Современная электронная библиотека ModernLib.Net

Информатика, кибернетика, интеллект

ModernLib.Net / Философия / Пушкин В. / Информатика, кибернетика, интеллект - Чтение (стр. 10)
Автор: Пушкин В.
Жанр: Философия

 

 


      Современное естествознание в основном базируется на теории абиогенного происхождения жизни, впервые развитой А.И.Опариным (1924 г.). Согласно этой теории, информационные макромолекулы типа нуклеиновых кислот и белков могли возникать из сравнительно простых органических соединений, образовавшихся на Земле в условиях ее первичной восстановительной атмосферы. Успешный синтез важных для жизни биохимических соединений в условиях, имитирующих существовавшие ранее на Земле, подтверждает эту теорию. Характерным является следующее положение А. И. Опарина: "...Сейчас все более и более становится очевидным, что нельзя (как это было еще недавно) рассматривать возникновение жизни как какое-то внезапное, изолированное явление, как какую-то счастливую случайность. Оно представляет собой неотъемлемую составную часть общего закономерно протекающего процесса развития Вселенной" [32].
      В прошлом при рассмотрении этой проблемы обычно предполагалось, что возникновение жизни - редкое и странное явление. Оно связывалось со специфическим переходом от углеродистых соединений к аминокислоте, от нее к белку, а затем путем естественного отбора и эволюции - к разумным существам.
      Принципы кибернетики позволяют подойти к этой проблеме иначе. Теоретическое доказательство того факта, что самостоятельное развитие вероятно для машин, что кибернетика развития - жизнеспособная область, дает возможность отвлечься от строгой специфичности явлений возникновения жизни. Наиболее решительно эту точку зрения выразил У. Р. Эшби. "Я утверждаю, писал он, - что... поиски специфических условий совершенно ошибочны. Справедливо как раз обратное - каждая динамическая система дает начало своей собственной форме разумной жизни и является в этом смысле самоорганизующейся..." [33]. До недавнего времени не было опыта обращения с системами средней сложности. Современные вычислительные машины, будучи сложными системами, способствуют пониманию процессов возникновения жизни, так как в них складываются несколько более простые варианты тех же явлений.
      103
      Такой подход позволяет, по крайней мере, ввести кибернетические принципы самоорганизации в изучение пограничных между физикой и биологией вопросов. Поскольку кибернетика занимается системами на уровне их организации, то здесь, говоря методологически, она выступает как физика биологии. В аспекте кибернетики биологические процессы с их целесообразностью могут быть объяснены исходя из физических законов. Именно Н. Винер впервые определил информацию как новую физическую переменную [34].
      В рамках молекулярной биофизики стало возможным акцентировать внимание на проблеме моделирования добиологической эволюции макромолекул. Несомненный интерес представляет теория М. Эйгена, в которой предложена концепция самоорганизации и феноменологически рассмотрены биологические процессы отбора и эволюции на основе неравновесной термодинамики и теории информации. М. Эйген показал, что для решения проблемы взаимоотношений между причиной и следствием в биологии "необходима теория самоорганизации, которую можно было бы применить к молекулярным системам, или, точнее, к некоторым особым молекулярным системам, находящимся в среде с определенными свойствами" [35]. Принципиальным в теории М. Эйгена является вывод, согласно которому для биологии важна ценность информации, а не ее количество. Информация, накопленная в процессе эволюции, - это "оцененная" информация, и число битов мало что говорит о ее функциональном значении. Поэтому нужна новая переменная, которая характеризовала бы уровень эволюции, - "ценность".
      Комплементарность информации и энтропии ясно показывает ограниченную применимость классической теории информации к проблемам эволюции [36]. Для понимания процессов эволюции нужно знать не количество информации, а программу биологического развития, заложенную в генах, и способ ее реализации. Значит, встает вопрос о содержании информации, о ее ценности для развития. Информация возникает или приобретает ценность посредством отбора.
