Современная электронная библиотека ModernLib.Net

100 великих - 100 великих изобретений

ModernLib.Net / История / Рыжов Константин / 100 великих изобретений - Чтение (стр. 23)
Автор: Рыжов Константин
Жанр: История
Серия: 100 великих

 

 


Впервые идею кинематографа развил Томас Дю Мон, который в 1859 году получил патент на многообъективную камеру, предназначенную для съемки отдельных фаз движения. Давая описание действия своего скоростного (или, как стали говорить позже, хронофотографического) аппарата, Дю Мон показал очень тонкое понимание сути происходящего процесса. Главная идея его конструкции заключалась в следующем: 12 светочувствительных пластин, прикрепленных к бесконечной ленте, последовательно проходили позади объектива, останавливаясь перед ним на очень короткое время. Одновременно с остановкой ленты затвор открывался и пропускал свет на фотографическую пластинку (задача затвора — открывать и закрывать окошечко объектива, оставляя его открытым лишь строго определенное время). Механизм ленты был связан с затвором, так что остановка пленки и открывание затвора совпадали с математической точностью.

Увы, в действительности аппарат Дю Мона далеко не соответствовал своему описанию и снимать им движение было совершенно невозможно. Но, несмотря на это, Дю Мона справедливо считают одним из предтеч кинематографа — соображения, высказанные в его патенте, были очень глубоки, и он совершенно правильно описал принцип действия киносъемочного аппарата будущего. Однако для того чтобы его камера стала реальностью, Дю Мону не хватало по крайней мере четырех вещей. Прежде всего, светочувствительность современных ему фотопластинок была явно недостаточной для скоростной съемки. Для получения хороших качественных снимков их надо было подвергать действию света в течение нескольких секунд, в то время как при съемке движения выдержка (то есть время, которое пластинка находится под воздействием света) должна была исчисляться десятыми и сотыми долями секунды. Во-вторых, не было еще такого совершенно необходимого для хронофотографической съемки устройства, как моментальный автоматический затвор, который позволил бы делать снимки с очень короткой выдержкой (пока выдержка исчислялась секундами, открывать и закрывать объектив можно было вручную, но при съемке со скоростью 12-14 кадров в секунду это совершенно невозможно). В третьих, сам способ съемки на фотопластинках явно не подходил для хронофотографии; необходим был новый носитель для светочувствительного слоя — фотопленка, которую можно было проматывать с необходимой скоростью. И, наконец, еще не был изобретен сам механизм движения этой пленки. Из описания Дю Мона видно, что пленка должна была не просто проходить позади объектива (что было бы несложно устроить), но делать короткие моментальные остановки, причем в строго определенное время, то есть двигаться скачкообразно. Изобретение этого скачкового механизма оказалось одной из самых трудных задач в истории создания кинематографа.

В последующие десятилетия все перечисленные проблемы были разрешены одна задругой. Ричард Мэддокс в 1871 году разработал сухобромжелатиновый фотографический процесс (усовершенствовав его в 1878 году), который давал возможность сократить выдержку при съемке до 1/200 секунды. Это открытие позволило приступить к фотографированию движения. Считается, что начало хронофотографии положили опыты американского фотографа Эдуарда Мюйбриджа. Поводом для этого послужила история одного пари. В 1872 году миллионер Стенфорд, большой любитель и знаток лошадей, поспорил со своими друзьями, которые не верили, что скаковая лошадь во время своего движения поднимает все четыре ноги. Чтобы уверить их в обратном, Стенфорд пригласил Мюйбриджа и поручил ему заснять все фазы движения лошади. Задача была далеко не простая. Чтобы исполнить поручение, Мюйбридж установил вдоль скаковой дорожки несколько фотокамер, затворы которых соединил с протянутыми поперек дорожки нитками. Пробегая мимо камеры, лошадь рвала нитки и делала снимок. В результате многих опытов Мюйбриджу удалось получить несколько удачных фотографий, на которых были сняты отдельные фазы движения лошади. Между прочим, оказалось, что Стенфорд совершенно прав — лошадь действительно при переходе в галоп отталкивалась от земли всеми ногами и как бы взлетала в воздух. Миллионер выиграл свое пари, а Мюйбридж продолжил начатое дело и вскоре прославился на весь мир своими замечательными снимками движущихся объектов. Позднее, сделав соответствующий подбор, Мюйбридж наклеивал фотографии на стробоскоп, вращая который можно было наблюдать, например, акробата, делающего прыжок через голову, бег оленя, скачку лошадей и тому подобные сюжеты.

