Современная электронная библиотека ModernLib.Net

Занимательная физиология

ModernLib.Net / Биология / Сергеев Борис Федорович / Занимательная физиология - Чтение (стр. 11)
Автор: Сергеев Борис Федорович
Жанр: Биология

 

 


Электрические угри – ночные животные. Охотятся они только после наступления темноты. Сила электрического удара так велика, что рыба может оглушить даже крупных зверей. Мелкие животные погибают мгновенно. Южноамериканские индейцы очень хорошо знают опасную рыбу и не рискуют переходить вброд реки, где она обитает.

На языке индейцев-томанаков угри называются «арима», что значит «лишающий движения». Их мясо, а также вызываемые ими электрические разряды у многих местных племен считаются лечебными. Возможно даже, что электролечением в Америке начали заниматься значительно раньше, чем в Европе, но вряд ли точную дату его возникновения удастся когда-нибудь установить.

После того что было сказано в начале главы, вряд ли показалось бы странной способность рыб вырабатывать электрический ток, если бы речь шла лишь о слабых разрядах, а не о таких внушительных, какие способны генерировать подводные электростанции: африканский сом, американский угорь и морской скат.

Напряжение электрического тока, создаваемое сомами, достигает 400, а угрями 600 вольт! (Для сравнения напомним, что напряжение тока в бытовой электросети наших городов и сел всего 127–220 вольт.) При этом мощность электростанций угря равняется 1000 ватт. Высокое напряжение электрического тока угрю необходимо потому, что пресная вода является очень плохим проводником электричества. Ток меньшего напряжения был бы опасен только на очень близком расстоянии. Напряжение, создаваемое морским скатом, значительно меньше, не превышает 60 вольт (морская вода – прекрасный проводник), зато сила тока достигает 60 ампер. Все очень внушительные цифры!

Как же удалось природе создать свои живые электростанции? Что явилось их прообразом?

Самый значительный ток у обычных животных вырабатывается в крупных мышцах: в сердце и в двигательной мускулатуре. Вокруг некоторых плывущих рыб можно обнаружить электрическое поле. Оно особенно велико у круглоротых (миног и миксин) и древних, примитивных рыб, которые еще не научились экономно расходовать энергию. Вокруг головы плывущей миноги можно зарегистрировать электрические импульсы напряжением в несколько сот микровольт.

Было бы странно, если бы природа не смогла использовать это явление. Видимо, в тот период, когда на Земле появились рыбы, она увлеклась электротехникой. Она только что закончила вчерне создание мозга и периферических нервов (командно-коммуникационного органа с его сложным электрохозяйством) и теперь прикидывала, какую еще пользу можно извлечь из электричества. Нужно отдать должное, поиски не были напрасными. Во всяком случае, в жизни рыб электричество выполняет более разнообразные функции, чем у других животных.

Так называемые электрические рыбы пошли по пути создания мощных электростанций. Основой для них послужили мышцы и нервные окончания, так называемые концевые пластинки, которые превратились в пластинки электрического органа.

Электрические органы очень велики: их вес составляет 1/4–1/3 часть веса рыбы, у угря они достигают 4/5 длины рыбы, а у сома покрывают все тело. Орган состоит из огромного количества пластинок, собранных в столбики. Все пластинки в столбиках соединены последовательно, а сами столбики – параллельно.

Сокращение скелетных мышц, давших начало электрическим органам, вызывается нервным импульсом, который сопровождается электрическим разрядом. Когда импульс достигает нервных окончаний в мышечных тканях, здесь выделяется особое вещество – медиатор (переносчик), которое вызывает сокращение мышечных клеток, также сопровождающееся возникновением электрических разрядов. Создавая электрический орган, природа использовала концевые пластинки и видоизмененные мышечные клетки, лишив их способности сокращаться, но сохранив за ними функцию генерации электрического импульса.

Механизм возникновения электрического импульса в пластинках электрического органа ничем существенным не отличается от генерации его в нерве, концевой пластинке или мышечном волокне. Даже величина импульса – 150 милливольт является обычной для нервных и мышечных клеток. Однако благодаря тому, что у угря пластинки собраны в столбики по 6–10 тысяч, соединенные последовательно, общее напряжение может достигать 600 вольт. У скатов пластинок в каждом столбике немного, не больше 1000, зато столбиков, соединенных параллельно, около 200, поэтому напряжение тока оказывается небольшим, а его сила значительной.