      Самоорганизация зависит от определенных химических предпосылок, а также от специальных условий среды; то есть самоорганизация - это не "просто" свойство материи. По словам Ф. Энгельса, "...жизнь должна была возникнуть химическим путем" [37]. Предбиологическая фаза - это химия. В работе М. Эйгена показано, что наличие каталитических функций в сочетании с различными механизмами обратной связи, придающее системе способность к автокаталитическому росту, выступает одним из решающих предпосылок самоорганизации. Однако "автокаталитический рост" не может происходить в системе, которая находится в равновесии или вблизи равновесия. Это приводит к вопросу о том, какие условия среды необходимы для самоорганизации. Отбор и эволюция не могут происходить в равновесных или
      104
      почти равновесных системах даже при наличии для этого нужных веществ. В системах, находящихся вблизи равновесия, автокатализ не будет приводить к росту, так как каталитическое ускорение в равной степени сказывается и на прямой и на обратной реакциях. Вместе с тем вблизи стационарного состояния могут возникать колебания. Существование таких нестабильностей и служит предпосылкой для селективного роста и эволюции.
      Кроме того, самоорганизация и дальнейшая эволюция функционального поведения должны начинаться на уровне самовоспроизводящегося молекулярного кода [38]. Носителями его являются нуклеиновые кислоты и белки. Реальный гиперцикл, построенный из нуклеиновых кислот и синтезируемых с их участием белков-ферментов, обеспечивает отбор макромолекул с объемом информации, достаточным и необходимым для возникновения живой системы. Тем самым раскрывается физический смысл генетического кода. По замечанию Г. Патти, "живое отличается от неживого своей способностью обеспечивать большую надежность процессов хранения и передачи наследственной информации на молекулярном уровне по сравнению с любой термодинамической или классической системой" [39]. Нелинейные системы обладают всеми свойствами, необходимыми для начала самоорганизации, и допускают дальнейшую эволюцию до уровня, когда система может выйти за рамки специальных условий, требуемых для ее возникновения. (Уровень сложности таков, что вероятность получить его путем случайной сборки ничтожно мала). То есть информация приобретает свой смысл только посредством функциональной корреляции. "Вследствие такой нестабильности, - пишет М. Эйген, - нуклеация этой функциональной корреляции (мы можем назвать ее возникновением жизни) оказывается неизбежным событием если благоприятные условия существования потока свободной энергии поддерживаются в течение достаточно длительного времени. Это первичное событие не уникально. В любом случае код станет универсальным вследствие нелинейной конкуренции" [40].
      Данный вывод, полученный в рамках молекулярной биофизической теории, относящейся к фазе самоорганизации как переходу от неживого к живому, по существу, подтверждает приведенный в начале параграфа тезис, построенный на достаточно общих биокибернетических принципах самоорганизации. Оба вывода получены благодаря рассуждениям, основывающимся на признании определяющей роли структурно-динамических (существенно неравновесных) принципов, распространяющихся на замкнутые системы, функционирующие в условиях относительно неизменной среды, где неизбежное следование одного события за другим создает совершенный "детерминистический мир". Проблема выживания в последнем сводится к отысканию ограничений, которые управляют переходами от предыдущего события к последующему. "Ясно, - замечает по этому поводу Г. Ферстер, - что
      105
      самым простым из всех таких детерминистских миров был бы мир, где вовсе не происходит переходов, т. е. где все находится в неподвижном и равномерном покое. Поэтому-то мировой океан, где колебания температуры, изменения концентрации химических элементов, колебания разрушительных сил и т.д. сохраняются на минимальном уровне, явился колыбелью жизни" [41].
      Необходимость неравновесности процессов, приводящих к образованию первичных функциональных структур, обоснована, в частности, П. Гленсдорфом и И. Пригожиным [42], описавшими тип событий, ведущих к переходу от неживых объектов к живым. Показано, что разрушение структур есть ситуация, преобладающая вблизи термодинамического равновесия; наоборот, создание структур может осуществляться по определенным нелинейным кинетическим законам вне области стабильности состояний, отвечающих обычному термодинамическому поведению. Поэтому одной из наиболее интересных в этом отношении проблем статистической физики и термодинамики является распространение концепции порядка на неравновесные ситуации для систем, в которых появление упорядоченных структур при термодинамическом равновесии было бы маловероятным. Вблизи равновесия не реализуемы также периодические процессы, характерные для живых систем. Возникновение новой структуры (в теории И. Пригожина - диссипативной структуры) в открытой системе всегда есть результат нестабильности.
