Уже сейчас, а тем более в будущем атомной энергетике надо научиться работать в маневренных режимах.
Придется поэкспериментировать, создать и отработать некоторое новое оборудование. В первую очередь предстоит усовершенствовать тепловыделяющие элементы, в которых заключено ядерное топливо.
У атомной энергетики еще младенческий возраст:
чуть более тридцати лет. Говорить, что ей уже неведомы проблемы, столь же неверно, как утверждать: "Ребенок родился - стало быть, трудности позади". Но родители знают: с рождения ребенка проблемы только начинаются.
Атомной энергетике предстоит научиться производить тепло не только для турбин электрогенераторов, но и для отопления жилищ, для различных технологических процессов. Иначе в предстоящие 15-20 лет придется отправлять с Востока на Запад минимум вдвое-втрое больше железнодорожных составов с углем.
Чтобы избежать столь нерадостной перспективы, уже началось сооружение атомных теплоэлектроцентралей (АТЭЦ) вблизи Одессы и Минска. Затем последуют Волгоградская и Харьковская АТЭЦ и десятки других вблизи крупных городов европейской части СССР.
Исключительно одно лишь тепло производят специальные атомные станции теплоснабжения (ACT), подобные котельным на органическом топливе. Для отопления и горячего водоснабжения городов нужна вода вдвое "холоднее", чем в АЭС, - с температурой не больше 150 градусов. Уменьшить нагрев вдвое - значит вдесятеро снизить давление в корпусе реактора ACT. Корпус же ответственнейший элемент реактора. Его диаметр - 6 метров, а длина - 15. В состав ACT входят два таких реактора. Мощность каждого - 500 тысяч киловатт. Оба они способны обогреть город численностью около 300 тысяч человек.
ACT обычно располагается в непосредственной близости от города. Конструкторы позаботились о гарантиях ее надежной работы, об отводе остаточного тепловыделения после какой-либо вынужденной остановки реактора. Например, основной корпус окружен вторым корпусом "страховочным". Если реактор остановился, то тепло - благодаря естественной циркуляции воды за счет разности температур - отводится даже в случае выхода из строя основных циркуляционных насосов. А при работе на мощности тепло передается потребителю через специальный промежуточный контур. Другими словами, вода из реактора никак не сможет попасть в теплосеть.
Пожалуй, не случайно первые ACT появились в СССР.
Ведь большинство из нас проживает в довольно холодных северных широтах. Посмотрите на географическую карту - вся территория США лежит южнее широты Киева. Поэтому нам приходится очень много энергии тратить на отопление жилищ и производственных помещений. Вот почему мы и через годы будем с такой же признательностью, как и первую АЭС, вспоминать атомные станции теплоснабжения под Горьким и Воронежем.
Еще не набрали силу атомные станции, вырабатывающие тепло, а в конструкторских бюро уже спроектированы станции для обеспечения теплом промышленности. "На их основе, - говорится в Энергетической программе, будут созданы ядерно-технологические комплексы".
Невозможно было "эволюционным" путем создать реакторы для выработки высокотемпературного теплд.
Здесь нужно было не модернизировать существующие типы ядерных котлов, а найти принципиально новое решение. И оно было найдено. В активной зоне реактора решили использовать температуростойкий конструкционный материал графит. Он не плавится, а только возгоняется при очень высокой температуре - 3700 градусов. Из графита выполнены как опорные конструкции, так и стенки активной зоны. Необычны и тепловыделяющие элементы, в которых спрятано ядерное топливо: они имеют форму сферы размером в бильярдный шар. Внутри каждого шара несколько тысяч комочков двуокиси урана в "скорлупах" из пирографита и карбида кремния.