Чтобы управлять таким сложно устроенным органом, понадобилось создать специальный командный пункт. Поэтому у электрических рыб появился особый отдел мозга – электрические доли и овальные ядра в продолговатом мозгу. Овальные ядра – верховный командный пункт, который принимает решение о применении грозного оружия и отдает приказ в электрические доли. Здесь совершается самая сложная работа по координации разряда. Ведь для того чтобы разряд достиг максимальной силы, все пластинки должны разрядиться строго одновременно. Этим и заняты электрические доли.

Чтобы одновременно дать разряд, все пластинки должны одновременно получить соответствующий приказ, нервный импульс. Вот в этом-то и состоит трудность. Нервный импульс распространяется относительно медленно, в спинном мозгу рыб со скоростью 30 метров в секунду. Поэтому пластинки, лежащие в начале органов, вблизи головы, получат приказ значительно раньше, чем в конце, расположенные на полтора метра дальше.

Как электрические рыбы добиваются, чтобы приказы приходили одновременно? Возможно, приказы к хвостовой части органа посылаются раньше, чем к головной, а может, рыбы регулируют скорость распространения нервного импульса. Характер управления в течение жизни меняется: рыбы растут, электрические органы у них становятся больше, и команды приходится посылать по-другому.

Локаторы и осциллографы

Угорь, скат и сом не единственные рыбы, имеющие электрические органы. В настоящее время известно около 300 других видов рыб, способных давать слабые электрические разряды напряжением от 0,2 до 2 вольт. Первоначально ученые думали, что эти рыбы убивают очень мелких животных. Но тщательные наблюдения не подтвердили этого предположения. Лишь недавно стало понятно, зачем нужны электрические органы, вырабатывающие очень слабый электрический ток.

Совершенствование электрооснащенности у этих рыб пошло не в сторону увеличения силы разрядов, а по пути усиления электрочувствительности. Было замечено, что многие из них живут в очень мутной воде и ведут ночной образ жизни, а некоторые, например нильский длиннорыл, постоянно разыскивают корм, засунув голову глубоко в ил. В мутной воде или ночью своевременно заметить опасного хищника очень трудно. У электрических рыб возникло удивительное приспособление, позволяющее обнаруживать приближение врага даже в полной темноте.

В отличие от рыб, использующих электричество для охоты, у нильского длиннорыла есть не только электростанция, но и специальный орган, очень чувствительный к электричеству. Электростанция генерирует 300 разрядов в секунду, создавая вокруг рыб слабое электрическое поле очень постоянной формы с силовыми линиями, сходящимися на уровне головы. Электрические рыбы в отличие от всех остальных даже плавают, не изгибая собственного тела, чтобы не нарушить окружающее их электрическое поле. Если же вблизи появится крупная рыба, однородность электрического поля нарушится. Тело рыбы более электропроводно, чем окружающая пресная вода, поэтому силовые линии сдвинутся в сторону приближающейся рыбы. Электрочувствительные приборы длиннорыла это сразу улавливают, и он бросается наутек.

Своеобразный локатор служит рыбам не только для того, чтобы спасаться от врагов. С его помощью они свободно обходят препятствия, так же как летучие мыши с помощью своего эхо-локатора. Большинство предметов, с которыми рыбы могут столкнуться в воде, плохо проводят электричество. Силовые линии от таких предметов отталкиваются, что позволяет длиннорылам отличать одушевленные предметы от неодушевленных.

С помощью электрической локации находят свою добычу морские и пресноводные миноги. В мутной воде пресноводных водоемов эта способность особенно необходима. Удивительное существо – рыба-нож, живущая у берегов Америки, в тропической части Атлантического океана, несет свой локатор на хвосте. Поэтому расселины между скал и проходы в подводной растительности она исследует, пятясь задом и засовывая хвост в каждую дырку. Такой способ очень удобен, он всегда позволяет рыбе вовремя удрать, если в засаде ждет враг.

