Современная электронная библиотека ModernLib.Net

Великая Теорема Ферма

ModernLib.Net / Математика / Сингх Саймон / Великая Теорема Ферма - Чтение (стр. 20)
Автор: Сингх Саймон
Жанр: Математика

 

 


Неудивительно, что он отказывается отвечать на вопросы о том, над чем работает сейчас, но над чем бы Уайлс ни работал, не подлежит сомнению, что новая проблема никогда не захватит его с такой полнотой, как Великая теорема Ферма. «Ни одна другая проблема не будет означать для меня так много. Великая теорема Ферма была моей детской мечтой. Заменить ее не сможет ничто. Я доказал ее. Уверен, что попытаюсь решить какие-то другие проблемы. Некоторые из проблем очень трудны, и если мне удастся решить какую-нибудь из них, то это, несомненно, снова даст мне ощущение достижения. Но нет ни одной проблемы в математике, которая могла бы захватить меня так, как захватила Великая теорема Ферма.
      Мне выпало счастье осуществить в моей взрослой жизни то, что было мечтой моего детства. Я знаю, что это редкая удача, но если во взрослом состоянии вам представляется возможность заниматься чем-то таким, что значит для вас так много, то это занятие служит для вас наградой более высокой, чем что-либо еще. Доказав Великую теорему Ферма, я не мог не ощутить чувство потери, но в то же время меня охватило чувство бескрайней свободы. На протяжении восьми лет я был настолько поглощен ее доказательством, что не мог думать ни о чем другом. Я думал о теореме Ферма все время — с утра до ночи. Для размышлений об одном и том же — срок очень долгий. Теперь эта одиссея подошла к концу. Мой разум обрел покой».

Приложения

Приложение 1. Доказательство теоремы Пифагора

      Цель доказательства — убедиться в том, что теорема Пифагора верна для всех прямоугольных треугольников. Треугольник, изображенный на рисунке слева, может быть любым прямоугольным треугольником, так как длины его сторон не указаны, а обозначены буквами x, yи z. Справа из четырех одинаковых прямоугольных треугольников и наклоненного квадрата составлен квадрат больших размеров. Площадь большего квадрата — ключ к доказательству.
 
 
      Площадь большого квадрата можно вычислить двумя способами.
      1-й способ. Измеряем площадь большого квадрата как единой фигуры. Длина каждой стороны равна x+ y. Следовательно, площадь большого квадрата равна ( x+ y) 2.
      2-й способ. Измеряем площадь каждого элемента большого квадрата. Площадь каждого треугольника равна xy/2. Площадь наклонного квадрата равна z 2. Следовательно, площадь большого квадрата равна 4 ? (площадь каждого треугольника) + (площадь наклонного квадрата) = 4· xy/2 + z 2. 1-й и 2-й способы приводят к двум различным выражениям. Оба выражения должны быть равны, так как они представляют различные записи одной и той же площади. Следовательно,
       (x + y) 2= 4·xy/2 + z 2.
      Раскроем скобки и упростим полученные выражения:
       x 2+ 2xy + y 2= 2xy + z 2.
      Члены 2 xy, стоящие в левой и правой частях равенства, взаимно уничтожаются, и мы получаем
       x 2+ y 2= z 2.
      Это и есть теорема Пифагора!
      Приведенное доказательство остается в силе для любых прямоугольных треугольников. Длины сторон треугольника в нашем доказательстве обозначены буквами x, yи z, которые могут быть длинами сторон любого прямоугольного треугольника.