В активной зоне реактора шары насыпаны беспорядочно, как горох в банке. Через пустоты между шарами продувается инертный благородный газ - гелий. Проходя через засыпку, гелий нагревается до 900-1000 градусов и потом отдает тепло потоку тех или иных технологических газов. С помощью этого тепла при 800- 900 градусов из природного газа выделяют водород, осуществляют "паровую конверсию метана". При соединении метана и паров воды в присутствии катализатора образуется смесь водорода и окиси углерода, или восстановительный газ, который можно использовать в металлургии для извлечения железа из руд, в химической промышленности для производства аммиака и затем азотосодержащих удобрений. При глубокой переработке нефти тоже незаменим водород, который позволяет увеличить "выход" жидкого топлива для автотранспорта, самолетов, дизельных тепловозов. Высокотемпературные реакторы способны наполовину сократить расход природного газа при получении водорода.
Соединение энергии ядерного котла с процессом паровой конверсии метана помогает также решить проблему обеспечения горячей водой и паром рассредоточенных потребителей. Ведь по территории нашей страны разбросаны десятки тысяч поселков и небольших городов, многие удаленные от крупных населенных пунктов промышленные и сельскохозяйственные предприятия.
Паровая конверсия метана предоставляет возможность дальней "хемотермической" передачи энергии от крупного ядерного центра к этим разбросанным объектам. Для этого смесь водорода и окиси углерода охлаждается, отдавая свое тепло поступающим на реакцию метану и воде, и с помощью компрессора передается по газопроводу к месту потребления. Там в присутствии специального катализатора при температуре 400-600° С проводится обратная реакция - соединение окиси углерода и водорода. При этой реакции выделяется энергия и восстанавливаются исходные вещества метан и вода. Метан по отдельному газопроводу возвращается на атомную станцию, чтобы снова принять участие в химической реакции, - цикл повторяется. Как видим, тепло от реактора может быть в химически связанном виде передано на любое практически необходимое расстояние.
Колоссальными возможностями обладает ядерная энергетика, но и она не избавлена от недостатков. На Востоке говорят: "Даже роза дает тень". Одна из сложных проблем - где взять топливо для реакторов.
Топливная проблема в ядерной энергетике ставится по-другому, чем в энергетике нефти или газа. Если атомная станция вырабатывает электрическую мощность в один миллион киловатт, то за проектный срок службы она израсходует около 5 тысяч тонн урана. Казалось бы, не так много по сравнению с общими запасами этого радиоактивного элемента. Беда в том, что он содержится в земных недрах не столько в рудных залежах, сколько в рассеянном виде, и его концентрация в породах очень низкая. Добыча ядерного топлива обходится весьма дорого.
Не дешевле ли извлекать уран из морской воды - там его около 3 миллиардов тонн? Хватит для снабжения топливом в течение трехсот лет почти ста тысяч АЭС!
Увы, это обойдется в 10-20 раз дороже разработки рудных месторождений. Они-то и служат в настоящее время основным источником ядерного горючего.
По данным Международного агентства по атомной энергии, в сравнительно доступных для разработки рудных залежах сосредоточено во всем мире около 8- 10 миллионов тонн урана. На таких запасах ядерная энергетика сможет просуществовать лишь несколько десятков лет. Ситуация такая же, как с нефтью и газом:
дешевого сырья значительно меньше дорогого. Действительно, нефти тоже под землей много, нужно только поглубже бурить и тратить больше средств на добычу.
Но у ядерной энергетики есть одна коренная отличительная особенность. На ядерных энергетических станциях можно в принципе, кроме электроэнергии, производить также искусственное ядерное горючее. Оно, правда, обходится дороже, чем природный уран из рудных жил, однако по мере истощения дешевых месторождений придется разрабатывать все более труднодоступные и малорентабельные залежи или заниматься рудами с малой концентрацией радиоактивного сырья. Когда же стоимость добываемого природного урана сравняется со стоимостью искусственного ядерного топлива, атомная энергетика станет производить ядерное горючее на специальных промышленных атомных фабриках. При этом его стоимость возрастет в 3-4 раза и далее останется стабильной на сотни лет.
