28. Сколько фаворитов? Эта задача, обычно решаемая с помощью алгебры, очень проста, если подойти к ней следующим образом. Раздадим сначала по 3 кренделя каждому из 30 гостей Королевы. У нас останется 10 кренделей. При этом все нефавориты получат все крендели, которые им причитаются, а каждому из фаворитов еще предстоит получить по 1 кренделю.
Следовательно, все оставшиеся крендели предназначаются фаворитам - по 1 кренделю каждому фавориту. Значит, фаворитов должно быть 10.
Проверка. Каждый из 10 фаворитов должен получить по 4 кренделя, что составляет 40 кренделей на всех фаворитов.
Каждый из остальных 20 гостей получит по 3 кренделя, что составляет еще 60 кренделей. 40+60=100. Следовательно, наше решение правильно.
29. Крендели и крендельки. Так как каждый крендель стоит столько, сколько один кренделек, то 7 кренделей стоят столько же, сколько 21 кренделек, а 7 кренделей и 4 кренделька - столько же, сколько 25 крендельков. С другой стороны, 4 кренделя и 7 крендельков стоят столько, сколько 19 крендельков (так как 4 кренделя стоят столько же, сколько 12 крендельков). Таким образом, разность в стоимости 25 и 19 крендельков составляет 12 центов. Значит, 6 крендельков (25-19=6) стоят 12 центов, 1 кренделек - 2 цента, а 1 крендель - 6 центов.
Проверка. 4 кренделя и 7 крендельков стоят 24+14=38 центов, а 7 кренделей и 4 кренделька стоят 42+8=50 центов, то есть действительно на 12 центов дороже, чем в первом случае.
30. В гостях у Герцогини, кухарки и Чеширского Кота.
Чеширский Кот должен обнаружить на подносе 2 кренделя:
после того как он съест половину кренделей и еще 1 крендель, на подносе не останется ничего. Соня должна обнаружить на подносе 6 кренделей: после того как она съест половину кренделей и еще 1 крендель, на подносе останется 2 кренделя для Чеширского Кота. Мартовский Заяц увидел на подносе 14 кренделей: после того как он съел 7 кренделей и еще 1 крендель, на подносе осталось 6 кренделей. Болванщик увидел 30 кренделей: после того как он съел 15 кренделей и еще 1 крендель, на подносе осталось 14 кренделей.
Таким образом, сначала на подносе было 30 кренделей.
31. Сколько дней работал садовник? Работая добросовестно, садовник может заработать самое большее 3*26=78 кренделей.
Он заработал только 62 кренделя. Значит, 16 кренделей, он не получил из-за того, что отлынивал от работы. Каждый день, который садовник отлынивал от работы, он теряет 4 кренделя (разность между 3 кренделями, которые мог бы получить за добросовестную работу, и 1 кренделем, который взыскивается с него за безделье). Следовательно, садовник отлынивал от работы 4 дня и работал добросовестно 22 дня.
Проверка. За 22 добросовестно отработанных дня садовник заработал 66 кренделей. За 4 дня, которые он отлынивал от работы, садовник вернул 4 кренделя. Таким образом, всего он получил 62 кренделя. 32. В котором часу?
Неправильный ответ, который обычно приходится слышать: в 6 часов. Правильный ответ: в 5 часов.
В 5 часов первый удар часов Королевы совпадает с первым ударом часов Короля. Второй удар часов Королевы приходится по времени на третий удар часов Короля. Третий удар часов Королевы совпадает с пятым ударом часов Короля. На этом бой часов Короля заканчивается, а часы Королевы еще должны пробить 2 раза.
33. Сколько человек заблудилось в горах? Назовем одной порцией количество припасов, которое один человек съедает за день. У 9 человек первоначально было 45 порций (запас провизии на 5 дней). На второй день у них осталось только 36 порций. На второй же день они повстречали вторую группу, и 36 оставшихся порций хватило всем на 3 дня.
Следовательно, всего должно было быть 12 человек. Значит, во второй группе было 3 человека. 34. Сколько пролито воды? На пятый день, когда вода была пролита, ее оставалось на 8 дней. Пролитой воды хватило бы погибшему на 8 дней.