Приложение 2. Доказательство Евклида иррациональности числа ?2

      Цель Евклида состояла в доказательстве того, что число ?2 не представимо в виде дроби. Поскольку Евклид использовал доказательство от противного, первый шаг состоял в предположении, что верно противоположное утверждение, т. е. что число ?2 представимо в виде некоторой неизвестной дроби. Запишем эту дробь в виде p/ q, где pи q— два целых числа.
      Прежде чем приступать к самому доказательству, необходимо напомнить некоторые основные свойства дробей и четных чисел.
      1) Если взять любое число и умножить его на 2, то произведение должно быть четным. По существу, это определение четного числа.
      2) Если квадрат некоторого числа четен, то и само число должно быть четным.
      3) Наконец, дроби можно сокращать: 16/24 это то же самое число, что и 8/12. Чтобы убедиться в этом разделите числитель и знаменатель дроби 16/24 на общий множитель 2. Кроме того, число 8/12 это же самое, что и 4/6, а 4/6 это же самое, что и 2/3. Дробь 2/3 не подлежит дальнейшему сокращению, так как 2 и 3 не имеют общих множителей. Дробь невозможно сокращать до бесконечности.
 
      Напомним, что по мнению Евклида число ?2 не представимо в виде дроби. Но поскольку Евклид использовал доказательство от противного, он начал с предположения, что дробь p/ q, равная числу ?2, существует, а затем исследовал, к каким последствиям приводит такое предположение:
      ?2 = p/ q.
      Возводя обе части равенства в квадрат, получаем
      2 = p 2/ q 2.
      После несложного преобразования запишем это равенство в виде
       2q 2= p 2.
      Из 1) мы знаем, что число p 2должно быть четным. Кроме того, из 2) нам известно, что число pтакже должно быть четным. Но если pчетно, то, как следует из 1), его можно записать в виде 2 m, где m— некоторое другое целое число. Подставляя p= 2 mв равенство для p 2, получаем
       2q 2= (2m) 2= 4m 2.
      Сокращаем правую и левую части равенства на 2:
       q 2= 2m 2.
      Рассуждая так же, как прежде, заключаем, что число q 2должно быть четным. Значит, и само число qдолжно быть четным. Но если это так, то qможно записать в виде q= 2 n, где n— некоторое другое целое число. Возвращаясь к исходной записи числа ?2, получаем:
       ?2 = p/q = 2m/2n.
      Дробь 2 m/2 nможно сократить, разделив числитель и знаменатель на 2:
       ?2 = m/n.
      Мы получаем дробь m/ n, которая проще, чем p/ q(имеет меньший числитель и знаменатель). Теперь мы как бы снова оказались находимся на исходной позиции, и, проделав с дробью m/ nвсе, что мы проделали с дробью p/ qn, получим в результате еще более простую дробь, например, g/ h. Проделав с этой дробью тоже самое, приведем ее к еще более простой дроби t/ f, и т. д. Аналогичную процедуру можно проделывать бесконечное число раз. Но из 3) мы знаем, что дробь невозможно упрощать бесконечно — всегда существует простейшая дробь. Но наша исходная гипотетическая дробь p/ q, насколько можно судить, не подчиняется этому правилу. Следовательно мы получили противоречие. Итак, мы можем утверждать, что число ?2 не представимо в виде дроби, а это означает оно является иррациональным числом.

Приложение 3. Загадка о возрасте Диофанта

      Обозначим продолжительность жизни Диофанта через L. Из загадки нам известно, как протекала жизнь Диофанта: 1/6 жизни, т. е. L/6, пришлась на его детство; L/12 — на юношеские годы; L/7 прошла прежде, чем он женился; через 5 лет у него родился сын; сын прожил L/2 жизни отца; 4 года Диофант оплакивал смерть сына прежде, чем умер.
      Таким образом, продолжительность жизни Диофанта Lможно записать в виде суммы:
       L = L/6 + L/12 + L/7 + 5 + L/2 + 4.
      Отсюда L= 84. Итак, Диофант умер в возрасте 84 лет.