Таковы были первые шаги моментальной фотографии. Несовершенство техники создавало для любителей этого вида фотоискусства множество затруднений, ведь снять само движение было нельзя. Тогдашние фотоаппараты давали возможность снимать только тот предмет, который находился непосредственно перед объективом, то есть двигавшийся по известной линии. Только в этом случае можно было расставить вдоль этой линии несколько фотокамер, как это делал Мюйбридж, использовавший иногда до нескольких десятков фотоаппаратов. Это обстоятельство чрезвычайно сужало возможности хронофотографии В 1882 году французский физиолог Этьен Марей, изучавший полет птиц и насекомых, придумал, как выйти из этого затруднения: он создал специальное фотографическое ружье, позволявшее со значительной быстротой снимать отдельные последовательные фазы непрерывного движения. В ружье помещался передвигающий механизм, похожий на часовой. При нажимании курка механизм начинал вращать пластинку, на которой за секунду делалось 12 снимков. Таким образом Марей снимал полет птиц. Он был первым, кто разрешил проблему запечатления движения одним аппаратом.

Съемка на пластинку была сложным и трудоемким делом. Поэтому крупным событием в истории фотографии и значительным шагом на пути к созданию кинематографа стало изобретение фотопленки. Еще в 1877 году выдающийся польский фотограф Лев Варнерке (большая часть его жизни прошла в России и Англии) изобрел первый в мире роликовый фотоаппарат с бромсеребряной коллоидной бумажной лентой. В 1886 году французский фотограф Огюстин Пренс собрал хронофотографический аппарат с 16-ю объективами, приспособленный для съемки последовательных фаз движения. Здесь впервые в истории хронофотографии была применена светочувствительная бумажная лента, которая наматывалась на барабан точно так же, как это было в фотоаппарате с роликами, проходила позади объектива и наматывалась на другой барабан. 16 объективов располагались в четыре ряда, и каждый имел свой затвор. Пренсу также удалось осуществить проецирование заснятого изображения на экран. (В главе, посвященной фотографии, был подробно описан процесс получения позитивов и негативов, поэтому здесь мы не будем останавливаться на нем. Отметим только, что ленты для хронофотографических аппаратов (как позже и для киноаппаратов) приготовлялись точно так же, как в обыкновенной фотографии, то есть сначала получали негатив (изображение с обратным расположением света и тени), а потом с него на другую ленту печатали позитив. Но из-за того, что лента имеет большую длину, сама технология обработки довольно сильно отличалась от обычной фотографии.) Пренс был первым, кто воплотил в жизнь идею кинематографа — он мог не только снимать движение, но и проецировать его на экран. Но вся его аппаратура была еще очень примитивной. Проекционный аппарат имел тоже 16 объективов. Для перематывания ленты Пренс придумал прорезать по ее краю специальные отверстия — перфорации, в которые попадали зубчики колеса лентопротяжного механизма. Однако бумага, как уже говорилось прежде, из-за своей грубой непрозрачной структуры была неподходящим материалом для фотографии. К тому же при перемотке она часто рвалась. Для фотопленки нужен был гибкий, прочный и в то же время совершенно прозрачный материал. Именно такими свойствами обладал целлулоид — одна из первых в истории пластмасс, синтезированная в 1868 году американским химиком Хайетом. В 1884 году Джон Карбут стал изготовлять целлулоидные фотопластинки, а с 1889 года Джордж Истмэн стал применять в фотоаппаратах гибкую целлулоидную фотопленку.

