислый газ 4,9-5,9 37-45 Азот 73,5-76,0 558-576 Водяные пары 6,2 47       Состав альвеолярного воздуха всегда постоянен и даже незначительное изменение в его компонентах приводит к резким сдвигам в организме, которые могут вызвать патологические состояния, например кислородное голодание при свободном нырянии. Нормальной же и естественной реакцией на изменение состава альвеолярного воздуха при нырянии с задержкой дыхания является возбуждение дыхательного центра. Возбуждение дыхательного центра происходит в первую очередь из-за определенного повышения в альвеолярном воздухе парциального давления углекислого газа. Возбуждающим образом действует и определенное понижение парциального давления кислорода. В связи с этим должно быть ясно, почему у различных людей, несмотря на значительную разницу в продолжительности задержки дыхания, газовый состав альвеолярного воздуха после задержки дыхания практически одинаков.
      Таким образом, можно прийти к выводу, что длительность пребывания ныряльщика под водой зависит от максимальной емкости его легких, величины физической нагрузки и влияния внешней среды, но главное, от скорости изменения содержания в альвеолярном воздухе кислорода и углекислого газа. Обусловлена же эта скорость тренированностью организма на выносливость, т.е. его способностью экономно расходовать запасы кислорода.
      Отсюда вытекает, что время пребывания под водой для ныряльщика ориентировочно можно определить по формуле:
       t = К(МЕЛ/ПКМ)
       где t - время пребывания под водой в минутах; К - коэффициент, определяющий количество кислорода, которое может быть использовано организмом из альвеолярного воздуха без возникновения кислородного голодания головного мозге; МЕЛ - максимальная емкость легких; ПКМ - потребление кислорода в литрах в минуту.
      Сущность коэффициента К - разность между начальным процентным содержанием кислорода в альвеолярном воздухе и минимально допустимым процентом его, при котором еще не возникают явления кислородного голодания головного мозга. Этот коэффициент будет иметь различную величину в зависимости от интенсивности гипервентиляции, предварительного дыхания кислородом и индивидуальной чувствительности к понижению процентного содержания кислорода в альвеолярном воздухе.
      Наши исследования, проводимые с физически здоровыми мужчинами различного возраста, показали, что предобморочное состояние возникало у хорошо тренированных людей при снижении процентного содержания кислорода во вдыхаемом воздухе до 3,2-4,9 процента, у мало тренированных - до 5 - 7 процентов и у плохо тренированных до 7,1-10 процентов.
      В альвеолярном воздухе кислорода содержится 14 процентов, и поскольку предобморочное состояние у хорошо тренированных людей возникает в среднем при снижении его содержания до 4 процентов, то для физически развитых мужчин, ныряющих без предварительной гипервентиляции, коэффициент К будет равен:
       К = (14—4)/100 = 10/100 = 0.1
      В случае гипервентиляции, когда альвеолярный воздух содержит до 17 процентов кислорода, коэффициент К для них будет:
       К = (17—4)/100 = 0.13
      Для плохо тренированных людей, у которых явление кислородного голодания развивается при 7 процентах кислорода во вдыхаемом воздухе, коэффициент К равен 0,07 ((14-7)/100 = 0.07)
      Потребление кислорода в минуту (ПКМ) зависит от температуры воды, интенсивности работы и от физической тренированности организма на выносливость. Как показали расчеты, для рекордсменов-ныряльщиков Жака Майоля и Роберта Крофта, которые производят гипервентиляцию легких, ПКМ ориентировочно составляет в состоянии покоя 116,1-325 см 3, а при нырянии - 216,6; 290,4; 335,6; 464,4 см 3(см. таблицу ).
      Для менее тренированных людей, и не имеющих к тому же достаточных навыков в нырянии, величина потребления кислорода в минуту при прочих равных условиях будет, безусловно, большей, а, следовательно, время задержки дыхания будет соответственно меньше.