      Важно заметить, что упорядоченность открытых систем возрастет или останется постоянной не вопреки второму началу термодинамики, а вследствие ее законов. Упорядоченность поддерживается оттоком энтропии в окружающую среду. Строгая количественная формулировка таких фактов требует построения термодинамики открытых систем, термодинамики неравновесных процессов. Поскольку в описание подобных процессов в явной форме входит время, речь идет уже не о термостатике, но о физической кинетике [43]. И. Пригожин и его сотрудники показали, что в результате химических нестабильностей автокаталитические гомогенные системы вдали от равновесия могут образовывать структурные неоднородности в пространстве и времени, в частности, создавать осциллирующие структуры. По И. Пригожину, отклонение от равновесия и характеризует уровень диссипации. Вдали от равновесия и за пределами неустойчивости флюктуации усиливаются. В этом отношении диссипативная структура является гигантской флюктуацией, стабилизированной потоком энергии и вещества из внешнего мира.
      Открытие действующего в диссипативных структурах нового принципа упорядоченности - порядка через флюктуацию - свидетельствует о том, что при определенных условиях структуры могут образовываться спонтанно и сами себя поддерживать. Режим самоподдержания означает некоторую индивидуальность и определенную автономию от среды. В отличие от кристалла (рав
      106
      новесной системы), который растет в неопределенность, если полагается на свое собственное "решение", диссипативная структура находит и поддерживает свою форму и величину независимо от ближайшего окружения. Диссипативная структура "знает на деле", что ей импортировать и экспортировать, чтобы себя содержать и обновлять. Такая автономия, по характеристике Э. Янча [44], является выражением основополагающей комплементарности структуры и функции, одного из важнейших законов самоорганизации: спонтанно возникшая структура соответствует своей функции и наоборот. Задаваемая этим законом пластичность служит основой достижения самоподдерживающегося баланса системы и среды, а также коэволюции системы с ее окружением. Самоподдерживающаяся стабильность представляет разновидность эволюирующих систем, при которой флюктуации поглощаются целостной системой; это создает возможность внутреннего самоусиления, без чего не может быть подлинной самоорганизации.
      Л. Тьюринг показал, как в совершенно однородной системе может возникать весьма правильная структура при условии, что эта система неустойчива и в определенное время подвергается случайному воздействию [45]. Тем самым констатировалось возникновение порядка, могущего лежать в основе формирования биологических структур. Интересуясь специальными формами морфогенетических путей в ходе эмбрионального развития, А. Тьюринг полагал, что такого рода новообразования структур весьма специфичны. Однако развитие синергетики продемонстрировало [46], что появление упорядоченных структур вслед за неустойчивыми значительно более общее явление. Становится возможным заключить, что "образующаяся впоследствии диссипативная структура действительно является новым состоянием вещества, которое индуцируется потоком свободной энергии в неравновесных условиях. В этом новом состоянии мы имеем новую физическую химию на супермолекулярном уровне..." [47]. Вполне вероятно, что появление диссипативных структур на предбиологической стадии могло привести систему к условиям, далеким от равновесия, а также к сохранению этих условий, что необходимо для возникновения определенных ключевых реакций, обеспечивающих дальнейшую эволюцию.