В 1973 году такая необычная атомная станция заработала в пустынной местности полуострова Мангышлак на берегу Каспийского моря в крае, богатом минеральными ресурсами, но бедном электроэнергией и пресной водой. Для жителей города Шевченко она стала давать электроэнергию и пресную воду, а для атомной энергетики - искусственное топливо - плутоний. Новая станция получила название БН-350. Это значит, что она работает на быстрых нейтронах и в качестве теплоносителя использует в реакторе натрий в жидком расплавленном виде, а 350 - электрическая мощность, которую можно было бы получить, если бы все полученное тепло превратилось в электроэнергию. На самом деле установка дает только 150 мегаватт электроэнергии, а остальное тепло расходуется на производство 120 тысяч тонн пресной воды в сутки.
Во всех отношениях ввод в действие первого промышленного реактора на быстрых нейтронах стал большим достижением советской атомной энергетики и вызвал значительный интерес за рубежом. Успех пришел не случайно. Быстрые реакторы давно привлекали внимание советских ученых. Ранее в Физико-энергетическом институте в городе Обнинске была создана и исследована целая серия подобных установок малой мощности. В Научно-исследовательском институте атомных реакторов в Дмитровграде вскоре вступил в строй опытный реактор БОР-60 мощностью 60 тысяч киловатт. В 1973 году пришла очередь БН-350, и затем последовали БН-600 и БН-800.
Каким же образом создается искусственное топливо?
Дело в том, что когда в реакторе на быстрых нейтронах сжигается ядерное горючее, то одновременно создается новое в количестве, превышающем сгоревшее. Топливо размножается? Да! Поэтому установку БН-350 и подобные ей стали называть реакторами-размножителями на быстрых нейтронах.
Новое топливо - делящееся ядро плутония-239 - образуется при поглощении нейтрона "сырьевым" ядром урана-238. Этот изотоп почти не делится, но в природном уране его в 140 раз больше, чем делящегося изотопа урана-235. Вот почему его очень выгодно превращать с помощью нейтронов в делящийся изотоп - плутоний-239.
Сделать это непросто. Например, для расширенного воспроизводства искусственного ядерного топлива не годятся реакторы на тепловых нейтронах, в которых используется уран-235. В них просто не хватает нейтронов, вызывающих деления ядер, в момент расщепления вылетает всего в среднем 2,5 свободного нейтрона. А в реактореразмножителе типа БН-350 - их уже 3.
Казалось бы, разница столь незначительна, что вряд ли она играет какую-нибудь роль, тем более что половинок нейтрона вообще нет в природе. Это - статистическая величина: в одном случае при делении вылетит всего два нейтрона, в другом - три, а в среднем - 2,5.
В реакторе на быстрых нейтронах расщепляющееся ядро плутония испускает и два и четыре, но в среднем будет 3.
Предположим, при распаде ядра рождаются три нейтрона. Одни из них вызовет деление другого делящегося ядра, и цепная реакция не затухает. Если один из двух оставшихся нейтронов поглотится ядром урана-238, то будет образовано ядро плутония-239 и тем самым осуществится воспроизводство ядерного горючего, так как на каждое "сгоревшее" ядро будет произведено одно новое делящееся. В результате реактор может работать бесконечно долго, потребляя только уран-238.
Но простое воспроизводство нас не удовлетворит, надо добиться воспроизводства расширенного, а для этого создать дополнительно еще одно ядро плутония-239. С помощью последнего - третьего - нейтрона из урана-238 и можно получить дополнительный плутоний.
К сожалению, от 30 до 60 процентов столь нужных "третьих" нейтронов либо улетает из реактора, либо поглощается в различных конструкционных материалах.
Зато оставшиеся 40-70 процентов поглощаются ураном-238, производя плутоний-239. Другими словами, каждое сгоревшее в реакторе ядро плутония-239 оборачивается 1,4-1,7 нового делящегося ядра. Так выглядит расширенное воспроизводство ядерного горючего.
Как эффективнее осуществить его?