      Если вы собираетесь заняться подводной фотоохотой или спортивной подводной стрельбой, то, зная максимальную емкость своих легких, тренированность и потребление кислорода, которое при плавании под водой составит в среднем 1 литр в минуту, сможете легко рассчитать время безопасного для себя пребывания под водой. Так, для человека, у которого МЕЛ составляет 5 литров, тренированность недостаточна и К, не превышает 0,07, время безопасного пребывания под водой после минутной гипервентиляции легких составит 21 секунду (T = 0.07(5/1) = 35/100 минут или 21 секунда).
      Повышение наружного давления при нырянии в глубину сопровождается соответствующим уменьшением объема воздуха в легких. Сжатие воздуха в легких имеет свои пределы, так как естественная подвижность диафрагмы и грудной клетки имеют определенные ограничения.
      До последнего времени считалось, что безопасным минимальным объемом воздуха в легких на глубине может быть остаточный воздух, т.е. воздух, остающийся в легких после максимального выдоха. Предполагалось, что дальнейшее повышение окружающего давления не будет уравновешиваться противодавлением изнутри и грудная клетка должна будет взять эту дополнительную нагрузку на себя, что приведет к ее разрушению. Отсюда вытекало, что безопасно допустимая глубина ныряния, исходя из максимальной емкости легких и величины остаточного воздуха, может быть рассчитана по формуле:
       H = (МЕЛ*10)/ОВ — 10
       где Н – безопасно допустимая глубина в метрах; ОВ – остаточный воздух; МЕЛ – максимальная емкость легких.
      Если максимальная емкость легких будет 5 литров, а остаточный воздух принять за один литр, то, подставив цифры в формулу, найдем, что безопасно допустимая глубина ныряния составляет 40 метров. Эта формула позволяет также пересчитать, до какой степени уменьшился объем воздуха в легких на достигнутой ныряльщиком глубине.
      Соответствующие расчеты показывают, что при нырянии на глубину 60,35 метра у Жака Майоля воздух в легких сжался до 746 кубических сантиметров, что на 304 кубических сантиметра меньше, чем объем остаточного воздуха, имевшегося у него на поверхности, а при нырянии на глубину 70,4 метра до 653 кубических сантиметров, что на 397 кубических сантиметров меньше величины остаточного воздуха, имевшегося на поверхности, и т. д.
      Таблица 2. Изменение максимальной емкости легких (МЕЛ) у рекордсменов при нырянии на различную глубину.
Глубина Ж-Майоль ОВ-1050 МЕЛ-5250 Р. Крофт ОВ-1500 МЕЛ-7500 Р. Крофт ОВ-8500 МЕЛ-8500 Примечание Объем воздуха легких на глубине, см 3 0 5250 7500 8500 Безопасная зона ныряния 10 2625 3750 4250 Ж. Майоля и Р. Крофта 20 1750 2500 2833 30 1312,5 1875 2125 40 1050 1500 1700 50 875 1250 1416 Допустимая зона ныряния 60 750 1071 1500 Ж. Майоля и Р. Крофта 60,35 746 — — Рекорд Ж. Майоля, 1966 г. 64,7 — 1004 1138 Рекорд Р. Крофта, 1967 г. 70 656 937,5 1062 70,4 653 — — Рекорд Ж. Майоля, 1968 г. 73 — — 1024 Рекорд Р. Крофта, 1968 г. 76 610,4 — — Рекорд Ж. Майоля, 1971 г. 80 583 833 944,4 Опасная зона ныряния 90 525 750 850 для Ж. Майоля и Р. Крофта       Достижения Жака Майоля и Роберта Крофта опровергают распространенное мнение о том, что воздух легких не может сжиматься до объема меньшего, чем имеет остаточный воздух, без опасных последствий для организма. Их достижения дают основание считать, что выравнивание давления в грудной полости с окружающим идет не только за счет сжатия воздуха в легких, но в большей степени обеспечивается соответствующими физиологическими компенсаторными реакциями (ФКР), которые во многом зависят от особенностей физического развития и тренированности ныряльщика. Но в этих условиях безопасность гарантируется лишь в том случае, если объем воздуха, находящегося в легких, на глубине будет больше или равен величине остаточного воздуха за вычетом объема легких, который заполняется кровью и лимфой за счет различных физиологических компенсаторных реакций организма (V фкр).