Следовательно, пролито было 8 кварт воды.
35. Скоро ли на свободу? Когда тюремный надзиратель станет вдвое старше узника, разность их возрастов будет равна возрасту узника. Но разность возрастов не зависит от времени и по истечении срока заключения будет такой же, как сейчас, то есть равной 29 годам. Следовательно, в день выхода на свободу узнику исполнится 29 лет, а тюремному надзирателю, который вдвое старше, 58 лет.
Таким образом, узнику осталось провести в темнице еще 4 года.
36. Долго ли выбраться из колодца? Те, кто думают, что лягушка выберется из колодца за 30 дней, ошибаются: лягушка могла бы выбраться из колодца к вечеру на 28-й день.
Действительно, утром на 2-й день лягушка находится на высоте 1 фут над дном колодца, утром на 3-й день - на высоте 2 фута и т. д. Наконец, утром на 28-й день лягушка находится на высоте 27 футов над дном колодца. К вечеру того же дня она достигнет верха и вылезет из колодца, после чего ей уже не придется соскальзывать вниз.
37. Успеет ли велосипедист на поезд? Велосипедист рассуждал неверно: он усреднял расстояния, а не время. Если бы со скоростью 4 мили в час, 8 миль в час и 12 миль в час он двигался одно и то же время, то его средняя скорость действительно составила бы 8 миль в час, но большую часть времени он затратил на подъем в гору (со скоростью 4 мили в час), а меньшую - на спуск под гору (со скоростью 12 миль в час).
Нетрудно подсчитать, сколько времени он пробыл в пути.
Подъем в гору занял у него 1 ч, полчаса (или 30 мин) он затратил на передвижение по ровному участку дороги и треть часа (или 20 мин) на спуск под гору. Всего в пути он пробыл 1 ч 50 мин, опоздав к поезду на 20 мин.
38. Не опоздал ли пассажир на поезд? На первую станцию пассажир прибыл через минуту после того, как ушел поезд.
Десять миль в час - это одна миля за 6 мин или полторы мили за 9 мин. Таким образом, на следующую станцию поезд прибыл через 8 мин после того, как пассажир прибыл на первую станцию. На следующей станции поезд стоял 14 1/2 мин, поэтому у пассажира было в запасе 22 1/2 мин, чтобы успеть сесть на поезд на следующей станции. Четыре мили в час - это 1 миля за 15 мин, или полторы мили за 22 1/2 мин. На следующую станцию пассажир прибудет как раз вовремя, чтобы успеть сесть на поезд.
39. Далеко ли до школы? Разница во времени между опозданием на 5 мин и приходом за 10 мин до начала урока составляет 15 мин. Следовательно, если мальчик будет идти в школу со скоростью 5 миль в час, то он сэкономит 15 мин (по сравнению с тем, сколько он затратил бы на дорогу, если бы шел со скоростью 4 мили в час). Пять миль в час - это одна миля за 12 мин, а 4 мили в час - это 1 миля за 15 мин. Следовательно, идя быстрее, мальчик экономит по 3 мин на каждой миле, а 15 мин - на расстоянии 5 миль.
Значит, школа находится в 5 милях от дома.
Проверка. Идя со скоростью 5 миль в час, мальчик затрачивает на дорогу один час, а идя со скоростью 4 мили в час, - час с четвертью (за час он проходит первые 4 мили, а за четверть часа - последнюю милю), то есть 1 ч 15 мин. Разница по времени действительно составляет 15 мин.
40. Разве не печально? История действительно немного печальная, так как при подсчете барышей и убытков торговец произведениями искусства просчитался: в тот день он не только ничего не заработал, но и потерпел убыток в 20 долларов.
Попробуем разобраться, почему так получилось. Первую картину он продал с 10%-ной прибылью. От продажи ее он выручил 990 долларов. За сколько он купил ее? Так как прибыль составляет 10% не от 990 долларов, а от первоначальной стоимости картины, то 990 долларов - это 110% от первоначальной стоимости картины, или 11/10).
Следовательно, за картину торговец заплатил 10/11 от 990, то есть 990 долларов.