После этого хронофотография стала развиваться быстрыми темпами. В 1888 году немецкий фотограф Оттомар Аншютц изобрел моментальный шторный затвор, который мог снимать с выдержкой до одной тысячной секунды. Введение в практику этого затвора чрезвычайно облегчило скоростную съемку. Теперь не было необходимости создавать сложные камеры с 12-16 объективами, а можно было обойтись только одним. В 1888 году Пренс получил английский патент на аппарат с одним объективом и бумажной лентой (он вскоре заменил ее целлулоидной). Этот аппарат делал от 10 до 12 изображений в секунду. В том же году Марей отказался от подвижной жесткой пластинки и стал использовать длинную бумажную ленту со светочувствительным слоем, позволявшую снимать отдельные медленные движения. В 1889 году Пренс создал проекционный аппарат с одним объективом и дуговой лампой. Итак, в конце 80-х годов почти все трудности, стоявшие в свое время перед Дю Моном, были благополучно разрешены. Оставалась последняя — создание скачкового механизма, поскольку равномерное движение ленты при съемке не давало качественного изображения движения.

Первый в истории примитивный скачковый механизм был придуман в Англии. Английский фотограф Уильям Фризе-Грин работал над той же проблемой, что Марей и Пренс. Подобно им он сначала применял бумажную светочувствительную ленту, которую снабжал по краям перфорацией. Так как бумажная лента рвалась, то в своем хронофотографическом аппарате в 1889 году Фризе-Грин впервые применил недавно появившуюся перфорированную целлулоидную пленку. Тогда же он включил в конструкцию аппарата скачковый механизм.

Пленка у Фризе-Грина поступала с подающего барабана на приемный. Последний, с помощью рукоятки, вращаемой рукой, приводился в непрерывное движение. Плечо, несущее вращающийся ролик, получало движение посредством спирального кулачка и принимало положение, показанное пунктирными линиями; при своем движении оно тянуло вниз пленку, которая затем оставалась неподвижной, пока ролик отходил под действием пружины. Одновременно с отходом плеча затвор открывался посредством такого же спирального кулачка. Последний был сконструирован на валу, приводимом в движение рукой. Каждый оборот, таким образом, экспонировал отдельный кадр пленки. Уже в 1889 году Фризе-Грин снял в Гайд-парке свой первый фильм и продемонстрировал его на фотографическом съезде в Таунн-холле. В 1890 году состоялась публичная демонстрация его фильмов в Королевском фотографическом обществе. Съемочная камера Фризе-Грина с перфорированной целлулоидной лентой имела все элементы кинематографа, кроме технически совершенного скачкового механизма прерывистого движения пленки. Однако его аппараты были очень сложны и в этом виде не могли получить широкого распространения. Более того, за пределами Англии о его изобретении почти ничего не было известно.

В середине 90-х годов сразу несколько изобретателей приблизились к созданию кинематографа. В 1893 году создал свой кинетоскоп Эдисон. Этот прибор представлял собой ящик с окуляром, через который смотрел зритель. В окуляр было видно матовое стекло, на которое снизу проецировалось заснятое на пленку изображение. В том же году Эдисон организовал свою студию, в которой были сняты первые на американском континенте фильмы — коротенькие, на 20-30 секунд демонстрации. Длина ленты не превышала 15 м. В этой студии снимались известные танцовщицы, акробаты и дрессированные животные. В апреле 1894 года в Нью-Йорке на Бродвее был открыт первый салон кинетоскопов. Заплатив 25 центов за вход, зрители шли вдоль ряда кинетоскопов и смотрели в окуляры, а служащий включал кинетоскопы один за другим. Вскоре Эдисон сделал кинетоскоп автоматическим — автомат начинал действовать после опускания в щель монеты достоинством в 5 центов. Без сомнения, кинетоскоп являлся выдающимся техническим достижением. Но все же это еще не был кинематограф. Скачкового механизма он не имел. Между тем главной частью кинематографа, «сердцем» киносъемочного и кинопроекционного аппарата являлся именно скачковый механизм для быстрой, прерывистой смены изображений. Изобретение совершенного скачкового механизма, который позволил с установленной частотой осуществлять одновременно быстрое прерывистое передвижение отдельных подвижных изображений и их мгновенную остановку, стало тем событием, которое и ознаменовало рождение кинематографа.

В 1893 году Марей создал новый хронофотографический аппарат с целлулоидной пленкой. Пленка здесь двигалась прерывисто, делая мгновенные остановки с частотой 20 отдельных снимков в секунду. Однако механизм прерывистого движения был крайне примитивным. Он состоял из электромагнита и прижимных валиков. В момент срабатывания затвора валик притягивался и останавливал пленку. Действие этого механизма было очень грубым, поэтому аппарат Муррея нельзя считать технически удовлетворительным. Тем не менее в том же году Марей снял несколько замечательных фильмов о движении живых существ.