Приложение 4. Задача Баше о наборе гирь

      Чтобы взвесить любое целое число килограммов от 1 до 40, по мнению большинства людей необходимо иметь 6 гирь: 1, 2, 4, 8, 16 и 32 кг. Действительно, такой набор гирь позволяет взвесить любой груз от 1 до 40 кг, помещая его на одну чашу весов и ставя на другую следующие комбинации гирь:
       1 кг = 1, 2 кг = 2, 3 кг = 2 + 1, 4 кг = 4, …, 5 кг = 4 + 1, …, 40 кг = 32 + 8.
      Но грузы можно взвешивать и по-другому, а именно: располагая гири на обеих чашах весов, т. е. не только на чаше, свободной в начале взвешивания, но и на чаше с грузом. При таком способе взвешивания Баше понадобились только 4 гири: 1, 3, 9 и 27 кг. Гиря, помещаемая на одну чашу с грузом, как бы приобретает отрицательный вес. Способ Баше позволяет взвесить любой груз от 1 до 40 кг, ставя гири на обе чаши весов в следующих комбинациях:
       1 кг = 1, 2 кг = 3–1, 3 кг = 3, 4 кг = 3 + 1, 5 кг = 9–3 — 1, …, 40 кг = 27 + 9 + 3 + 1.

Приложение 5. Доказательство Евклида существования бесконечного числа пифагоровых троек

      Пифагоровой тройкой называется такой набор из трех целых чисел, что сумма квадратов двух из них равна квадрату третьего числа. Евклид сумел доказать, что существует бесконечно много таких пифагоровых троек.
      Предложенное Евклидом доказательство начинается с наблюдения: разность квадратов последовательных целых чисел всегда равна какому-нибудь нечетному числу:
      Прибавив каждое из бесконечного множества нечетных чисел к соответствующему квадрату, мы получим другой квадрат. Некоторые нечетные числа, составляющие часть всех нечетных чисел, сами являются квадратами (например, 32, 52, 72 и т. д.). Следовательно, существует бесконечно много нечетных квадратов, которые можно прибавить к квадрату и получить другой квадрат. Иначе говоря, существует бесконечно много пифагоровых троек.

Приложение 6. Доказательство гипотезы о трех точках

      Гипотеза о трех точках утверждает, что невозможно построить точную диаграмму так, чтобы на каждой прямой было по крайней мере три точки. Хотя это доказательство требует минимальных познаний в математике, оно опирается на некоторую геометрическую «гимнастику», и поэтому следует тщательно продумать каждый его шаг.
      Начнем с произвольно расположенных точек. Проведем через каждую точку прямые, соединяющие ее со всеми остальными точками. Затем для каждой точки измерим расстояние, отделяющие ее от ближайшей прямой, и найдем ту из точек, которая ближе, чем все остальные, находится от некоторой прямой.
      На рисунке внизу изображена такая точка D, которую от прямой Lотделяет самое короткое расстояние. На рисунке это расстояние показано штриховой линией. Оно короче, чем расстояние, отделяющее любую другую точку от ближайшей к ней линии. Теперь можно показать, что на прямой Lвсегда лежат только две точки и что, следовательно, гипотеза верна, т. е. невозможно построить точечную диаграмму так, чтобы на каждой прямой лежали три точки.
 
 
      Чтобы показать, что на прямой Lдолжны лежать две точки, рассмотрим, что случилось бы, если бы на ней оказалось третья точка. Если бы третья точка D Aлежала на прямой Lвне двух точек, через которые она проходит, то расстояние, показанное пунктирной линией, было бы короче расстояния, показанного штриховой линией. Между тем это расстояние по предположению, наименьшее из всех кратчайших расстояний, отделяющих точку диаграммы от линии. Следовательно, точка D Aсуществовать не может.
 
 
      Аналогично, если бы третья точка D Bоказалась на прямой между двумя точками, то расстояние, показанное пунктиром, оказалось бы короче расстояния, показанного штрихом, по предположению наименьшего из кратчайших расстояний от точки диаграммы до прямой.
 
 
      Следовательно, для каждой конфигурации всегда существует по крайней мере эта прямая, которой принадлежат только две точки диаграммы, и гипотеза верна.