Близкий родственник длиннорылов – гимнарк пользуется радаром во время охоты, точно определяя с его помощью местонахождение своей добычи. Чтобы радар длиннорылов и других рыб удовлетворял своим требованиям, воспринимающие ток органы, расположенные в коже, должны обладать очень тонкой чувствительностью. Действительно, гимнарк «замечает» изменения силы электрического тока всего в 0,000000000000003 ампера! Такая чувствительность дает возможность рыбе отличить нормального пескаря от наживки, в теле которой рыболовы спрятали крохотный стальной крючок. Можете быть уверенными, опасную приманку гимнарк обойдет стороной.

Высокой электрочувствительностью наделены многие рыбы и даже амфибии. Органом, воспринимающим электричество, служит у них боковая линия, а у скатов – ампулы Лоренцини.

Чемпионом, вероятно, является скат хвостокол, или морской кот, как его нередко у нас называют. Эта очень широко распространенная рыба обитает и в Черном море, хотя на прилавках магазинов вы ее не увидите. Морского кота у нас не едят, что в общем-то и не совсем заслуженно: мясо у ската действительно жестковато, но печень ничем не уступает тресковой.

Рыбаки не любят иметь дело с морским котом. Они с презрением выкидывают пойманных скатов обратно в море и нещадно проклинают их, когда приходится выпутывать из сетей злополучную рыбу. Проклятья отнюдь не случайны, морской кот умеет отлично «царапаться». Длинная, острая, вся в мелких зубчиках игла, которой украшен хвост ската, слегка ядовита, и глубокие резаные раны, нанесенные ударами хвоста, очень болезненны и нередко подолгу не заживают.

Морской кот не приносит ни большой пользы, ни большого вреда, видимо, поэтому мы мало интересуемся этой рыбой и не очень много о ней знаем. Между тем скат – одна из интереснейших рыб Советского Союза. Ампулы Лоренцини, расположенные на голове морского кота, способны воспринимать ничтожный ток. Устройство их несложно. Тоненькая трубочка, ведущая в глубь кожи, заканчивается небольшим вздутием, на дне которого лежат чувствительные клетки. Рецепторы настолько чувствительны, что не уступают лучшим осциллографам. С их помощью скат может улавливать биоэлектрические потенциалы, возникающие в теле других рыб. Это позволяет ему находить на песчаных пляжах ловко замаскированных молоденьких камбал, ориентируясь лишь по ритмическим электрическим разрядам, возникающим в мускулатуре во время дыхательных движений, и нападать на ничего не подозревающих рыб.

Подводный осциллограф – находка для парапсихологии. Тот, кому доводилось наблюдать в море за поведением типично стайных рыб: ставриды, скумбрии, зубариков, – вероятно, не раз восхищался слаженностью маневров стаи, когда десятки, сотни или даже тысячи рыб одновременно как по команде меняют направление движения. Кто дает эту команду, как она передается, ученые пока не знают. Возможно, для «передачи мыслей» на расстояние рыбы пользуются слабыми электросигналами. Ведь биотоки возникают во всех мышцах и нервах и еще раньше в мозгу, который посылает в рабочие органы свои приказы. Эти распоряжения могут передаваться и за пределы рыбы, ведь морская вода отличный электропроводник.

Служба информации

Универсальная антенна

Целый день в наш мозг по бесчисленным каналам связи поступает информация. В слуховом нерве 30 000 проводов-волокон, в зрительном нерве их еще больше, около 900 000. Объем информации, поступающей только из слухового аппарата, равен десяткам тысяч бит в секунду, информация глаз достигает миллионов бит! Мозг должен в ней разобраться, выявить главную, отделив ее от второстепенной или совсем ненужной. Ведь усвоить он способен всего 50 бит в секунду.

Утром, прежде чем проснувшийся мозг сможет заняться этой работой, ему необходимо наладить приемные устройства, чтобы обеспечить бесперебойное поступление важнейших сообщений. Дело это совсем не легкое. Организм человека и животных обладает множеством самых различных приемных устройств, каждое из которых способно воспринимать лишь определенным образом закодированную информацию.

Сколько же каналов связи у организма? Сколько способов извлечения информации ему известно?

Приемные устройства для извлечения информации, или рецепторы, в обыденной жизни принято называть органами чувств. Их много. Специалисты называют шесть основных: зрение, слух, равновесие, вкус, обоняние и кожную чувствительность.