      Во взаимодействии самоподдерживающих структур различают два основных вида обмена - коммуникацию и симбиоз. Если с обеих сторон поддерживается полная автономия, то можно говорить о коммуникации. Она возможна лишь там, где область восприятия двух или нескольких систем достаточно совпадает. Коммуникация есть самопредставление системы, созвучное жизненным процессам в другой системе [48]. Следуя физической аналогии, коммуникацию правомерно сравнить с явлением резонанса, в котором осцилляторы стимулируются практически без передачи энергии другим осцилляторам с колебаниями одинаковой собственной частоты. Если же обмен между самоподдерживающими
      107
      структурами включает существенное взаимное использование продуктов превращения - в форме либо энергии, либо материи, либо информации, то мы можем говорить о симбиозе. При симбиозе каждая система отчасти жертвует своей автономией, но выигрывает участие в вышестоящей системе и в новом уровне автономии, на котором находится вышестоящая система. Все живые организмы характеризуются симбиозом, который может приводить к полной взаимной зависимости двух организмов одного или различных видов. Так как все организмы находятся в отношении симбиоза, эволюция всегда является коэволюцией. Коэволюирующие системы действуют между приспособленностью и неприспособленностью: полная приспособленность и полная неприспособленность смертельны.
      Идеи, развитые в теориях М. Эйгена и И. Пригожина, имеют, несомненно, важное методологическое значение. Теория М. Эйгена дает общий принцип отбора и эволюции на молекулярном уровне, основанный на критерии устойчивости стационарных состояний в (нелинейной) термодинамической теории. Она показывает, что объяснение основных принципов эволюции как самоорганизации на молекулярном уровне не требует "новой физики". Скорее оно опирается на принципы, выводимые из уже известных законов и связывающие макроскопические явления с динамическим поведением на элементарном уровне [49]. В частности, введение параметра ценности позволяет развить общую теорию, которая рассматривает возникновение или самоорганизацию "ценной" информации, объединяя тем самым дарвиновскую теорию эволюции с классической теорией информации, а также - после приложения этой концепции к самоорганизации на молекулярном уровне - обеспечивая количественную основу для молекулярной биологии. Теория И. Пригожина о диссипативных структурах, в свою очередь, служит связующим звеном между теорией отбора и термодинамикой необратимых процессов. Рассмотренные в ней общие вопросы (возникновение порядка, роль вероятностных и каузальных событий, зависимость структуры от предыстории, иерархия структур) вытекают из неравновесной термодинамики, примененной к определенным типам нелинейных систем, далеких от равновесия.
      Н. Винер развивал идеи самоорганизации применительно к тончайшим механизмам наследственности, прибегая при этом к аналогии с процессом кристаллообразования. Обнаружив, в частности, что организация кристалла снежинки - обусловлена динамикой ее колебаний, и установив, что некоторые комплексы нуклеиновых кислот являются кристаллами, Н. Винер отметил, что вибрационные свойства играют большую роль в организации динамических систем более грубой текстуры. Он предположил, что вибрации молекул в комплексах нуклеиновых кислот ответственны за поведение этих комплексов как организованных систем. Рассмотрев процессы самоорганизации в некоторых сооб
      108
      ществах животных, Н. Винер констатировал: "Эти явления "захватывания" (или объединения с вовлечением в структуру новых свойств) и "взаимного захватывания" имеют, по-видимому, широкий диапазон в жизненных процессах. Предположение, которое я сделал относительно самоорганизации комплексов нуклеиновых кислот, состоит в том, что молекулярная вибрация подвержена аналогичному "захватыванию"" [50].
      Концепция самоорганизации Винера содержит в качестве основного элемента признание колебательно-ритмических процессов, которые в структурном отношении являются общими для различных систем, достигших уровня самоорганизации. Необходимо подчеркнуть, что качественный уровень процессов самоорганизации, происходящих, например, в технических, биологических или других системах, различен. Это обстоятельство, по-видимому, и послужило причиной дифференциации феномена самовоспроизведения у автоматов и кристаллообразования. Одна из трудностей в определении того, что понимать под самовоспроизведением, по мнению Дж. фон Неймана, заключается в том, что некоторые организации, такие, как растущие кристаллы, по любому наивному определению самовоспроизведения будут самовоспроизводящими, однако никому не хочется признавать их такими [51]. Чтобы обойти эту трудность, можно считать, что самовоспроизведение включает в себя не только способность создавать другой организм, подобный оригиналу, но и подвергаться наследственным мутациям.