Приложение 7. Пример неправильного доказательства

      Приведем классический пример того, как легко, начав с очень простого утверждения и сделав всего лишь несколько, казалось бы, прямых и вполне логичных шагов, показать, 2=1.
      Начнем с невинного утверждения о том, что
       a = b.
      Умножив обе части равенства на a, получим:
       a 2= ab.
      Добавив к обеим частям равенства по a 2–2 ab:
       a 2+ a 2– 2ab = ab + a 2– 2ab.
      Это равенство можно упростить:
       2(a 2— ab) = a 2— ab.
      Наконец, сокращая это выражение на a 2- abполучаем требуемое равенство 2=1.
      Исходное утверждение казалось совершенно безвредным (и на самом деле оно не таит в себе ничего плохого), но, производя шаг за шагом преобразования равенства a= b, мы допустили маленькую, но роковую ошибку, которая и привела нас к противоречию. Эту ошибку мы допустили, производя последнее преобразование, когда разделили обе части равенства на a 2- ab. Из исходного утверждения нам известно, что a= b. Следовательно, деление на a 2- abэквивалентно делению на нуль.
      Такого рода тонкая ошибка типична для просчетов, допущенных многими соискателями премии Вольфскеля.

Приложение 8. Аксиомы арифметики

      Величественное здание арифметики опирается на следующие аксиомы.
      1. Для любых чисел mи n

m+ n= n+ mи mn= nm.

      2. Для любых чисел m, nи k

( m+ n) + k= m+ ( n+ k) и ( mn) k= m( nk).

      3. Для любых чисел m, nи k

m( n+ k) = mn+ mk.

      4. Существует число 0, такое, что для любого числа n

n+ 0 = n.

      5. Существует число 1, такое, что для любого числа n

n·1 = n.

      6. Для любого числа nсуществует другое число k, такое, что

n+ k= 0.

      7. Для любых чисел m, nи k

если k? 0 и kn= km, то m= n.

      Исходя из этих аксиом, можно доказать другие правила арифметики. Например, используя только приведенные выше аксиомы и не прибегая ни к каким другим допущениям, мы можем строго доказать правило, которое кажется очевидным и заключается в следующем:
      если m+ k= n+ k, то m= n.
      Прежде всего, пусть
       m+ k= n+ k.
      Аксиома 6 гарантирует, что существует число l, такое, что k+ l=0, поэтому
      ( m+ k) + l= ( n+ k) + l.
      Но по аксиоме 2
       m+ ( k+ l) = n+ ( k+ l).
      Принимая во внимание, что k+ l=0, получаем:
       m+ 0 = n+ 0.
      Аксиома 4 позволяет нам утверждать то, что требовалось доказать, а именно:
       m= n.

Приложение 9. Теория игр и труэль

      Однажды утром м-р Блэк, м-р Грей и м-р Уайт вздумали решить конфликт труэлью на пистолетах. Стрелять условились до тех пор, пока в живых не останется только один из участников. М-р Блэк стрелял хуже всех. В цель он попадал в среднем лишь один раз из трех. М-р Уайт стрелял лучше всех — без промаха. Чтобы уравнять шансы участников труэли, м-ру Блэку разрешено стрелять первым, за ним должен стрелять м-р Грей (если он останется в живых), затем мог стрелять м-р Уайт (если он еще будет жив). Далее все начиналось снова, и так до тех пор, пока в живых не останется только один из участников труэли. Вопрос: в кого должен выстрелить м-р Блэк, производя свой первый выстрел?
      Проанализируем выбор цели, который предстоит сделать мистеру Блэку. Во-первых, если мистер Блэк стреляет в мистера Грея и попадает в цель, то право следующего выстрела перейдет к мистеру Уайту. У мистера Уайта останется единственный противник — мистер Блэк, а поскольку мистер Уайт стреляет без промаха, то мистер Блэк может считать себя покойником.
      Для мистера Блэка лучше, если он прицелится в мистера Уайта. Если мистер Блэк попадает в цель, то право следующего выстрела перейдет к мистеру Грею. Мистер Грей попадает в цель только в двух случаях из трех, поэтому у мистера Блэка есть шанс остаться в живых, произвести ответный выстрел в мистера Грея и, возможно, выиграть труэль.
      На первый взгляд кажется, что мистеру Блэку следует остановить свой выбор на втором варианте труэли. Однако существует третий, еще лучший выбор. Мистер Блэк может выстрелить в воздух. Право следующего выстрела переходит к мистеру Грею, который стреляет в мистера Уайта как более опасного оппонента. Если мистер Уайт остается в живых, то он стреляет в мистера Грея как более опасного противника. Стреляя в воздух, мистер Блэк предоставляет мистеру Грею исключить мистера Уайта.
      Третий вариант — наилучшая стратегия для мистера Блэка. Мистер Грей или мистер Уайт в конечном счете погибает, после чего мистер Блэк стреляет в того из них, кто остается жив. Выстрелом в воздух мистер Блэк изменяет ситуацию: вместо первого выстрела в труэли он производит первый выстрел в дуэли.