Ну, а не основные просто невозможно перечислить. Только в коже находится масса рецепторов: одни реагируют на легкое прикосновение (они обеспечивают осязание), другие – на более сильное воздействие, и раздражение их воспринимается как боль. Третьи реагируют только на холод, четвертые ощущают только тепло. Это лишь начало списка кожных рецепторов, на самом деле их значительно больше.

А сколько рецепторов имеют внутренние органы: одни определяют качество пищи, попавшей в желудок, другие уровень кровяного давления, третьи количество растворенного в крови углекислого газа. Мы даже не осознаем их работу. До нашего сознания просто не доходит информация, которую рецепторы внутренних органов беспрерывно шлют мозгу.

Ученые давно изучают устройство и работу органов чувств. Особенно усилились эти исследования в последние годы, с тех пор как появился электронный микроскоп. Это понятно, ведь обычный увеличивает от силы в тысячу – полторы тысячи раз, зато электронному доступны громадные увеличения – в 20, 40, 60, а то и в 100 тысяч раз! Не удивительно, что он помог ученым подсмотреть много нового.

Выяснилась удивительная вещь: у всех живущих на Земле животных рецепторные клетки (они воспринимают раздражения) любых органов чувств обнаруживают огромное сходство в своем строении. Оказывается, любая из них обязательно снабжена подвижным волоском, или жгутиком. В устройстве жгутиков разных рецепторных клеток тоже много общего. Внутри проходят две центральные опорные фибриллы (волокна), окруженные кольцом из девяти пар подвижных фибрилл. Только в очень редких случаях этот жгутик бывает видоизменен.

Жгутики играют для рецепторной клетки такую же роль, как антенна для радиоприемника. Их так и называют рецепторными антеннами. При их помощи мы и воспринимаем окружающий мир. Антенны рецепторных клеток глаза реагируют на световую энергию – фотоны. В органе обоняния антенны воспринимают энергию молекул пахучих веществ. Антенны слуховых клеток реагируют на звук – энергию звуковой волны.

Чувствительность антенн поразительна. Достаточно энергии одного фотона, самой маленькой порции света, чтобы зрительная клетка возбудилась. Для антенны обонятельной клетки – одной молекулы пахучего вещества. Слуховая клетка возбуждается, когда колебания барабанной перепонки достигают размаха всего 0,0000000006 миллиметра. Это в десять раз меньше диаметра самого крохотного атома – атома водорода.

Антенны всю жизнь находятся в беспрерывном движении. Без этого нельзя воспринимать раздражения внешнего мира. Движущиеся антенны ведут активный поиск раздражителей.

Сходство между рецепторными клетками различных органов чувств, конечно, не полное. Есть и серьезные различия. В зрительных клетках, например, содержится особое вещество, называемое зрительным пурпуром, которое изменяется под действием света. Благодаря этой фотохимической реакции и происходит восприятие света. В рецепторных клетках других органов чувств пурпура нет. С помощью каких веществ они воспринимают раздражители, ученым пока неизвестно.

Почему так много сходства в строении различных рецепторных клеток, сказать трудно. Видимо, конструкция оказалась очень удачной, поэтому природа, создавая самые разнообразные органы чувств, и использовала типовые, стандартные детали.

Прошли миллионы лет, животный мир на нашей планете проделал огромный путь развития от примитивных одноклеточных существ, почти не воспринимающих раздражения окружающего мира, до современного человека с его многочисленными, очень совершенными и чрезвычайно чувствительными органами чувств. Кажется, между человеком и инфузорией не осталось ничего общего. Но нет! Рецепторные клетки человека и птиц, рыб и насекомых, моллюсков и других животных воспринимают окружающий мир, любые его раздражения, любыми органами чувств с помощью сходно устроенных подвижных антенн. Даже одноклеточные организмы, такие, как эвглена, и они используют все ту же подвижную антенну. Вот что значит удачная конструкция. Она проходит не только через века и тысячелетия. Для нее не страшны даже миллиарды лет. Живые организмы Земли пронесли подвижную антенну от самого зарождения жизни до наших дней.

Откуда все пошло

Из шести основных органов чувств наиболее важны три. Потеря вкуса, а тем более обоняния проходят для нас почти незаметно. Даже с потерей осязания можно было как-то мириться, но потеря зрения, слуха или чувства равновесия делает человека тяжелым инвалидом. Для нас это самые главные системы восприятия внешнего мира. Они не совсем совпадают с главными анализаторными системами животных. Многие представители животного царства обладают весьма слабым зрением или совсем лишены удовольствия видеть окружающий мир. Некоторые не воспринимают звуки или слышат очень плохо и прекрасно без этого обходятся.