      Самовоспроизведение выступает разновидностью самоорганизации. Понятие самовоспроизведения в данном контексте употребляется для характеристики автоматов, дающих на выходе нечто похожее на них самих. Речь идет об автоматах, способных мидифицировать объекты, подобные себе, или осуществлять синтез, выбирая части и соединяя их друг с другом, или разбирать синтезированные объекты. В процессе самовоспроизведения решающую роль играет свойство сложности, проявляющееся в том, что для каждого автомата имеется критическое число элементарных частей, ниже которого процесс синтезирования вырождается, а выше (при условии правильной организации) приобретает характер взрыва. Другими словами, синтез автоматов может протекать так, что каждый автомат будет создавать другие автоматы, более сложные и обладающие большими, чем он, возможностями.
      Самовоспроизведение, понимаемое таким образом, соотнесено с процессами самоусложнения и саморазвития. Действительно, если самовоспроизведение возможно лишь на определенном (критическом) уровне сложности, то система, решающая задачу воспроизведения себе подобных, должна быть "запрограммирована" на самоусложнение и, стало быть, на саморазвитие. Поэтому правомерен вопрос, поставленный в общей и динамической форме, "как может нечто, что кажется простым, самостоятельно стать
      109
      сложным" [52]. Этот подход показывает, что модели воспроизведения, предложенные Дж. фон Нейманом, содержат сильные ограничения, которые снимаются в процессах воспроизведения естественных автоматов. М. Аптер комментирует этот факт следующим образом: "В моделях фон Неймана новая машина хотя и строится постепенно, шаг за шагом, а не создается готовой в один момент, все же этот рост управляется полностью извне той машиной, которая ее строит. То есть одна машина строит другую машину, а не вторая машина строится сама на основе инструкций, данных ей первой машиной. Конечно, интересно, почему животные самовоспроизводятся не по способу фон Неймана, а развиваются автономно из чего-то на вид гораздо более простого, чем их родители" [53].
      Самовоспроизведение как аспект самоорганизации необходимо рассматривать не только структурно, но и генетически. Феномен самовоспроизведения нельзя адекватно истолковать, не привлекая понятий самоусложнения и саморазвития. Последние выражают структурно-генетическое содержание развития определенных материальных форм, модельная идентификация которых в информационно-логическом плане осуществляется, в частности, в теории самовоспроизводящихся автоматов. Понятия самоусложнения и саморазвития, безусловно, имеют и структурный и генетический аспекты. Однако в научной теории определенный аспект того или иного понятия приобретает преобладающее значение. Так, в теории автоматов содержание понятия сложности ограничивается структурно-функциональным выражением.
      Под функцией понимается свойство структуры, включающее в себя закономерные отношения между элементами структуры и основанные на них воздействия данной структуры на другие структуры целенаправленного поведения. Анализ соотношения функций и структур приводит к выводу о том, что чем выше уровень организации систем, тем сильнее зависимость структуры от функций. На относительно высоких уровнях организации усиливается самостоятельность и активность функции по отношению к структуре. Основой их единства служит функционирование системы в целом. В кибернетических системах одна и та же функция поведения может соответствовать внутренним структурам системы. Вместе с тем структура и функция системы в одинаковой мере формируют статус ее сложности.
      Математическая интерпретация и физическое представление эволюционной теории Ч. Дарвина [54] позволяют считать эту теорию выводимым из физики законом, определяющим самоорганизацию живой природы. В такой интерпретации теория Ч. Дарвина оказывается оптимальным принципом, вытекающим из определенных физических предпосылок, а вовсе не "несводимым" феноменом, относящимся только к биосфере. Подчеркивая необходимость целостных структур развития в эволюционной биологии, Ч. Новиньский пишет: "Путь от положений общей теории
      110
      эволюции к их подтверждению или отклонению на основе эмпирического материала, а также экспериментальных результатов, идет через ряд редукционных ступеней абстракции" [55]. При этом считается, что непосредственное сведение положений эволюционной теории к генетическому уровню невозможно. Ибо механизмы биологической эволюции изменяются в ходе развития жизни на Земле. В качестве теории, представляющей эволюционный процесс как целостное развитие, называется теория И. И. Шмаль-гаузена [56]. Согласно ей весь процесс эволюции приобретает характер самоорганизации в том смысле, в каком последняя понимается в кибернетике.