Приложение 10. Пример доказательства по индукции

      В математике важно иметь точные формулы, позволяющие вычислять сумму различных последовательностей чисел. В данном случае мы хотим вывести формулу, дающую сумму первых nнатуральных чисел.
      Например, «сумма» всего лишь одного первого натурального числа 1 равна 1; сумма двух первых натуральных чисел 1+2 равна 3, сумма первых трех натуральных чисел 1+2+3 равна 6, сумма первых четырех натуральных чисел 1+2+3+4 равна 10 и т. д.
      Возможно, что требуемая формула имеет вид
      ?( n) = ?· n( n+ 1).
      Иначе говоря, если требуется найти сумму nпервых натуральных чисел, то нужно просто подставить число nв приведенную выше формулу и получить ответ.
      Доказательство по индукции позволяет убедиться в том, что эта формула дает правильный ответ при любом натуральном числе от 1 до бесконечности. Первый шаг состоит в том, чтобы показать, что формула работает в первом случае, при n=1. В этом нетрудно убедиться непосредственно, так как мы знаем, что сумма, состоящая из одного-единственного слагаемого, числа 1, равна 1. Подставляя n=1 в нашу формулу убеждаемся в том, что она дает правильный результат:
      ?(1) = ?·1·(1 + 1).
      Следующий шаг в доказательстве по индукции заключается в том, чтобы показать, что если формула верна при каком-то значении n, то она должна быть верна и при n+1. Если
      ?( n) = ?· n( n+ 1).
      то
      ?( n+ 1) = ?( n) + ( n+ 1) = ?· n( n+ 1) + ( n+ 1).
      После преобразования членов в правой части получаем
      ?(n + 1) = ?·(n + 1)[(n + 1) + 1].
      Важно отметить, что последняя формула «устроена» точно так же, как исходная формула с той лишь разницей, что там, где в исходной формуле стоит n, в новой формуле стоит n+1. Иначе говоря, если формула верна для n, то она должна быть верна и для n+1. Доказательство по индукции завершено.

Указания для дальнейшего чтения

      При создании книги я опирался на многие книги и статьи. Помимо тех источников, которыми я пользовался при написании каждой главы, мною указаны материалы, которые могут представить интерес как для обычного читателя, так и для специалиста. В тех случаях, когда заголовок источника не позволяет судить о том, какое отношение данный источник имеет к теме книги, я счел возможным пояснить содержание источника одной или двумя фразами.

ГЛАВА 1

      1 Bell Е. Т.The Last Problem. — Mathematical Association of America, 1990.
      История классического периода поисков доказательства Великой теоремы Ферма в популярном изложении.
      2 Ralph L.Pythagoras — A Short Account of His Life and Philosophy. — Krikos, 1961.
      3 German P.Pythagoras — A Life. — Routledge and Paul Kegan, 1979.
      4 Heath Th.A History of Greek Mathematics. Vol. 1, 2. — Dover, 1981.
      5 Gardner M.Mathematical Magic Show. — Knopf, 1977.
      Сборник математических задач-головоломок по материалам раздела «Математические игры» журнала «Scientific American».
      6 Stollum H.-H.River meandering as a self-organization process // Science, 1996. Vol. 271, P. 1710–1713.