Зато орган равновесия – очень важная анализаторная система. Она есть почти у всех многоклеточных животных. Даже у одноклеточных зоологи нашли какие-то образования, отдаленно напоминающие орган равновесия более высокоразвитых животных. Таким устройством снабжены паразитические инфузории. У них есть особая вакуоль – небольшой, поверхностно расположенный пузырек с какими-то кристаллическими включениями, – очень напоминающая статоцисты (орган равновесия) многоклеточных. Если впоследствии подтвердится, что она действительно выполняет эту функцию, ничего удивительного не будет. Ведь на планете немало мест, погруженных в непроглядный мрак ночи, можно найти уголки, куда не проникает ни один звук, но земное притяжение действует везде, от него скрыться некуда.

Можно предполагать, что жизнь возникла не без участия света. Во всяком случае, светочувствительность, которой, вероятно, уже обладало первичное живое вещество, очень быстро привела к возникновению специальных органов зрения. Свет воспринимают даже современные одноклеточные животные – жгутиконосцы. У одноклеточных, особенно у пиридиней, среди которых многие способны светиться, глазки могут быть довольно крупными. Они представляют собой чашеобразной формы скопление красноватого жироподобного светочувствительного пигмента, расположенного в передней части пиридинеи у основания жгутика. В углублении пигмента лежит прозрачное зерно крахмала, выполняющее светопреломляющую и фокусирующую функцию.

Из названных выше трех главных для человека органов чувств два являются более древними: зрение и равновесие. Еще одна интересная особенность роднит между собой эти в общем-то несхожие органы чувств. И орган зрения и орган равновесия, хотя создавались и совершенствовались не один десяток лет и, конечно, претерпели за это время очень большие изменения, все же по своему устройству и особенностям работы различаются меньше, чем устройство слухового анализатора и особенности восприятия звука у различных животных. Такое отличие объясняется тем, что зрение и равновесие формировались под влиянием единого, постоянно действующего фактора космического масштаба: равновесие под действием земного притяжения, зрение под воздействием солнца. А единого, равноценного источника звука на Земле нет и раньше тоже не существовало.

Когда на планете зарождалась жизнь, здесь было удивительно тихо, а такие звуки, как раскаты грома или грохот волн, разбивающихся о пустынные мрачные скалы первобытных морей, большинство животных не интересовали. Только когда сами животные достигли достаточно высокого уровня развития, научились активно передвигаться, начали странствовать по белу свету и пожирать друг друга, на Земле появился слабый шумок. Это возникли звуки биологического происхождения, создаваемые самими животными. Они-то и породили слуховой анализатор, а вслед за ним и слуховую сигнализацию, получившую затем очень широкое распространение.

Множество самых разнообразных источников звуков потребовало создания такого же разнообразия воспринимающих приборов, от очень широкого диапазона до способных улавливать лишь очень узкую полосу звуков.

Некоторые летучие мыши, хотя и слышат лучше всего очень высокие звуки, доходящие до 300 килогерц, могут улавливать и самые низкие. Их орган слуха охватывает 15 октав. Ночным бабочкам, которыми питаются летучие мыши, такой колоссальный слуховой диапазон ни к чему. Их тимпанальный орган, расположенный в крыльях, способен улавливать только ультразвуковые импульсы летучих мышей. Такая ограниченная задача породила очень простое устройство. Тимпанальный орган состоит из мембраны, воздушных мешков и всего двух чувствительных нервных клеток. Их задача – воспринять звук, издаваемый летучей мышью, и дать команду на немедленное изменение направления полета.

Зрительному анализатору, развивавшемуся лишь под действием солнца, большой широты не потребовалось. Глаза самых разных животных способны воспринимать световой поток шириною не более трех октав. Таким образом, диапазон световосприятия в пять раз уже звукового.

На нашей планете почти нет существ, безразличных к свету. Даже одноклеточные животные, у которых нет глаз, и те прекрасно отличают свет от темноты. В основе светоощущения лежит свойство некоторых химических реакций ускоряться под действием света, и поэтому протоплазма, видимо, почти любых клеток многоклеточных животных может воспринять свет, так что участие глаз совершенно не обязательно.