      Таким образом, современные теории самоорганизации материи на молекулярном уровне, описывающие механизмы перехода от неживой материи к живой, исходят из биофизических интегративных концепций, позволяющих с введением новых понятий модифицировать и формально обобщить те принципы дарвинизма, которые сложились в эволюционной биологии. Подобные теории, однако, построены на том, что достаточно высокая сложность биологически эволюционирующих систем - популяций живых организмов - пока делает проблематичным построение физической теории эволюции в целом. Поэтому реализуется возможность рассмотрения более простых моделей и прежде всего молекулярной добиологической эволюции. Появились также работы, дающие генетическую интерпретацию основных вопросов эволюционного учения. Одна из них - монография С. Оно [57]. В ней приведено, в частности, генетическое истолкование такого явления, как естественный отбор, основанное на изучении проблемы избыточности генетического материала в геноме высших организмов. Основная мысль С. Оно заключается в том, что появление новых функций в организме невозможно без избыточности генного материала в геноме. Концепция генетической избыточности в этой работе доминирует. Заметим, что понятие избыточности в современной литературе имеет общенаучный смысл. В точном значении оно возникло в теории информации. Первоначально этот термин относился к повторению знаков при передаче сообщений по каналу с шумом и обозначал степень помехоустойчивости этого процесса. Позднее кибернетика придала понятию избыточности предельно общий смысл, наделив его статусом системного понятия, применимого к любым достаточно сложным образованиям и обозначающего необходимые условия их надежного функционирования и развития.
      В монографии С. Оно избыточность как понятие молекулярной биологии и генетики соотносится с ключевым вопросом эволюционной теории - о роли естественного отбора в эволюции. С. Оно соглашается с тем, что благодаря естественному отбору живые организмы могли приспосабливаться к изменяющимся условиям среды, и в результате адаптивной радиации от общего предка возникло множество новых видов. При этом он приходит
      111
      к выводу о том, что "естественный отбор, неся как бы охранительную функцию, по своей природе крайне консервативен. Если бы эволюция целиком и полностью зависела только от естественного отбора, то от бактерий произошли бы лишь многочисленные формы бактерий" [58]. Появление многоклеточных животных, позвоночных и, наконец, млекопитающих из одноклеточных организмов, как считает С. Оно, было бы в этом случае совершенно невозможно, поскольку для таких грандиозных эволюционных скачков необходимо возникновение новых генов с новыми, ранее не существовавшими функциями. Избежать безжалостного давления естественного отбора смогли только те цистроны, которые стали избыточными. Благодаря этому в них накапливались ранее запрещенные мутации, превращавшие их в новые гены [59]. В этом смысле эволюция есть не что иное, как результат постепенного накопления генетических изменений в геномах растений и животных. В то же время естественный отбор только потому и может действовать, что особи, входящие в состав отдельных популяций, обнаруживают некоторое генетическое разнообразие. Поэтому "в качестве основной движущей силы эволюции выступает дупликация генов. Только тогда, когда в результате дупликации возникает избыточный локус, появляется возможность накопления ранее запрещенных мутаций и возникает новый ген с ранее неизвестной функцией" [60].
      Процесс дупликации генов дает возможность избежать давления естественного отбора. В результате дупликаций создаются избыточные копии генов. Естественный отбор часто игнорирует изменения в избыточных копиях, благодаря чему в них накапливаются ранее запрещенные мутации и возникает новый ген с не существовавшей ранее функцией. Оценить значение дупликаций генов стало возможно после того, как была выяснена природа генетического кода. Естественный отбор может элиминировать запрещенные мутации и эффективно охранять последовательность ДНК в цистронах тогда, когда в геноме содержится только по одной копии каждого гена. В тех же случаях, когда ген представлен большим числом копий, охранительная деятельность естественного отбора перестает быть эффективной. Подобно тому, как мутации возникают вследствие ошибок при репликации ДНК, дупликации генов также появляются как редкие ошибки митотических и мейотических процессов.