[Проверка. За картину торговец заплатил 900 долларов, 10% от 900 составляют 90 долларов, поэтому от продажи картины он выручил 990 долларов, получив при этом прибыль 90 долларов.] А как обстоит дело со второй картиной? От продажи ее торговец потерял 10% от ее первоначальной стоимости, поэтому вторую картину он продал за 90%, или 9/10, от ее первоначальной стоимости. Следовательно, при покупке второй картины торговец заплатил за нее 10/9 от 990 долларов, то есть 1100 долларов.
[Проверка. За вторую картину торговец заплатил 1100 долларов, 10% от 1100 составляют 110 долларов, поэтому он продал ее за 1100-110=990 долларов.] Таким образом, от продажи второй картины он потерпел убыток в 110 долларов, а от продажи первой картины получил прибыль всего 90 долларов. Следовательно, в тот день он потерял всего 20 долларов.
41. Кто старше? Прежде всего вычислим, через сколько дней часы Болванщика и Мартовского Зайца покажут одно и то же время. Так как часы Мартовского Зайца отстают с такой же скоростью, с какой спешат часы Болванщика, то в следующий раз они покажут одно и то же время, когда часы Болванщика уйдут вперед на 6 ч, а часы Мартовского Зайца отстанут на 6 ч. (На тех и других часах будет 6 ч, причем и те и другие часы будут показывать неверное время.) За сколько дней часы Болванщика уйдут вперед на 6 ч. За час они уходят вперед на 10 с, за 6 ч - на 1 мин, за сутки - на 4 мин, за 15 суток - на 1 ч, за 90 суток (дней на календаре) на 6 ч. Таким образом, через 90 дней на часах Болванщика и Мартовского Зайца стрелки снова будут показывать одно и то же время.
Нам неизвестно, в какой из дней января Болванщик и Мартовский Заяц поставили на своих часах точное время.
Но если бы это произошло в любой из дней, кроме 1 января, то день, когда часы Болванщика и Мартовского Зайца в следующей раз покажут одно и то же время (а это событие, как мы установили, произойдет через 90 дней), пришелся бы не на март, а на апрель (или даже на май). Следовательно, Болванщик и Мартовский Заяц могли сверить свои часы только 1 января. Но даже в этом случае их часы покажут в следующий раз одно и то же время в марте только при условии, если год високосный! (В этом читатель без труда убедится с помощью календаря: через 90 дней после 1 января в обычный год наступает 1 апреля, а в високосный год - 31 марта!) Тем самым доказано, что 21 день рождения Мартовского Зайца приходится на високосный год. Следовательно, Мартовский Заяц мог родиться в 1843, а не в 1842 году или 1844 году.
(Через 21 год после 1843 года наступает високосный 1864 год.) По условиям задачи только один из двух (либо Мартовский Заяц, либо Болванщик) родился в 1842 году.
Следовательно, в 1842 году родился Болванщик. Значит, Болванщик старше Мартовского Зайца.
Глава 5
42. Появление первого шпиона. C заведомо не может быть рыцарем, так как ни один рыцарь не стал бы лгать и утверждать, будто он шпион. Следовательно, C либо лжец, либо шпион. Предположим, что C шпион. Тогда показание A ложно, значит, A шпион (A не может быть шпионом, так как шпион C) и рыцарем может быть только B. Но если B рыцарь, то как он мог дать ложные показания, утверждая, будто A рыцарь? Следовательно, предположение о том, что C шпион, приводит к противоречию. Значит, C лжец. Тогда показание B ложно, поэтому B либо лжец, либо шпион. Но так как лжец B, то шпионом должен быть A. Следовательно, A может быть только рыцарем. Итак, A рыцарь, B шпион и C лжец. 43.
Глупый шпион. Ложное заявление, изобличающее шпиона, могло быть, например, таким: "Я лжец".
Рыцарь никогда не лжет и поэтому не станет утверждать о себе, будто он лжец. С другой стороны, лжец никогда не говорит правды и не станет признаваться, что он лжец.
Только шпион может сделать ложное признание, будто он лжец.
44. Еще один глупый шпион. Истинное заявление, изобличающее шпиона, могло быть, например, таким: "Я не рыцарь".