Оказалось, выгодно активную зону реактора охлаждать натрием, отличающимся сравнительно большим атомным весом - 23. Если же отводить тепло с помощью воды, то ее легкие ядра водорода замедлят быстрые нейтроны до тепловой энергии, и тогда существенно увеличится их вредное поглощение, ухудшится воспроизводство плутония-239.
Создание эффективных реакторов-размножителей на быстрых нейтронах обеспечивает практически безграничные ресурсы ядерного топлива. Благодаря этому атомная энергетика сможет сыграть важную роль в решении энергетических проблем будущего.
Как почти любой вид промышленной деятельности, работа атомных станций оказывает неблагоприятное воздействие на окружающую среду и человека. Особенно настороженно люди относятся к радиоактивному излучению, которое наиболее специфично для атомной энергетики. Безусловно, одна из важных причин необоснованной тревоги - неосведомленность. У многих в памяти ужасы Хиросимы и Нагасаки. И атомная энергетика невольно отождествляется с атомной бомбой.
Между тем защите обслуживающего персонала и населения от вредного влияния излучений уделяется не просто большое, а по сравнению с другими производствами громадное внимание. Но здесь очень важен психологический фактор. Излучения не видно. Оно не пахнет. Его не почувствуешь. В такой ситуации человеку кажется, что он беззащитный.
На самом деле радиация - явление для человека не повое. Всегда люди жили, не зная об этом, в потоках разнообразных лучей. Излучение ядер было открыто на рубеже веков, и долгое время о нем знали только ученые. Но теперь большинство людей, по крайней мере у нас в стране, знают, что излучение электронов, нейтронов, гамма-квантов окружает нас со всех сторон. Достаточно вспомнить рентгеновские установки в больницах, часы со светящимся циферблатом, космические лучи, телевизор, гранитные породы и строительные материалы.
Для надежной защиты от излучений следует установить допустимые нормы и обеспечить, чтобы они не превышались.
Излучение природных, естественных источников сопровождало всю предыдущую эволюцию человека как биологического вида. В процессе эволюционного развития и естественного отбора человек "привыкал" к тем уровням излучений, которые существуют в природе. В последнее столетие к естественному излучению прибавилось искусственное, или техногенное, обусловленное деятельностью человека. Каково же соотношение между естественным и техногенным излучением?
В атмосфере, воде, растениях и человеческом организме имеются радиоактивные элементы типа калия-40 и углерода-14. Они образуются под влиянием космического излучения и разными путями попадают в наш организм.
Ежеминутно в человеческом теле распадается около полумиллиона радиоактивных ядер. При этих распадах органики облучается гамма-квантами и электронами. Если люди находятся рядом, то один облучает другого.
Сравним его с уровнем техногенного облучения. Одич из английских атомников привел такое образное сравнение: "Человек, проживающий вблизи атомной станции, подвергается примерно такому же облучению, которое получит за восьмичасовой рабочий день от сидящего рядом сослуживца". А вот более точные данные по облучению населения ФРГ. В этой стране большие мощности атомной энергетики сочетаются с высокой плотностью населения. В среднем каждый западный немец ежегодно получает за счет естественного облучения дозу 115 миллибэр, а доза техногенного облучения за счет рентгено- и радиоизотопной диагностики, радиоактивности строительных материалов и других источников уже сейчас почти вдвое больше - 225 миллибэр. Если даже мощность германских АЭС достигнет 20 миллионов киловатт, каждый житель ФРГ получит от них дозу облучения всего в 0,25 миллибэра, то есть не более одной десятой процента от общей дозы. Даже авиапутешествие на десятикилометровой высоте чревато большей радиационной опасностью...
Отсюда видно, что радиоактивное излучение работающей АЭС практически безвредно и составляет лишь малую долю того, что человек получает от других источников излучения.
Конечно, это справедливо лишь при работе в нормальном режиме. В случае аварии высвобождение радиоактивности увеличивается многократно и величина облучения может существенно возрасти.