В 1894 году Жорж Демени создал первый совершенный киноаппарат со скачковым механизмом. Этот скачковый механизм представлял собой диск с «пальцем», вращающимся по часовой стрелке.

В 1895 году свой кинопроектор и киноаппарат запатентовали братья Огюст и Луи Люмьеры, применившие в качестве скачкового механизма грейфер («вилку»). Летом и осенью того же года они сняли десять коротких фильмов по 16 м, которые явились основой для коммерческих сеансов конца 1895 — начала 1896 годов. В декабре 1895 года был открыт первый кинотеатр в подвале «Гран-кафе» на бульваре Капуцинов в Париже. Если судить строго фактически, то грейфер — это единственное оригинальное изобретение Люмьеров, притом не самое удачное (уже в 1896 году грейфер был заменен другим, более совершенным скачковым механизмом — мальтийским крестом). Однако именно на их аппарат выпала самая громкая слава. В течение первой половины 1896 года кинематограф Люмьеров демонстрировался во всех европейских столицах и имел колоссальный успех.

В апреле 1896 года Виктор Контенсуза и Бюнцли первыми применили в киноаппаратах четырехлопастный мальтийский крест — тот тип скачкового механизма, который преобладает в современных киноаппаратах.

Контенсуза имел небольшое предприятие в Париже и был опытным механиком. Он сконструировал несколько киноаппаратов для знаменитой кинофирмы «Патэ». Четырехлопастная мальтийская система состоит из ведущего диска, который имеет один палец (эксцентрик), и ведомого диска, снабженного четырьмя прорезями. При движении палец ведущего диска входит в прорезь ведомого диска и поворачивает его на 90 градусов. При этом зубчатый барабан поворачивается на 1/4 оборота. Ведомый диск за время одного оборота делает четыре остановки, причем продолжительность остановки в три раза больше времени движения. Четырехлопастный крест связан со скачковым зубчатым барабаном, передвигающим пленку. Стояние кадра определяется временем, необходимым для поворота ведущего диска на 270 градусов. После этого палец снова входит в следующую прорезь четырехлопастного креста и снова поворачивает его на 1/4 оборота. Таким образом происходит прерывистое движение пленки.

С самого своего появления кинематограф приобрел огромную популярность. Сравнительная дешевизна билетов и стремительный рост сети кинотеатров выдвинули его на первое место среди всех общедоступных развлечений. Ранний кинематограф был еще весьма несовершенным: картины сильно мигали, изображение прыгало по экрану, часто оно было довольно темно, но все же публика приходила от этих фильмов в восторг и валом валила в кинотеатры. Коммерческий успех нового изобретения превзошел все ожидания. (Капитал одной из первых кинофирм «Патэ» всего за 14 лет вырос в 30 раз — с 1 млн до 30 млн франков.)

65. РАДИОТЕЛЕГРАФ

Беспроволочный радиотелеграф по праву считают величайшим изобретением конца XIX века, открывшим новую эру в истории человеческого прогресса. Точно так же, как старый электрический телеграф положил начало электротехнике, создание радиотелеграфа послужило исходным пунктом развития радиотехники, а затем и электроники, грандиозные успехи которых мы видим теперь повсюду. В истории двух этих изобретений можно отметить и другую интересную параллель: создатели телеграфа Земеринг и Шиллинг были первыми изобретателями, которые попытались использовать в интересах человека недавно обнаруженную диковинку — электрический ток, а в основе действия радиотелеграфов Попова и Маркони лежало только что открытое явление электромагнитного излучения. Как тогда, так и теперь техника связи первой востребовала и использовала новейшее достижение науки.