Начало органу зрения дало появление специальных светочувствительных клеток, способных реагировать на более слабый свет, чем остальные клетки организма. Владельцы специальных светочувствительных клеток сохранились на Земле до наших дней. Среди них хорошо известный дождевой червь. У него нет глаз, зато в коже масса светочувствительных клеток. С их помощью он легко улавливает незначительное изменение освещенности. Человеку это недоступно. Из таких вот разбросанных по всему телу светочувствительных клеточек и возникали в процессе эволюции глаза. Сначала это были просто пятнышки, скопления светочувствительных клеточек. Такие глаза хорошо различают свет от темноты, но еще не могут улавливать, откуда он идет.

Дальнейшая история глаз такова: светочувствительные клетки уходят под прозрачные покровы, обзаводятся экранами из пигментных клеток, которые делают невозможным освещение со всех сторон. Затем светочувствительные пятнышки превращаются в ямки или даже в пузырьки – первые настоящие глаза. Они могут улавливать только свет, идущий в определенном направлении, поэтому очень легко определяют направление падающих лучей. От этих примитивных зрительных приспособлений до глаз высших животных один шаг. Оставалось обзавестись светопреломляющими системами, аккомодационными устройствами, изменяющими степень преломления световых лучей, и, наконец, глазодвигательным аппаратом, который позволил глазам вести активный поиск зрительной информации.

Среди беспозвоночных у головоногих моллюсков наиболее совершенные глаза. Они ничем не уступают зрительному аппарату высших позвоночных. Другая ветвь беспозвоночных, членистоногие, которая достигла высокого уровня развития, почему-то не преуспела в совершенствовании своих глаз, но компенсировала это тем, что обзавелась большим количеством глазков (пирамидок с основанием, обращенным наружу и прикрытым хитиновым хрусталиком), объединив их в несколько сложно устроенных глаз, состоящих из сотен и даже тысяч пирамидок. Благодаря совместным усилиям отдельных обычно довольно близоруких глазков насекомые и ракообразные могут улавливать величину и форму предметов.

История глаз позвоночных началась иначе. В прибрежной зоне многих морей и океанов живут небольшие интересные животные – ланцетники, формой тела слегка напоминающие маленьких рыбок или лезвие скальпеля, точнее, ланцета, как раньше назывался этот хирургический инструмент (отсюда и ланцетник). У них видит сам мозг. Вдоль всей нервной трубки ланцетника разбросаны светочувствительные клеточки, а так как тело у него прозрачное, то животное прекрасно отличает свет от темноты. Большего ему для жизни и не нужно.

Видимо, предки позвоночных были похожи на ланцетников, и у них тоже видел мозг. Когда же их тело перестало быть прозрачным, комочкам нервных светочувствительных клеток пришлось покинуть мозг и вылезти наружу. С тех пор так поступают глаза всех позвоночных животных: на определенной стадии развития эмбриона два кусочка его мозга отделяются от остальной части и постепенно превращаются в глаза. Таким образом, наши глаза не что иное, как вылезший из орбит наружу мозг.

Дальнейшее развитие глаз позвоночных шло по уже проторенной дорожке: приобретение преломляющих систем, аккомодационных аппаратов, глазодвигательных мышц. Так, постепенно усложняясь, формировались наши глаза, способные разобраться в запутанном кружеве неразборчивого человеческого почерка и уловить тончайшие оттенки цвета. Одновременно с совершенствованием глаз усложнялся и мозг животных. Ведь глаз – это просто световоспринимающее устройство, вроде фотоаппарата, «видит» же только наш мозг. Это он складывает информацию, полученную от миллионов светочувствительных клеточек нашего глаза в замысловатые картины. Именно здесь, в мозгу, проявляются снимки, сделанные глазом.

Звуковой анализатор, или, попросту говоря, слух, в ходе эволюции животных возник относительно поздно. Поэтому было бы бесполезно искать его у низших беспозвоночных. У позвоночных орган слуха появляется, начиная с рыб. У них от лабиринта, органа равновесия, отделяется небольшая часть, которая позже у высших животных станет улиткой с хорошо развитым кортиевым органом, самой важной частью слухового прибора.