Действительно, ни рыцарь, ни лжец не могли бы сказать о себе такое. Рыцарь никогда не лжет и не станет утверждать, будто он не рыцарь. Лжец всегда лжет и не станет признаваться, что он не рыцарь. Значит, такое заявление мог бы сделать только шпион.
45. Хитрый шпион. Если бы A ответил на вопрос судьи "да", то тем самым он изобличил себя как шпиона, так как судья (вместе с присяжными) мог бы рассуждать следующим образом:
"Предположим, что B шпион. Тогда все трое обвиняемых дали бы правдивые показания, что невозможно, так как один из них лжец. Следовательно, B не может быть шпионом. Значит, его показание ложно, поэтому B лжец. Показание C также ложно, а поскольку C не лжец (ибо лжец B), то он шпион".
Таким образом, если бы на вопрос судьи C ответил "да", то он был бы изобличен как шпион. Зная это, C благоразумно ответил "нет", лишив тем самым суд возможности установить, шпион он или коренной житель. (Суду удалось лишь установить, что либо C рыцарь, а B шпион, либо C лжец, а A шпион, либо C шпион.)
46. Кто Мердок? Так как A утверждает, что он шпион, то A либо лжец, либо шпион. Аналогичным образом, так как C утверждает, что он шпион, C либо лжец, либо шпион.
Следовательно, из двух подсудимых A и C один лжец, а другой шпион. Значит, B рыцарь и дал на суде правдивые показания:
A шпион.
47. Возвращение Мердока. Если A Мердок, то все три показания истинны, что невозможно, так как один из троих подсудимых лжец. Если C Мердок, то все три показания ложны, что также невозможно, так как один из троих подсудимых рыцарь. Следовательно, Мердоком должен быть B.
48. Более интересный случай. Задачу невозможно было бы решить, если бы в условиях не было ссылки на то, что суд изобличил шпиона, после того как на него указал C: ведь мы знаем, что суд смог установить, кто из троих шпион, и это весьма важная "зацепка"!
Предположим, что C обвинил A в том, что тот шпион.
Располагая этими данными, судья не мог бы решить, кто шпион, поскольку они позволяют лишь утверждать, что либо A шпион, B лжец и C рыцарь либо B шпион, A рыцарь и C лжец, либо C шпион, A лжец и B рыцарь.
Таким образом, если C указал на A как на шпиона, то судья не мог бы изобличить настоящего шпиона.
Посмотрим теперь, что произошло бы, если бы C указал на B.
Тогда B обвиняли бы в том, что он шпион, двое: A и C.
Выдвинутые A и C обвинения либо оба истинны, либо оба ложны. Если бы они были оба истинны, то B действительно был бы шпионом, а так как A и C оба сказали правду, они оба должны были бы быть рыцарями ("вакансия" шпиона занята B). Но по условиям задачи среди подсудимых A, B и C не может быть двух рыцарей. Следовательно, предъявленные B обвинения в шпионаже ложны. Значит, B не шпион. Мог бы A быть шпионом? Нет, так как если бы A был шпионом, то взаимные обвинения B и C в шпионаже были бы ложны.
Следовательно, B и C были бы (оба) лжецами (что противоречит условиям задачи.) Остается единственно возможный случай: шпион C (B, обвинивший C в шпионаже, рыцарь, а A, обвинивший B, лжец).
Итак, если C указал на A как на шпиона, то судья не смог бы установить, кто из троих в действительности шпион. Но если C указал на B, то судья смог бы решить что шпион C. А так как судья знал, на кого показал A, то C должен был указать на B, и судья на основании полученных данных изобличил C в шпионаже.
49. Еще более интересный случай. Мы не знаем, что ответили A и B, поэтому нам необходимо рассмотреть четыре возможных случая: 1) A и B оба сказали "да":
2) A сказал "нет", B сказал "да"; 3) A сказал "да", B сказал "нет"; 4) A и B оба сказали "нет".
Все эти четыре случая встретятся нам и в следующих двух задачах, поэтому мы тщательно проанализируем их сейчас.