       МЕЛ r? ОВ — V фкр
      Основными физиологическими компенсаторными реакциями, обеспечивающими безболезненное выравнивание давления воздуха в легких с окружающим давлением на глубине, могут быть:
      - хорошая подвижность и эластичность грудной клетки;
      - хорошая подвижность диафрагмы;
      - развитая мускулатура грудной клетки и брюшного пресса;
      - хорошая эластичность легочной ткани (отсутствие обызвествленных очагов, силикоза, спаек, каверн и т. д.);
      - отличное функциональное состояние сердечно-сосудистой и лимфатической систем, позволяющее переносить без вреда перенаполнение кровью и лимфой сосудов, расположенных в грудной клетке.
      Резервные возможности организма очень индивидуальны, и поэтому трудно четко определить, насколько может быть уменьшен объем остаточного воздуха легких без кровоизлияний, отека и особой формы баротравмы легких от разрежения у каждого из рекордсменов, и каким будет для каждого из них последний рубеж по глубине. Но одно ясно, что они подошли вплотную к опасной зоне, в которой увеличение глубины даже на один метр при условии полного расходования резервов физиологических компенсаторных реакций может быть роковым. Дальнейшее увеличение глубины погружения может повлечь за собой не только опасное перенаполнение кровью сосудов органов грудной клетки, кровоизлияние и отек легких, но и мельчайшие разрывы самой ткани легких. Это состояние, которое может возникнуть при уменьшении давления в легких на 80-100 мм рт.ст. относительно окружающего, будет последним грозным предостережением ныряльщику. Опасность возникновения баротравмы легких от разрежения еще больше возрастает, если ныряльщик под водой сделает непроизвольный вдох из-под маски. При попытке погрузиться на большую глубину, когда давление воды уже не будет полностью уравновешиваться противодавлением воздуха внутри легких и мышцами грудной клетки и брюшного пресса, произойдет обжим грудной клетки и ее разрушение.

Глава 5. О “МОРСКИХ РАЗБОЙНИКАХ”, КОТОРЫЕ ПРЕСЛЕДУЮТ ТОЛЬКО СПОРТСМЕНОВ-ПОДВОДНИКОВ

      Подводный спорт стал бурно развиваться в нашей стране с 1957 года, особенно после появления снаряжения отечественного производства. В настоящее время у нас насчитывается более трехсот тысяч аквалангистов, десятки тысяч разрядников, более четырехсот мастеров и кандидатов в мастера спорта. Советские спортсмены-подводники завоевали звание сильнейших в Европе, им принадлежит подавляющее большинство мировых рекордов в подводном спорте. И в то же время среди наших спортсменов-подводников очень редки несчастные случаи и специфические заболевания.
      С другой стороны известно, что в связи с развитием подводного спорта в стране отмечается некоторое увеличение несчастных случаев на воде. Происходят они в основном за счет неорганизованных любителей подводного плавания, пренебрегающих той истиной, что подводный спорт, как и все технические виды спорта, требует определенных знаний, строгого соблюдения правил спуска под воду и личной дисциплинированности.
      Пожалуй, здесь будет уместным напомнить восточную сказку “Али-Баба и сорок разбойников”. Очень много в ней поучительного для любителей подводных погружений. Возможно, у кого-то появится мысль, что нет, мол, в этой сказке ничего общего с подводным плаванием, даже моря нет. Но, вспомните! Перед тем, как войти в недра горы, Али-Баба, подобно новичку-ныряльщику, не только набирается храбрости, но и вдыхает побольше воздуха. А как только он переступает порог сезама, дверь, как и вода за ныряльщиком, захлопывается сама.