ГЛАВА 2

      1 Mahoney M.The Mathematical Career of Pierre de Fermat. — Princeton University Press, 1994.
      Подробное исследование, посвященное жизни и деятельности Пьера де Ферма.
      2 Huffman P.Archimedes' Revenge. — Penguin, 1988.
      Увлекательные рассказы о радостях и горестях математики.

ГЛАВА 3

      1 Bell Е. Т.Men of Mathematics. — Simon and Schuster, 1937.
      Биографии величайших гениев в истории математики: Эйлера, Ферма, Гаусса, Коши и Куммера.
      2 Lloyd M., Dybas H. S.The periodical cicada problem // Evolution, 1966. Vol. 20, P. 466–505.
      3 Osen L. M.Women in Mathematics. — MIT Press, 1994.
      В основном, это нематематический текст с биографиями многих выдающихся математиков-женщин, в том числе Софи Жермен.
      4 Peri Т.Math Equals: Biographies of Women Mathematicians + Related Activities. — Addison-Wesley, 1978.
      5 Mozans H.J.Women in Science. — D.Appleton and Co, 1913.
      6 Dahan D. A.Sophie Germain // Scientific American, December 1991.
      Краткая статья о жизни и трудах Софи Жермен.
      7 Edwards H. M.Fermat's Last Theorem. A Genetic Introduction to Algebraic Number Theory. — Springer, 1977.
      Математическое обсуждение Великой теоремы Ферма, включающее подробное изложение некоторых ранних попыток доказательства.
      8 Burton D.Elementary Number Theory. — Allyn & Bacon, 1980.
      Различные сообщения О. Коши Парижской академии наук. In: С. R. Acad. Sci., Paris, 1847. Vol. 24, P. 407–416, 469–483.
      9 Lame G.Note au sujet de la demonstration du theoreme de Fermat // C. R. Acad. Sci., Paris, 1847. Vol. 24, P. 352.
      10 Kummer Е. Е.Extrait d'une lettre de M. Kummer a M. Liouville // J. Math. Pures et Appl., 1847. Vol. 12, P. 136. Также см. Kummer Е. Е.Collected Papers. Vol. 1 (Ed. by A. Weil) — Springer, 1975.
      11 Lines M. Е.A Number for Your Thoughts. — Adam Hilger, 1986.
      Факты и измышления о числах от Евклида до новейших компьютеров, в том числе чуть более подробное изложение гипотезы о точках.