Случай 1: A и B оба сказали "да". Так как A утверждает, что он шпион, то A либо лжец, либо шпион (рыцарь не станет называть себя шпионом). Если A лжец, то он солгал и в том случае, когда утверждал., что занимается шпионажем. Следовательно, B солгал, утверждая, что A сказал правду. Значит, B не рыцарь, а поскольку A лжец, то B шпион, и, наконец, C должен быть рыцарем. Таким образом, если A лжец, то B шпион, а C рыцарь.
Предположим теперь, что A шпион. Тогда он сказал правду, поэтому B, утверждая, что A сказал правду, не погрешил против истины. Следовательно, B должен быть рыцарем. Но тогда C может быть только рыцарем. Таким образом, если A лжец, то B шпион, а C рыцарь. Запишем оба возможных варианта (1а и 1б)
случая 1 в следующем виде:
A B C 1а Рыцарь Шпион Рыцарь 1б Шпион Рыцарь Лжец
Случай 2: A сказал "нет", B сказал "да". Так как A отрицает, что он шпион, то A либо рыцарь, либо шпион (лжец солгал бы и сказал бы о себе, что он шпион). Если A рыцарь, то он сказал правду. Значит, B также сказал правду, когда заявил, что A сказал правду, поэтому B не может быть лжецом.
Следовательно, B должен быть шпионом. Но тогда C может быть только лжецом.
Если A шпион, то он солгал. Следовательно, B также солгал, когда утверждал, что A сказал правду. Значит, B лжец, и тогда C может быть только рыцарем. Оба возможных варианта случая 2 (2а и 2б) запишем в следующем виде:
A B C 2а Рыцарь Шпион Лжец 2б Шпион Лжец Рыцарь
Случай 3: A сказал "да", B сказал "нет". Так как A утверждает о себе, что он шпион, то (как и в случае 1) A должен быть лжецом или шпионом. Если A лжец, то он солгал, но тогда B сказал правду. Значит, либо B рыцарь (и C шпион), либо B шпион (и C рыцарь). Если A шпион, то он сказал правду, но тогда B солгал. Значит, B лжец и C рыцарь. Таким образом, в случае 3 возможны три варианта:
A B C 3а Лжец Рыцарь Шпион 3б Лжец Шпион Рыцарь 3в Шпион Лжец Рыцарь
Случай 4: A и B оба сказали "нет". Так как A отрицает, что он шпион, то (как в случае 2) A либо рыцарь, либо шпион. Предположим, что A рыцарь. Тогда A сказал правду, а B солгал. Следовательно, B лжец (а C шпион) или B шпион (а C лжец). Предположим, что A шпион. Тогда он сказал правду. Значит, B также сказал правду, поэтому B рыцарь (а C лжец). Таким образом, в случае 4 возможны три варианта (как и в случае 3):
A B C 4а Рыцарь Лжец Шпион 4б Рыцарь Шпион Лжец 4в Шпион Рыцарь Лжец
Для удобства сведем все четыре случая в одну таблицу.
Случай 1: A и B оба сказали "да"
A B C 1а Лжец Шпион Рыцарь 1б Шпион Рыцарь Лжец
Случай 2: A сказал "нет", B сказал "да"
A B C 2а Рыцарь Шпион Лжец 2б Шпион Лжец Рыцарь
Случай 3: A сказал "да", B сказал "нет"
A B C 3а Лжец Рыцарь Шпион 3б Лжец Шпион Рыцарь 3в Шпион Лжец Рыцарь
Случай 4: A и B оба сказали "нет"
A B C 4а Рыцарь Лжец Шпион 4б Рыцарь Шпион Лжец 4в Шпион Рыцарь Лжец
Обратимся снова к условиям задачи. После того как A и B ответили на вопросы судьи, тот сумел установить, что C не шпион. В случае 3 судья не мог бы установить, шпион ли C или рыцарь. В случае 4 судья не смог бы установить, шпион ли C или лжец. Но судья со всей определенностью заявил, что C не шпион. Значит, случаи 3 и 4 отпадают и остается либо случай 1, либо случай 2.