      Али-Бабе стало в пещере страшно - а вдруг дверь больше не откроется? Но он был осмотрителен, помнил, что надо делать, чтобы выйти наверх невредимым. Иначе вел себя жадный Касим: лишившись здравого смысла от увиденных сокровищ, он так и не мог выбраться из пещеры; разбойники отрубили ему голову. Осмотрительный же Али-Баба, строго выполнявший все правила, часто и безнаказанно посещал сезам, привозил сокровища, которых было так много, что он мог прокормить всех приходящих к нему в дом. Сезам был богат, как океан.
      Между посещением сказочного сезама и подводным плаванием очень много общего. Есть под водой, как и в сказке, свои “сорок разбойников”, которые, если вы не будете осторожны, могут лишить вас не только здоровья, но и жизни. Такими “разбойниками” для человека в подводном мире являются различные специфические водолазные заболевания. Одни из них, вроде баротравмы уха, могут сразу при входе в воду встретить вас звонкой “оплеухой”; другие выжидают свое время и при первой же оплошности неожиданно, как кислородное голодание, наносят удар из-за угла. Азотный наркоз старается одурманить, а холодовый шок - оглушить. У выхода из подводного царства стоят самые жестокие “разбойники” - баротравма легких и декомпрессионная болезнь. Стоит лишь допустить ошибку, и они нападут, принося тяжелейшие страдания.
      Таким образом, если вы хотите безнаказанно посещать подводный сезам, вам следует изучить все приметы и повадки подводных “разбойников”. Это необходимо не только для того, чтобы избежать встречи с ними, но и чтобы одолеть их, если уж встреча окажется неизбежной.
      Новички обычно считают, что опасность может возникнуть только при спусках на глубину с аквалангом, а ныряние, да еще на небольшую глубину, безопасно, доступно для всех. К сожалению, это не так: и при таком нырянии иногда могут возникнуть специфические водолазные заболевания, которые при плавании на поверхности воды никогда не отмечаются.
      Ныряние имеет пять периодов, и в каждом из них могут возникнуть те или иные патологические состояния (см. таблицу ). Деление этих патологических состояний по периодам весьма условно, так как отдельные заболевания, например кислородное голодание головного мозга, может возникнуть при определенных условиях почти во всех периодах ныряния - или как самостоятельное заболевание, или как осложнение других патологических состояний.
      К специфическим заболеваниям, наблюдаемым при нырянии и перечисленным в таблице 3, следует добавить еще ряд заболеваний, которые могут возникнуть у спортсменов-подводников при спусках с дыхательными аппаратами. К ним относятся: отравление выхлопными газами при наличии их в воздухе баллонов при спусках с аквалангами, кислородное отравление при спусках с дыхательными аппаратами регенеративного типа, азотный и гелиевый наркоз при спусках на большие глубины в вентилируемом и инжекторно-регенеративном снаряжении, декомпрессионная болезнь, баротравма легких, переохлаждение и гипогликемическая кома в результате истощения сил и длительного охлаждения.
      Кроме того, при определенных условиях, чаще всего связанных с неисправностью снаряжения, могут наблюдаться общий обжим, асфиксия, ожоги и отравления щелочами при использовании регенеративного снаряжения, перегревание при нахождении в гидрокостюме на солнце или при работе в нем в очень теплой воде, а также различные травмы в результате собственной неосторожности и, разумеется, ожоги медуз, нападение морских животных и ядовитые укусы рыб.
      Как видите, все “разбойники налицо”, и теперь мы даже знаем их имена.
      Таблица 3. Патофизиологические состояния организма человека, возникновение которых возможно при свободном нырянии на глубину без акваланга.