      Итак, концепция С. Оно основана на избыточности генетического материала и ее функциональном значении в эволюции. Избыточность в этой концепции выступает как механизм и основа самоорганизации, позволяющая избежать консервативного влияния естественного отбора, "работающего лишь на нужды сегодняшнего дня". В этом отношении концепция С. Оно примыкает к теориям М. Эйгена и И. Пригожина, отличаясь от них, очевидно, тем, что она обращена к явлениям макроэволюции, а это в математически строгих теориях М. Эйгена и И. Пригожина еще недости
      112
      жимо. Идеи С. Оно ориентированы на биологию развития, центральная проблема которой - действие генов в онтогенезе. Происходит перенос центра тяжести с бактериальных и фаговых систем на изучение молекулярно-генетических процессов высших организмов с присущим им сложным циклом развития, одним из атрибутов которого выступает процесс дифференцировки.
      Образование пространственной дифференцировки как явления самоорганизации в онтогенезе остается, однако, необъясненным, несмотря на замечательные успехи в генетике и в биохимии нуклеиновых кислот. Это понятно, если учесть, что рассмотренные проблемы являются комплексными. Состояние разработанности последних свидетельствует о том, что общие биологические закономерности нельзя понять, не выходя за их пределы.
      Таким образом, основные эвристические понятия рассмотренных теорий это понятия самоорганизации, ценности информации, диссипативной структуры, избыточности и так далее, содержащие существенно кибернетический аспект. То же можно сказать об идеях и методах данных теорий. Последние опираются, например, на представления биофизических явлений машинами Тьюринга, на построение сложных и точных химических сетей передачи информации и т.д. М. Эйген пишет: "Эволюцию на молекулярном уровне можно считать некой игрой, в которой разум игрока заменен селективным "инстинктом", призванным содействовать выживанию среди хаотически проявляющихся воздействий внешнего мира. Поэтому мы считаем, что теория игр... является ключом к любому дальнейшему обобщению теории эволюции" [61]. Качественный анализ информационных генетических систем управления включает выделение элементов и подсистем, механизмов памяти, потоков информации, выяснение их свойств и функций, путей эволюции и обусловленных ими общих свойств генетических систем. Используются и генетико-лингвистические аналогии.
      Предпосылки самоорганизации, которые обычно рассматриваются в той или иной науке (биологии, химии, физике), носят комплексный характер; причем синтезирующая роль по отношению к разнокачественной проблематике в этой области принадлежит понятиям и принципам кибернетики [62]. Характерно, что понятие самоорганизации помогает разъяснению многих проблем, связанных с искусственным интеллектом, машинизацией мышления, автоматизацией восприятия, усилением мыслительных способностей, с машинами для индуктивного вывода, с клеточной организацией, ростом, эволюцией и т.д. Поэтому можно считать, что не только к многочисленным феноменам самоорганизации, но и к предпосылкам собственно самоорганизации (как явления возникновения жизни) следует подходить в известном смысле как к проблемам биокибернетики. Если по признанию специалистов в области биофизики высокая сложность биологически эволюционирующих систем делает пока что нереальным построение физи
      113
      ческой теории эволюции в целом, то с помощью кибернетики эта проблема разрешима. Кибернетика ориентирована на такого рода сложные задачи. Понятие сложности, вызванное первоначально оценкой системы с позиции "из чего она состоит", постепенно с развитием кибернетики эволюционировало до понятия, включающего как структурные, так и функциональные характеристики.
      Биофизические концепции самоорганизации материи свидетельствуют о трансспецифичности материальных атрибутов жизни, выявляя тем самым псевдонаучный характер неовиталистического истолкования сущности жизни. Они смещают основание существования биологических наук в сторону биофизических и биокибернетических принципов, создавая методологическую основу для стиля мышления с существенно дедуктивно-аксиоматической ориентацией.

  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27