Когда судья утверждает, что C не шпион, ему известно, что A сказал правду. Тем самым судье известно, что A либо рыцарь, либо шпион. В случае 2 судья не смог бы определить, рыцарь ли A или шпион, и установить, кто шпион. Таким образом, остается только случай 1: судья знал, что A не мог быть лжецом (так как A сказал правду). Следовательно, A должен был быть шпионом.
50. Такой же интересный случай. Поскольку судья задал подсудимым A и B одинаковые вопросы, как и в предыдущей задаче, мы можем воспользоваться уже знакомой нам таблицей.
Рассмотрим тот момент судебного заседания, когда судья спросил подсудимого C, шпион ли тот. В этот момент судья не мог утверждать ни об одном из трех подсудимых, что тот заведомо не шпион, поскольку в противном случае судье пришлось бы освободить невиновного из-под стражи. Тем самым случаи 1 и 2 отпадают, так как в каждом из них судья бы знал, что C либо рыцарь, либо лжец, и освободил бы C.
Следовательно, нам остается рассмотреть случаи 3 и 4.
Как мог рассуждать судья, выслушав ответ подсудимого C? В случае 3 судье известно, что C либо шпион, либо рыцарь.
Если бы C на вопрос судьи ответил "нет", то судья не узнал бы ничего нового и не мог бы никого изобличить. Но если бы C ответил "да", то судья мог бы с уверенностью утверждать, что C шпион, так как рыцарь не мог бы сказать о себе, будто он шпион. Таким образом, в случае 3 как шпион был изобличен C.
В случае 4 судье известно, что C либо шпион, либо лжец.
Если бы C ответил "да", то судья не мог бы утверждать, что C шпион (так ответить мог бы и лжец, и шпион). Но если бы C ответил "нет", то судья установил бы, что C шпион, поскольку лжец не способен сказать правду и признаться, что он не шпион. Таким образом, в случае 4 C был бы также изобличен как шпион.
Интересно отметить, что ни вы, дорогой читатель, ни я не можем сказать, какой из двух случаев (3 или 4) имеет место в действительности, как не можем узнать, что ответил ("да" или "нет") C судье. Нам известно лишь, что судья смог определить, кто из обвиняемых шпион, поэтому либо все происходило, как в случае 3, и C ответил "да", либо все происходило, как в случае 4, и C ответил "нет". И в том и в другом случае C был изобличен как шпион, поэтому мы можем с уверенностью сказать, что C шпион.
51. Самый интересный случай из всех. Воспользуемся той же таблицей, которой мы пользовались при решении двух предыдущих задач.
1-й шаг. После того как B ответил на вопрос судьи, тот освободил одного из обвиняемых из-под стражи. В случаях 3 или 4 шпионом мог бы быть любой из трех подсудимых, и судья не мог бы снять обвинение ни с одного из них.
Следовательно, в действительности нам необходимо обратиться к случаям 1 и 2. В этих двух случаях C не может быть шпионом, а каждый из двух остальных обвиняемых может, поэтому судья отпустил на свободу C. Таким образом, нам известно, что C был освобожден из-под стражи и что имеет место либо случай 1, либо случай 2, а о случаях 3 и 4 мы можем теперь полностью забыть.
После того как C покинул зал суда, судья спросил, обращаясь либо к A, либо к B (к кому именно, мы не знаем), не шпион ли его сосед по скамье подсудимых, и получил ответ "да"
или "нет" (но какой именно, мы также не знаем). В случае 1 существуют 4 возможных варианта, в случае 2 - еще 4 варианта, что составляет вместе 8 вариантов. Половину из них можно исключить на основании того, что судья, получив ответ, смог решить, кто из двух (A или B) шпион.