Периоды ныряния Внешние факторы, действующие на организм Возможные патофизиологические состояния и несчастные случаи I. Перед нырянием Гипервентиляция легких 1. Снижение напряжения углекислоты в крови в результате длительной гипервентиляции легких (гипокапния) 2. Непроизвольная остановка дыхания - апноэ, в результате резкой гипокапнии  3. Кислородное голодание головного мозга в результате длительной непроизвольной остановки дыхания 4. Утопление при потере сознания от кислородного голодания II. Погружение на глубину Повышение давления 1. Баротравма уха и придаточних полостей носа 2, Обжим лица маской 3. Боль в кариозных зубах, имеющих закрытую полость 4. Баротравма легких от разрежения воздуха, особенно при нырянии на выдохе 5. Общий обжим при нырянии в гидрокостюме 6. Паралич сердца в результате чрезмерного растяжения правого желудочка сердца кровью 7. Травма при ударе о подводные предметы (сваи, камни и т. п.) Охлаждающее действие воды 1. Головокружение, нистагм (маятниковое подергивание глазных яблок) и дезориентирование, как следствие раздражения вестибулярного аппарата холодной водой 2. Холодовыи шок при вхождении в зону температурного скачка или при нырянии в холодную воду III. Пребывание на глубине Ныряние на очень большую глубину или частичное вытравливание воздуха из дыхательных путей под водой 1. Баротравма легких от разрежения воздуха 2. Обжим грудной клетки Потеря ориентировки в результате отражения лучей от светлого дна 1. Кислородное голодание головного мозга, как результат длительного пребывания под водой 2. Переохлаждение 3. Утопление IV. Всплытие Понижение давления 1. Баротравма уха и придаточных полостей носа 2. Боль в кариозных зубах, имеющих закрытую полость 3. Кислородное голодание мозга, как следствие резкого снижения парциального давления кислорода в легких за счет уменьшения общего давления при всплытии 4. Расстройства гемодинамики при резком снижении наружного давления во время всплытия Потеря ориентировки в результате наличия “голубой пелены” 1. Кислородное голодание головного мозга как результат длительного пребывания под водой вследствие потери ориентировки 2. Травмы при ударе о предметы, плавающие на поверхности (дно шлюпки и т. д.) 3. Попадание под винты 4. Утопление V. После всплытия на поверхность Усиленное дыхание, как следствие накопления углекислого газа в организме вовремя пребывания под водой при нырянии 1. Непроизвольная остановка дыхания, как следствие затянувшегося усиленного дыхания 2. Кислородное голодание головного мозга в результате длительной непроизвольной остановки дыхания 3. Утопление - как следствие потери сознания при кислородном голодании в результате непроизвольной остановки дыхания

Глава 6. БЕРЕГИТЕ УШИ!

      Для многих нетерпеливых новичков знакомство с подводным миром начиналось с хорошей “оплеухи”. Она была расплатой за незнание того, что при плохой проходимости евстахиевых труб, а также во время простуды и насморка от ныряния необходимо воздерживаться.
      Возникновение баротравмы уха и придаточных полостей носа при нырянии и спусках с аквалангами одно из самых частых заболеваний, и поэтому целесообразно обо всем этом поговорить более подробно.
      Ткани тела человека легко переносят повышенное давление, но в организме имеются полости, заполненные воздухом (легкие, желудочно-кишечный тракт, полость среднего уха, гайморовы и лобные пазухи, а также пазухи решетчатой кости черепа). Все они сообщаются с атмосферой. При медленном и незначительном изменении наружного давления (во время восхождения на высоты или при спусках в шахты) давление в этих полостях выравнивается часто незаметно для нас. А вот при резком и значительном изменении наружного давления, как это бывает при спусках под воду, могут появляться боли в ушах и реже - придаточных полостях носа.
      Объясняется это тем, что выравнивание давления воздуха в полости среднего уха происходит более сложно, чем в других полостях, так как эта полость отделена от наружного слухового прохода барабанной перепонкой и соединяется с глоткой посредством узкого канала - евстахиевой трубой, наружное отверстие которой открывается только при глотании, разговоре, пении и зевоте.
      Если воздух хорошо проходит через евстахиеву трубу, то, спускаясь на дно, спортсмен-подводник не чувствует боли в ушах, так как давление в барабанной полости среднего уха легко выравнивается. Большинство спортсменов хорошо переносят скорость повышения давления до 0,1 кгс/см 2в секунду. Наиболее подготовленные аквалангисты могут переносить без вредных для себя последствий скорость повышения давления до 0,2-0,25 кгс/см 2в секунду, т, е. могут погружаться со скоростью 2-2,5 метра в секунду, как это делают ныряльщики на большие глубины Жак Майоль, Энцо Майорка, Роберт Крофт.