Авария любой сложной и достаточно крупной промышленной системы или отдельного оборудования может приводить к гибели людей, будь то падение пассажирского авиалайнера или взрыв на угольной шахте. Памятна многим авария на химическом заводе в Бхопале, сразу унесшая около двух с половиной тысяч жителей близлежащего города, а сейчас пострадавших уже около 30 тысяч. Это событие будет иметь и генетические последствия.
Авария на Чернобыльской атомной станции также привела к гибели людей, но только из числа тех, кто непосредственно участвовал в ликвидации аварии. Велик и материальный ущерб от этой аварии. Ведь в него входят не только стоимость блока АЭС или потери от недовыработки энергии. Большие затраты будут связаны с захорешением аварийного блока, дезактивацией и отчуждением части территории из пользования, эвакуацией населения.
Конечно, при создании атомной станции должны учитываться возможные поломки оборудования, отказы различных систем, ошибки персонала, и этот учет является обязательным при ее проектировании и проведении конструкторских и научно-исследовательских работ. Рассматриваются различные "потенциальные" аварии и необходимые технические меры по их локализации и предотвращению развития. С этой целью ядерный реактор оборудуется различными аварийными системами: энергопитания, расхолаживания, герметизации. Правила при таком проектировании достаточно строги.
Так в соответствии с этими правилами в качестве первопричины аварии должен рассматриваться не только отказ любой одной системы, но и совпадение этой поломки с еще одной не обнаруженной до аварии поломкой другой системы.
И все же приведшая к взрыву авария на Чернобыльской АЭС показала, что нужно еще более тщательно и строго рассматривать возможные виды "потенциальных"
аварий и меры по их локализации.
Работа по повышению безопасности АЭС интенсивно ведется у нас и в других странах мира. Почти в полтора раза возросла за последние десятилетия стоимость АЭС за счет совершенствования и введения дополнительных систем и оборудования, обеспечивающих безопасность.
Наиболее ответственное звено в ядерном топливном цикле - его завершающий этап, захоронение радиоактивных отходов. Для их надежного изолирования разработаны такие способы, как цементирование, битумирование и стеклование.
Эти способы проверены в реальных условиях, в том числе в различных непредвиденных обстоятельствах - например, когда в хранилища проникают грунтовые воды.
По сей день изыскиваются самые надежные и дешевые методы предотвращения какого-либо радиоактивного загрязнения окружающей среды. Такое серьезное отношение к захоронению отходов - залог того, что атомная энергетика есть и будет одним из самых чистых источников энергии:.
Энергетические реки текут вспять
Куда исчезает энергия!
В реках энергетических течение обратное рекам земным. Мощные потоки газа, угля, нефти, воды и ядерного топлива разделяются по перерабатывающим заводам и фабрикам; попадают на электростанции. Потом энергия мелкими речками растекается по предприятим и городам. Ручейки ответвляются к цехам, домам, бензоколонкам. И уже струйки ее попадают в печи, электромоторы, квартиры.
Энергия рассеивается и исчезает.
Исчезает? Где? Насколько полезно мы ее использовали?
За всеми ручейками, текущими вспять, не проследишь.
И невозможно выявить все щели и поры, по которым происходит утечка, пропадает добро. Еще труднее рассказать о всех способах борьбы с ненужными потерями.
И все же попытаемся пройти по некоторым энергетическим руслам.
Прежде всего около половины всех энергетических ресурсов поступает на выработку электроэнергии, а также нагревание воды и пара как теплоносителей. Все остальное топливо непосредственно сжигается в печах, двигателях. Четверть ресурсов тратится в промышленности, а еще одна четверть - на транспорте, в сельском хозяйстве и коммунально-бытовой сфере.
Такой срез не дает полного представления о том, сколько же в целом какая-либо отрасль потребляет энергии. Например, транспорт или сельское хозяйство не только используют топливо непосредственно, но получают также электроэнергию, горячую воду, пар.