В электрическом телеграфе носителем сигнала является электрический ток. В радиотелеграфе в качестве этого носителя выступают электромагнитные волны, которые распространяются в пространстве с огромной скоростью и не требуют для себя никаких проводов. Открытие электрического тока и открытие электромагнитных волн отделяют друг от друга ровно сто лет, и на их примере можно видеть каких разительных успехов достигла за этот век физика. Если электрический ток, как мы помним, был обнаружен Гальвани совершенно случайно, то электромагнитные волны впервые проявили себя в результате совершенно целенаправленного эксперимента Герца, который прекрасно знал, что и как ему надо искать, потому что еще за двадцать лет до его замечательного открытия существование электромагнитных волн с математической точностью было предсказано великим английским физиком Максвеллом.

Чтобы понять принцип действия радиотелеграфа, вспомним, что такое электрическое поле и что такое магнитное поле. Возьмем пластмассовый шарик и потрем его шерстяной тряпочкой — шарик после этого обретет способность притягивать к себе мелкие бумажки и сор. Он, как это обычно говорят, наэлектризуется, то есть получит на свою поверхность определенный электрический заряд. В одной из предыдущих глав уже сообщалось, что этот заряд может быть отрицательным и положительным, причем два шарика заряженных одинаково будут отталкиваться друг от друга с определенной силой, а два шарика с противоположными зарядами будут притягиваться. Почему это происходит? В свое время Фарадей предположил, что каждый шарик создает вокруг себя некое невидимое возмущение, которое он назвал электрическим полем. Поле одного заряженного шарика действует на другой шарик, и наоборот. В настоящее время гипотеза Фарадея принята наукой, хотя о природе этого поля, о том, что оно из себя представляет как таковое, ничего не известно. Кроме того, что электрическое поле существует, очевидны только два его несомненных свойства: оно распространяется в пространстве вокруг всякого заряженного тела с огромной, хотя и конечной, скоростью 300000 км/с и воздействует на любое другое электрически заряженное тело, оказавшееся в этом поле, притягивая или отталкивая его с определенной силой. Разновидностью такого воздействия можно считать электрический ток. Как уже говорилось, любой электрический ток представляет собой направленное движение заряженных частиц. Например, в металлах, это движение электронов, а в электролитах — движение ионов. Что же заставляет эти частицы двигаться упорядочение в одном направлении? Ответ известен: этой силой является электрическое поле. При замыкании цепи в проводнике по всей его длине от одного полюса источника питания до другого возникает электрическое поле, которое воздействует на заряженные частицы, заставляя их двигаться определенным образом (например, в электролите положительно заряженные ионы притягиваются к катоду, а отрицательно заряженные — к аноду).

Многое из сказанного об электрическом поле можно отнести к магнитному. Все имели дело с постоянными металлическими магнитами и знают об их свойстве притягиваться и отталкиваться друг от друга в зависимости от того, какими полюсами — одноименными или разноименными — они направлены друг к другу. Взаимодействие магнитов объясняется тем, что вокруг любого из них возникает магнитное поле, причем поле одного магнита действует на другой магнит, и наоборот. Уже отмечалось, что магнитное поле возникает в пространстве вокруг каждого движущегося заряда и любой электрический ток (который — еще раз повторим это — есть направленный поток заряженных частиц) порождает вокруг себя магнитное поле. Говорилось и об обратном явлении — явлении электромагнитной индукции, когда изменяющееся магнитное поле наводит в проводниках электрический ток. Но почему возникает этот ток и при этом возникает только тогда, когда магнитное поле меняется? Попробуем в этом разобраться. Возьмем уже рассмотренный выше трансформатор, представляющий собой две катушки, надетые на один сердечник. Включив первичную обмотку трансформатора в сеть, мы получим ток во вторичной обмотке. Это означает, что электроны во вторичной обмотке пришли в направленное движение, то есть какая-то сила начала воздействовать на них. Какова же природа этой силы? Долгое время ученые и электротехники становились в тупик перед этим вопросом. Уже используя трансформаторы, они не могли полностью понять процессы, которые в них происходили. Очевидно было только, что это явление нельзя объяснить единственно воздействием магнитного поля.