      В тех случаях, когда глотка воспалена (при насморке, ангине, катаре верхних дыхательных путей), евстахиевы трубы также воспаляются. Их стенки набухают, просвет уменьшается, и они становятся непроходимыми для воздуха. При повышении наружного давления воздух в полость среднего уха в этом случае не проходит, и происходит надавливание на барабанные перепонки. Надавливание на барабанные перепонки может возникнуть и при нормальной проходимости евстахиевых труб во время чрезмерно быстрого погружения на глубину, когда давление в среднем ухе не успевает выравниваться.
      Боли в ушах особенно часто возникают при погружении на первые 10 метров. Это происходит потому, что в этом случае резко возрастает давление от 1 до 2 кгс/см 2. Для его выравнивания в барабанной полости требуется вдвое увеличить количество воздуха, содержащегося в полости среднего уха (объем барабанной полости 1 кубический сантиметр. Объем воздуха в ячейках сосцевидной кости, которые сообщаются с барабанной полостью, также 1 кубический сантиметр). При дальнейшем погружении относительный перепад давления будет соответственно уменьшаться. Поэтому при изменении давления с одинаковой скоростью боли в ушах на больших глубинах возникают реже, чем на малых.
      При всплытии боли в ушах бывают реже и значительно слабее, так как расширяющийся воздух выходит из барабанной полости через зияющую костную часть евстахиевой трубы, беспрепятственно раздвигая ее стенки.
      Если состояние евстахиевых труб нормальное, то давление в барабанных полостях может быть выравнено произвольно. Исключение составляют те случаи, когда давление в полостях при спусках меньше окружающего давления на 1-1,3 м вод. ст. и мышцы, открывающие проход евстахиевых труб, не в состоянии преодолеть давление, поддерживающее хрящевую часть трубы в спавшемся состоянии. Помочь в данном случае может только снижение давления окружающей среды, для чего надо подвсплыть на 1-2 метра.
      При разности между наружным и внутренним давлением в 80 см вод. ст. боль в ухе становится резкой и напоминает состояние при остром отите. Повышение давления более 80 см вод. ст. сопровождается болью в ушах, которая становится нестерпимой и отдает в височную область, а также в околоушную железу и щеку. Боль, глухота и шум в ушах после этого могут продержаться от 4 до 48 часов. Боль носит такой же характер, как при гнойном воспалении среднего уха. При дальнейшем увеличении давления боль становится невыносимой и кажется локализованной не в ухе, а в глубине околоушной железы. Наступает заметное снижение слуха, иногда появляется шум в ушах. При разнице давлений в 130-260 см вод. ст. столба обычно происходит разрыв барабанной перепонки и появляется кровотечение из наружного слухового прохода. Острая боль после этого затихает, однако тупая держится еще 12-18 часов. Острота слуха понижается, а в течение 6-24 часов могут наблюдаться головокружение и тошнота.
      Во время всплытия с глубины повышение давления в барабанной полости до 39-65 см вод. ст. вызывает в большинстве случаев ощущение полноты в ушах. Это чувство становится неприятным и отражается на слухе вследствие появления слабого шума в ушах.
      Обычно при повышении давления в барабанной полости воздух свободно выходит через евстахиевы трубы. Это приводит к ослаблению сопутствующих симптомов. Такое улучшение начинается с неприятного “щелчка”, происходящего при возвращении барабанной перепонки в нормальное положение. Однако необходимо иметь в виду, что при быстром всплытии из-за резкого изменения давления в среднем ухе может появиться головокружение. Поэтому всплывать с глубины надо медленно.