Кортиев орган, по существу, является рецептором, способным следить за быстрыми, очень незначительными изменениями давления окружающей среды. Быстрые сжатия среды и последующие мгновенные падения давления, возникающие в рупоре нашего наружного уха, воздействуют на барабанную перепонку. Ее колебания через цепь слуховых косточек передаются на овальное окно и лабиринтную жидкость, доходя таким образом до кортиева органа, волокна которого испытывают острый резонанс, раздражая при этом соответствующие рецепторы слухового нерва.

Чувствительность слухового аппарата поистине удивительна. Человеческое ухо уже может воспринимать звук, создающий давление, равное 0,0001 бара на квадратный сантиметр, которое способно переместить мембрану улитки всего лишь на стомиллиардную часть сантиметра! Это расстояние в тысячу раз меньше диаметра самого крохотного атома – атома водорода!

Кстати, человек не является чемпионом в области слуха. Многие животные способны слышать гораздо более слабые звуки. Не следует считать это нашим недостатком. Человек – очень шумное существо, и ему, пожалуй, выгоднее слышать меньше, чем больше. Гораздо важнее, что он способен без особого вреда переносить довольно сильные звуки, возникающие при звуковом давлении до 2000 бар. У некоторых пород белых крыс и ряда других животных сильные звуки вызывают судорожные припадки и смерть.

Что было бы с человечеством, если бы наше ухо не смогло приспособиться к сильным звукам! Только в одном мы бы выиграли: для нас оказались бы невозможны кровопролитные войны, ведь солдаты с таким чувствительным слухом умирали бы не от пуль противника, а от звуков выстрела собственных винтовок, и до создания артиллерии дело бы просто не дошло.

Все же, хотя сильные звуки для нас не смертельны, длительное шумовое воздействие может привести к серьезным заболеваниям органов слуха и центральной нервной системы. Поэтому нужно всячески приветствовать борьбу за тишину в рабочих и жилых помещениях. В городах и поселках главными союзниками в этой борьбе могут стать зеленые насаждения. Раскидистые лапы кленов, курчавые кроны липок, густая зелень тополей удивительно легко гасят звуковые колебания.

Слух человека не только по остроте, но и по другим показателям отстает от слуха животных. Во-первых, мы слышим лишь очень узкую полосу звуковых колебаний. Звук не воспринимается как непрерывный, когда частота колебаний давления составляет 16–18 в секунду, и исчезает, когда колебания достигают частоты 20 тысяч в секунду. Ухо, неспособное уследить за такой быстрой сменой давлений, перестает информировать о его колебаниях, и нам кажется, что вокруг воцарилась полная тишина.

20 тысяч колебаний в секунду очень немного. Наши верные друзья – собаки способны улавливать 38 тысяч колебаний давления в секунду. Это тоже ничтожная цифра. Киты и дельфины могут следить за изменениями давления, совершающимися с частотой 100–125, а летучие мыши даже до 300 тысяч в секунду. Животные, ухо которых способно воспринимать такие ультравысокие звуки, могут и сами их воспроизводить, но мы, к сожалению, лишены удовольствия это слышать. Только поэтому появилась нелепая, с точки зрения современной науки, поговорка: нем как рыба. Если бы рыбы были способны так же придирчиво разбирать наши достоинства, у них неизбежно возникла бы поговорка: глух как человек. Впрочем, природа поступила очень разумно, лишив нас способности слышать очень высокие звуки. Кроме возможности слышать писк вылетевших на охоту летучих мышей или участвовать в задушевных рыбьих разговорах, мы ничего не потеряли. В нашей собственной речи мы легко обходимся звуковыми колебаниями, лежащими в диапазоне между 500 и 2000 колебаний в секунду.

Человек и высшие животные обладают бинауральным слухом, то есть, попросту говоря, пользуются двумя ушами. Это очень помогает в определении источника звука. Звуковые волны в воздушной среде, как известно, распространяются со скоростью 340 метров в секунду, поэтому звук в большинстве случаев не одновременно достигает правого и левого уха. Только когда мы повернемся лицом к звуку, он будет приходить к обоим ушам в одно и то же время. Человек способен замечать, что звук до одного из наших ушей дошел с опозданием всего лишь на 0,0001 секунды.


  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18