Интересную гипотезу, объясняющую это и многие другие электрические явления, выдвинул в 1864 году известный английский физик Максвелл. Чтобы понять ее, заметим, что процесс, который происходит во вторичной обмотке трансформатора, очень похож на тот, что наблюдается в любом проводнике замкнутой электрической цепи — и там и здесь электроны приходят в направленное движение. Но в проводнике цепи это происходит под воздействием электрического поля. Быть может, и во вторичной обмотке трансформатора тоже возникает электрическое поле? Но откуда оно берется? В замкнутой цепи электрическое поле появляется вследствие включения в нее источника тока (батареи или генератора). Но во вторичной цепи трансформатора, как известно, нет никаких внешних источников тока. Максвелл предположил, что электрическое поле возникает здесь под влиянием изменяющегося магнитного поля. Он пошел дальше и стал утверждать, что два эти поля теснейшим образом связаны между собой, что любое изменяющееся магнитное поле порождает электрическое, а любое изменяющееся электрическое поле порождает магнитное и что они вообще не могут существовать друг без друга, представляя как бы единое электромагнитное поле.

Теорию Максвелла можно пояснить следующим простым примером. Представим себе, что на пружине подвешен заряженный шарик. Если мы оттянем его вниз, а потом отпустим, шарик начнет колебаться вокруг какой-то точки равновесия. Предположим, что эти колебания происходят с очень большой частотой (то есть шарик успевает подняться и опуститься несколько сотен или даже тысяч раз за одну секунду). Теперь будем измерять величину напряженности электрического поля в какой-то точке неподалеку от шарика. Очевидно, она не является величиной постоянной: когда шарик будет приближаться, напряженность увеличится, когда он будет удаляться — она уменьшится. Период этих изменений, очевидно, будет равен периоду колебаний шарика. Другими словами, в этой точке возникает переменное электрическое поле. Следуя гипотезе Максвелла, мы должны предположить, что это изменяющееся электрическое поле породит вокруг себя изменяющееся с той же периодичностью магнитное поле, а последнее вызовет появление переменного электрического поля уже на большем расстоянии от заряда и так далее. Таким образом, в окружающем шарик пространстве возникнет система периодически изменяющихся электрических и магнитных полей. Образуется так называемая электромагнитная волна, бегущая по всем направлениям от колеблющегося заряда со скоростью 300000 км/с. С каждым новым колебанием шарика в пространство излучается очередная электромагнитная волна. Сколько колебаний, столько и волн. Но сколько бы волн ни излучалось в единицу времени, скорость их распространения строго постоянна. Если предположить, что шарик совершает одно колебание в секунду, то за это время «головная» часть волны окажется на расстоянии 300000 км от источника излучения. Если частота составляет 1000000 колебаний в секунду, то все эти волны заполнят за 1 секунду пространство, считая по прямой линии в сторону от источника излучения 300000 км. На долю же каждой отдельной волны придется путь в 300 м. Таким образом длина каждой волны напрямую связана с частотой колебания сгенерировавшей ее системы.

Заметим, что эта волна как бы в самой себе имеет все условия для своего распространения. Хотя каждая плотная среда в той или иной степени ослабляет ее силу, электромагнитная волна в принципе может распространяться и в воздухе, и воде, проходить сквозь дерево, стекло, человеческую плоть. Однако наилучшей средой для нее является вакуум. Теперь посмотрим, что произойдет, если на пути распространения электромагнитной волны окажется проводник. Очевидно, электрическое поле волны будет воздействовать на электроны проводника, которые вследствие этого придут в направленное движение, то есть в проводнике возникнет переменный электрический ток, имеющий тот же период колебания и ту же частоту, что и породившее его электрическое поле. Таким образом, можно дать объяснение явлению электромагнитной индукции, открытой Фарадеем.

Понятно, что наш пример несколько идеален. В реальных условиях электромагнитное поле, излучаемое колеблющимся заряженным шаром, будет очень слабым, и напряженность его на большом расстоянии практически равна нулю. Ток, наводимый во вторичном проводнике, будет настолько мал, что его не зарегистрируют никакие приборы. По этой причине при жизни Максвелла его теория не получила экспериментального подтверждения. Многие ученые разделяли его взгляды и искали способ, который помог бы обнаружить электромагнитные волны. Опыты в этом направлении стали исходной точкой для развития радиотехники.

Только в 1886 году немецкий физик Герц провел эксперимент, подтверждавший теорию Максвелла. Для возбуждения электромагнитных волн Герц применил прибор, названный им вибратором, а для обнаружения — другой прибор — резонатор.