ГЛАВА 4

      1 Davis P. J., Chinn W. О.3,1415 and All That. — Birkh?user, 1985.
      Истории о математике и математиках, в том числе глава о Пауле Вольфскеле.
      2 Wells D.The Penguin Dictionary of Curious and Interesting Numbers. — Penguin, 1986.
      3 Wells D.The Penguin Dictionary of Curious and Interesting Puzzles. — Penguin, 1982.
      4 Loyd S. Ju.Sam Loyd and his Puzzles. — Barse and Co, 1928.
      5 Loyd S.Mathematical Puzzles of Sam Loyd. Ed. By Martin Gardner. — Dover, 1959.
      6 Northropp Е. P.Riddles in Mathematics. — Van Nostrand, 1944.
      7 Lodge D.The Picturgoers. — Penguin, 1993.
      8 Ribenboim P.13 Lectures on Fermat's Last Theorem. — Springer, 1980.
      Обзор различных попыток доказательства Великой теоремы Ферма, написанный до работ Эндрю Уайлса. Рассчитан на аспирантов-математиков.
      9 Devlin К.Mathematics: The Science of Patterns. — Scientific American Library, 1994.
      Великолепно иллюстрированная книга, поясняющая математические понятия на удивительно наглядных образах.
      10 Devlin К.Mathematics: The New Golden Age. — Penguin, 1990.
      Общедоступный подробный обзор современной математики, содержащий помимо прочего обсуждение аксиом математики.
      11 Stewart I.The Concepts of Modern Mathematics. — Penguin, 1995.
      12 Russell В., Whitehead A. N.Principia Mathematica. 3 Vols. — Cambridge University Press, 1910–1913.
      13 Kreisel G.Kurt G?del. In: Biographical Memoirs of the Fellows of the Royal Society, 1980.
      14 Hardy G. H.A Mathematician's Apology. — Cambridge University Press, 1940.
      Один из наиболее выдающихся математиков XX века излагает свою точку зрения на мотивы своей профессиональной деятельности и деятельности других математиков.
      15 Hodges A.Alan Turing: The Enigma of Intelligence. — Unwin Paperbacks, 1983.
      Очерк жизни Алана Тьюринга, рассказывающий о его жизни; математическом творчестве и участии в раскрытии кода «Энигма».

ГЛАВА 5

      1 Shimura G.Yutaka Taniyama and his time. — Bulletin of the London Mathematical Society, 1989. Vol. 21, P. 186–196.
      Очерк жизни и творчества Ютаки Таниямы, написанный с весьма личной точки зрения.
      2 Frey G.Links between stable elliptic curves and certain diophantine equations // Ann. Univ. Sarav. Math. Ser., 1986. Vol. 1, P. 1–40.
      Статья, сыгравшая решающую роль, в которой Фрей высказал предположение о существовании связи между гипотезой Таниямы-Шимуры и Великой теоремы Ферма.

ГЛАВА 6

      1 Rothmans Т.Genius and Biographers: the Fictionalization of Evariste Galois // Amer. Math. Monthly, 1982. Vol. 89, P. 84–106.
      В статье приведен подробный перечень источников, на которые опираются биографы Галуа, и обсуждается достоверность различных интерпретаций.
      2 Depny P.La vie d'Evariste Galois // Annales Scientifiques de 1'Ecole Normale Superieure, 1986. Vol. 13, P. 197–266.
      3 Dumas A.Mes Memoirs. — Editions Gallimard, 1967.
      4 Van der Poorten A.Notes on Fermat's Last Theorem. — Wiley, 1996.
      Техническое описание доказательства Уайлса, рассчитанное на студентов старших курсов и аспирантов математических специальностей.

ГЛАВА 7

      1 Gelbart S.An elementary introduction to the Langlands programme // Bulletin of the American Mathematical Monthly, 1984. Vol. 10, P. 177–219.
      Техническое изложение программы Ленглендса, рассчитанное на профессиональных математиков.
      2 Wiles A.Modular elliptic curves and Fermat's Last Theorem // Ann. of Math., 1995. Vol. 142, P. 443–551.
      Эта статья содержит основную часть предложенного Уайлсом доказательства гипотезы Таниямы-Шимуры и Великой теоремы Ферма.
      3 Taylor R., Wiles A.Ring-theoretic properties of certain Hecke algebras // Ann. of Math., 1995. Vol. 142, P. 553–572.
      В этой статье приводится описание тех математических методов, которые использовались для восполнения пробелов в варианте доказательства Уайлса 1993 года.

ГЛАВА 8

      1 Stewart I.How to succeed in stacking // New Scientist, 13 July 1991, P. 29–32.
      2 Morgan J.The death of proof // Scientific American, October 1993, P. 74–82.
      3 Appel K., Haken W.The solution of the four-color-map problem // Scientific American, October 1977. P. 108–121.
      4 Saaty T. L., Kainen P. C.The Four-Color Problem: Assaults and Conquest. — McGraw-Hill, 1977.
      5 Davis O. J., Hersh R.The Mathematical Experience. — Penguin, 1990.

  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20