Рассмотрим случай 1. Предположим, что судья задал вопрос подсудимому A. Если бы тот ответил "да" (признав тем самым, что шпион B), то судья мог бы исключить случай 1а, так как если A лжец и B шпион, то A, утверждая, что B шпион, не мог бы сказать правду. Исключив из этих соображений случай 1а, судья знал бы, что единственно возможным остается случай 1б и что A шпион. Если бы A ответил "нет", то судья не сумел бы изобличить шпиона, поскольку A мог бы оказаться либо лжецом (который солгал, утверждая, что B не шпион), либо шпионом (который сказал правду, утверждая, что B не шпион). Следовательно, в данной задаче A не мог ответить судье "нет". Таким образом, если судья обратился с вопросом к A, то A ответил "да" и был изобличен как шпион. Предположим теперь, что судья обратился к B и спросил того, шпион ли A. Если бы B ответил "да", то судья не смог бы изобличить шпиона (в чем читатель без труда убедится, рассмотрев оба варианта 1а и 1б: ни в одном из них B не мог бы ответить "нет"). Но если бы B ответил "нет", то судья пришел бы к выводу, что B шпион (случай 1б пришлось бы отбросить, так как в противном случае рыцарь B отрицал бы, что шпион A шпион). Таким образом, на вопрос судьи подсудимый B ответил бы "нет" и был бы изобличен как шпион. На этом анализ случая 1 завершается.
Случай 2 может быть проанализирован аналогичным образом, и мы приводим лишь общий ход доказательства, предоставляя читателю самостоятельно восполнить недостающие подробности.
Итак, в случае 2, если бы вопрос был задан подсудимому A, то для того, чтобы судья мог изобличить шпиона, тот должен был бы ответить "нет". При этом шпионом оказался бы сам A. Если бы вопрос был задан подсудимому B, то для того, чтобы судья мог изобличить шпиона, тот должен был бы ответить "да". Проверку этих утверждений мы предоставляем читателю (как я уже говорил, они лишь несущественно отличаются от приведенных выше рассуждений для случая 1).
Попытаемся теперь систематизировать все, что нам удалось узнать до сих пор.
В случае 1 либо судья адресовал свой третий вопрос подсудимому A, и тот, ответив "да", изобличил себя как шпиона, либо обратился с вопросом к подсудимому B, и тот, ответив "нет", изобличил себя как шпиона.
В случае 2 либо судья задал свой третий вопрос подсудимому A, и тот, ответив "нет", выдал себя как шпиона, либо судья адресовал свой третий вопрос подсудимому B, и тот, ответив "да", изобличил себя как шпиона. Таким образом, всего существуют четыре варианта:
Случай Ответ Шпион 1-й 2-й 3-й 1а Да Да Да A 1б Да Да Нет B 2а Нет Да Нет A 2б Нет Да Да B
2-й шаг. До сих пор мы могли обходиться без дополнительной информации о двух приятелях мистера Энтони.
Известно, что они либо оба решили задачу, либо оба не решили ее. Докажем, что они могли оба решить задачу.
Начнем с первого приятеля. Если бы мистер Энтони ответил ему утвердительно, то приятель понял бы, что имеет дело со случаем 1а и что шпион A. Если бы мистер Энтони ответил приятелю отрицательно, то тот не смог бы различить, имеет ли он дело со случаями 1б, 2а или 2б, и выяснить, кто из двух, A или B, шпион. Следовательно, первый приятель мог решить задачу только при одном условии: если мистер Энтони ответил на его вопрос утвердительно и имеет место случай 1а.
Обратимся теперь ко второму приятелю. Если бы мистер Энтони ответил ему утвердительно, то этот приятель понял бы, что имеет дело со случаем 2а и что A шпион. Но если бы мистер Энтони ответил ему отрицательно, то второй приятель не мог бы решить задачу. Таким образом, второй приятель мог бы решить задачу только в случае 2а при условии, что мистер Энтони ответил на его вопрос утвердительно. Но случаи 1а и 2а не могут иметь место одновременно. Следовательно, мистер Энтони не мог утвердительно ответить на вопросы обоих своих приятелей, поэтому неверно, что его приятели оба решили задачу. Следовательно, они оба не решили задачу (так как известно, что они либо оба решили, либо оба не решили задачу) и мистер Энтони ни одному из них не ответил на вопрос утвердительно. Тем самым случаи 1а и 2а отпадают, поэтому B должен быть шпионом.
Глава 6
52. Первый вопрос. Алиса ошиблась, записав одиннадцать тысяч одиннадцать сотен и одиннадцать как 11111, что неверно! Число 11111 - это одиннадцать тысяч одна сотня и одиннадцать! Для того чтобы понять, как правильно записать делимое, сложим одиннадцать тысяч, одиннадцать сотен и одиннадцать "столбиком":
11 000
1 100
11
- 12 111
Мы видим, что одиннадцать тысяч одиннадцать сотен и одиннадцать - это 12 111, то есть число, делящееся на 3 без остатка.