Вибратор Герца состоял из двух стержней одинаковой длины, которые присоединялись к зажимам вторичной обмотки индукционной катушки. На обращенных друг к другу концах стержней укреплялись небольшие металлические шары. При прохождении индукционного тока через вторичную обмотку катушки между шарами проскакивала искра, и в окружающее пространство излучались электромагнитные волны. Резонатор Герца состоял из согнутой в кольцо проволоки, на обоих концах которой тоже укреплялись металлические шарики. Под действием переменного магнитного поля электромагнитной волны в резонаторе наводился переменный электрический ток, в результате чего между шариками происходил разряд. Таким образом, при разряде в вибраторе наблюдалось проскакивание искры между шариками резонатора. Объяснить это явление можно было только исходя из теории Максвелла, так что благодаря опыту Герца со всей очевидностью было доказано существование электромагнитных волн.

Герц был первым человеком, который сознательно управлял электромагнитными волнами, но он никогда не ставил перед собой задачи создать устройство, позволявшее наладить беспроволочную радиосвязь. Однако эксперименты Герца, описание которых появилось в 1888 году, заинтересовали физиков всего мира. Многие ученые стали искать пути усовершенствования излучателя и приемника электромагнитных волн. Резонатор Герца был прибором очень малой чувствительности и поэтому мог улавливать испускаемые вибратором электромагнитные волны лишь в пределах комнаты. Сначала Герцу удалось осуществить передачу на расстояние 5, а потом — 18 м.

В 1891 году французский физик Эдуард Бранли открыл, что металлические опилки, помещенные в стеклянную трубочку, при пропускании через них электрического тока не всегда обнаруживают одинаковое сопротивление. При возникновении вблизи трубочки электромагнитных волн, например, от искры, полученной посредством катушки Румкорфа, сопротивление опилок быстро падало и восстанавливалось лишь после их легкого встряхивания. Бранли указал, что это их свойство можно использовать для обнаружения электромагнитных волн.

В 1894 году английский физик Лодж впервые использовал трубку Бранли, которую он назвал «когерером» (от латинского coheare — сцепляться, связываться) для того, чтобы регистрировать прохождение электромагнитных волн. Это позволило увеличить дальность приема до нескольких десятков метров. Для восстановления чувствительности когерера после прохождения электромагнитных волн Лодж установил непрерывно действующий часовой механизм, который постоянно встряхивал его. Фактически Лоджу оставалось сделать только шаг, чтобы создать радиоприемник, но он этого шага не сделал.

Впервые мысль о возможности применения электромагнитных волн для нужд связи была изложена русским инженером Поповым. Он указал, что передаваемым сигналам можно придать определенную длительность (например, одни сигналы сделать более длинными, другие — более короткими) и с помощью азбуки Морзе передавать без проводов депеши. Впрочем, устройство это имело смысл только в том случае, если бы удалось добиться устойчивой радиопередачи на большое расстояние. Изучив трубки Бранли и Лоджа, Попов принялся за разработку еще более чувствительного когерера. В конце концов ему удалось создать очень чувствительный когерер с платиновыми электродами, заполненный железными опилками.

Следующей проблемой явилось усовершенствование процесса встряхивания опилок после их слипания, вызванного прохождением электромагнитной волны. Часовой механизм, применявшийся Лоджем для восстановления чувствительности когерера, не обеспечивал надежного действия схемы: такое встряхивание было беспорядочным и могло привести к пропуску сигналов. Попов искал автоматический метод, который бы позволил восстанавливать чувствительность когерера только после того, как сигнал принят. Проделав много опытов, Попов изобрел способ периодического встряхивания когерера с помощью молоточка электрического звонка и применил электрическое реле для включения цепи этого звонка. Схема, разработанная Поповым, обладала большой чувствительностью, и уже в 1894 году ему удалось с ее помощью принимать сигналы на расстоянии нескольких десятков метров. Во время этих опытов Попов обратил внимание на то, что дальность действия приемника заметно увеличивается, если присоединить к когереру вертикальный провод. Так была изобретена приемная антенна, использовав которую Попов внес существенные улучшения в условия работы приемника. К 1895 году он создал прибор, который представлял собой первый в истории радиоприемник.


  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44