      Разрывы барабанной перепонки при свободном нырянии наблюдаются очень редко. Они чаще всего происходят при затыкании наружных слуховых проходов ватой или пробками, а также при неумелом использовании сухих гидрокостюмов (например “Садко”, ГКП-4), в которых резиновый подшлемник плотно прилегает к ушной раковине. В свое время, чтобы предотвратить выпячивание барабанной перепонки из-за плотного прилегания ткани маски, доктор Тишков предложил шлем-маску с полусферами в области ушных раковин. К сожалению, это предложение не используется в конструкциях новых гидрокостюмов.
      Характерно, что при возникновении болей в ушах трудно определить направление давления. Так, опытный спортсмен-подводник В.А. Суетин, спускаясь в 1963 году в районе острова Кунашир (Курильская гряда) в “сухом” гидрокомбинезоне почувствовал боль в ушах, по привычке сделал продувание евстахиевых труб вместо подъема на 1-2 метра и оттягивания ткани капюшона для выравнивания давления в наружном слуховом проходе с подмасочным. В итоге разрыв барабанной перепонки. В 1967 году Виктор Андреевич второй раз порвал барабанную перепонку при следующих обстоятельствах. Погрузился на глубину 35 метров. Оставалось спуститься на каких-нибудь два метра до врача экспедиции В.Г. Страница, когда он почувствовал боль в ушах. Поскольку она была не очень резкой, В.А. Суетин решил пересилить ее и спустился ниже на два метра. Сразу почувствовал, как порвалась перепонка в одном ухе, и боль прекратилась в обоих ушах.
      - Первый раз я не знал, откуда давление, и потому действовал неверно. Второй раз знал, что давление преобладает в среднем ухе, но никак не думал, что так мало надо погрузиться, чтобы барабанная перепонка порвалась, - замечает пострадавший.
      Оба эти случаи произошли потому, что резиновый капюшон плотно прилегал к ушной раковине, Аналогичные явления отмечались и в случаях, когда в акваланге был на исходе воздух, а спортсмен делал резкий вдох; из подшлемного пространства, создавая тем самым перепад между давлением в наружном слуховом проходе и барабанной полости.
      Характерно, что в таких случаях разрыв барабанной перепонки происходит при слабых, часто даже не замечаемых пострадавшим болевых ощущениях. Иногда единственным симптомом является кровотечение из ушей.
      Объективные симптомы баротравмы уха зависят от серьезности полученной травмы. При слабых травмах барабанная перепонка может иметь нормальный вид, наблюдается лишь незначительное ее выпячивание или втянутость. Повышение давления в барабанной полости вызывает выпячивание барабанной перепонки с уменьшением или исчезновением светового конуса при ее осмотре с помощью специального зеркала и ушной воронки. Пониженное давление в барабанной полости характеризуется втянутостью барабанной перепонки при уменьшении размеров и яркости светового конуса. При более значительной травме перепонка воспаляется, наблюдается кровоизлияние.
      Разрывы барабанной перепонки обычно прямолинейны, обширны. Края свежих разрывов красные, а вся перепонка сильно воспалена. В наружном слуховом проходе, как правило, обнаруживается небольшое количество крови.
      При лечении баротравмы уха без разрыва барабанной перепонки очень хорошо помогает тепло (сухие или влажные повязки, грелки). Чтобы снять боли, в наружный слуховой проход можно вводить воду температуры плюс 43-44°С. Положительное действие оказывает также введение борного спирта, затыкание больного уха ватой и повязка. Наряду с этим, чтобы не занести в среднее ухо инфекцию, рекомендуется полоскание глотки и ротовой полости морской водой (раствором соли), кипяченой водой с добавлением на полстакана 3-4 капель настойки йода, слабым раствором марганцовокислого калия. В тяжелых случаях, кроме применения сухого тепла, полоскания глотки дезинфицирующими и вяжущими средствами, в течение первых 24 часов можно пользоваться болеутоляющими средствами. Если за этот срок заметного улучшения не наступает, то возможно острое инфекционное заболевание среднего уха или сужение евстахиевых труб.

  • Страницы:
    1, 2, 3, 4, 5, 6, 7