53. Еще одна задача на деление. Миллион, умноженный на четверть, равен четверти миллиона, а миллион, деленный на четверть, равен числу, четверть которого равна одному миллиону, то есть четырем миллионам.
Таким образом, правильный ответ на вопрос Черной Королевы:
четыре миллиона.
54. Задача на сложение и вычитание. Обычно на вопрос задачи отвечают: "Четыре шиллинга". Но если бы бутылка стоила 4 шиллинга, то вино, которое стоит на 26 шиллингов дороже, стоило бы 30 шиллингов, а вино и бутылка вместе стоили бы 34 шиллинга.
Правильный ответ: бутылка стоит 2 шиллинга, вино стоит 28 шиллингов.
55. Во сне или наяву? Если бы Черный Король накануне в 10ч вечера бодрствовал, то не мог бы вопреки истине считать, что он и Черная Королева почивают. Следовательно, Черный Король в это время спал. Но поскольку во сне он об всем судит превратно, то Черный Король ошибочно считал, что почивает и Королева. Следовательно, вчера в 10 ч вечера Черная Королева бодрствовала.
56. Во сне или наяву? В указанное время Король либо спал, либо бодрствовал. Предположим, что он не спал. Наяву Король обо всем судит здраво. Значит, Черная Королева спала. Но во сне она обо всем судит превратно, поэтому Черная Королева считала, что Король спит. Предположим теперь, что Король спал. Во сне он обо всем судит превратно, поэтому Черная Королева бодрствовала. Наяву Черная Королева обо всем судит здраво, поэтому считала, что Король спит.
Итак, независимо от того, спал Король или бодрствовал, Королева думала, что Король спит.
57. Сколько погремушек? Если Траляля проиграет пари, то у него будет половина от общего числа погремушек (или, что то же, столько же погремушек, сколько их у Труляля), поэтому до заключения пари у Траляля на одну погремушку больше, чем у Труляля. Если же Траляля выиграет пари, то у него будет на две погремушки больше, чем половина от общего числа погремушек. Кроме того, после выигрыша у Траляля окажется 2/3 от общего числа погремушек (или, что то же, вдвое больше погремушек, чем у Труляля), что на 1/6 от общего числа погремушек больше, чем половина от общего числа погремушек (1/2-1/3=1/6). Следовательно, приращение в 1/6 над половиной от общего числа погремушек то же самое, что приращение в 2 погремушки над половиной от общего числа погремушек. Значит, общее число погремушек равно 12, поэтому у Траляля 7 погремушек, а у Труляля 5.
Проверка. Если Траляля проигрывает пари, то у каждого из братцев становится по 6 погремушек. Если же Траляля выигрывает пари, то у него становится вдвое больше погремушек, чем у Труляля, - 8 против 4.
58. Сколько братьев и сестер? В семье Алисы и Тони четверо мальчиков и три девочки. У Тони три брата и три сестры, у Алисы четыре брата и две сестры.
59. Не по адресу. Утверждение о ровно трех письмах (из четырех), отправленных по адресу, означает то же самое, что утверждение о ровно одном письме, отправленном не по адресу. Следовательно, "выбирать" приходится между двумя случаями: когда по правильным адресам отправлены ровно три письма и ровно два письма. Но отправить по адресу ровно три письма невозможно, так как если три письма из четырех отправлены по адресу, то и четвертое письмо непременно отправлено по адресу. Следовательно, Королева отправила по адресу и не по адресу ровно по два письма.
60. Много ли земли? Обычно на вопрос задачи дают неправильный ответ: 11 акров. Если бы фермер действительно владел первоначально 11 акрами земли, то сборщик налогов отрезал бы у него 1 1/10 акра (что составляет 1/10 от 11 акров), и у фермера осталось бы 9 9/10 акра вместо 10, как того требуют условия задачи. Таким образом, 11 акров не могут быть правильным ответом.