Если учесть и эти поступления, то основным потребителем энергии окажется промышленность - около миллиарда тонн условного топлива в год. Из них около четверти потребляют черная и цветная металлургия, примерно столько же - нефтехимическая и химическая промышленность, включая нефтепереработку, а машиностроение и металлообработка - одну шестую часть.
У энергетиков есть такое понятие - "конечная энергия", то есть энергия на выходе с последней ступени ее преобразования. Она и поступает народному хозяйству.
Она может иметь вид электроэнергии, тепла различного потенциала, механической энергии. Доля конечной энергии от первичной, содержащейся в добываемых энергетических ресурсах, составляет всего две пятых. Шестьдесят процентов энергии исчезает на пути к потребителю.
Что же происходит дальше?
Рассмотрим пример - сколько энергии нужно для обработки детали на токарном станке. Предположим, из шахты или скважины добыто 100 единиц энергии. Вот ее дальнейшая судьба:
Поступило - 100
90 - на электростанцию
85 - для генерации пара
32 - механическая энергия ротора турбогенератора
30 - в трансформаторы линии электропередачи
28 - в линии электропередачи
25 - на электропривод станка 19 - на вращающийся вал станка
1,5 - для обточки детали - необходимая энергия преодоления межмолекулярных сил
Потеряно
10 - истрачено на собственные нужды: при транспортировке на электростанцию
5 - с отходящими дымовыми газами
53 - с охлаждающей водой в конденсаторе
2 - в электрогенераторе
2 - на собственные нужды электростанции
3 - при передаче электроэнергии
6 - в электроприводе станка
17,5 - на преодоление сил трения и отдано охлаждающей воде
Читателю легко подсчитать - всего одна шестьдесят пятая часть энергии пошла на дело, остальная бесполезно рассеялась в пространстве.
Рассмотренная цепочка со столь обескураживающим результатом отнюдь не единственная. Примечательно, что очень часто мы прямо-таки разбрасываемся энергией на последних этапах ее утилизации. Так, в электрических лампах накаливания всего несколько процентов подводимой к ним энергии превращается в свет, остальная же уходит на обогрев атмосферы. При производстве минеральных удобрений лишь около половины энергии идет на получение полезного аммиака, а из них на последнем этапе растениям достается не более двух пятых.
В итоге используется лишь малая часть добытой первичной энергии.
Чем же вызываются такие потери и нельзя ли их уменьшить?
Вернемся к рассмотренному примеру. Для резания металла нужно преодолеть силы межмолекулярного сцепления. Но резец выполняет не только эту работу.
Скорее, почти совсем не эту. Резец сминает металл, крошит его, тратит энергию на трение. Хотя исследовательско-конструкторская мысль всячески стремится улучшить процессы резания, они еще очень далеки от совершенства. Поэтому там, где это возможно, применяются и другие методы обработки металла - электроискровой, штамповка деталей из порошков, прокатка.
А потери в электроприводе станка можно уменьшить путем создания более эффективных электродвигателей, шестеренчатых пар, подшипников, смазочных материалов.
Теперь обратимся к самому главному источнику по
терь - конденсатору турбины. Более шестидесяти процентов тепла, содержащегося в перегретом паре, не переводится в энергию вращающегося ротора турбины, а выбрасывается здесь в виде тепла при температуре 30-35 градусов. Такое большое рассеяние энергии в пространстве обусловлено основными законами термодинамики.
Более четырех с половиной веков прошло с тех пор, как гениальный мыслитель, художник, инженер Леонардо да Винчи, по сути дела, сформулировал первое начало термодинамики - закон сохранения энергии. Некоторое время тому назад в национальной библиотеке Мадрида были обнаружены две его неизвестные ранее рукописи. Одна из них начинается с вывода о бессмысленности вечного двигателя: "Стремление создать вечное колесо - источник вечного движения - можно назвать одним из бесполезных заблуждений человека. На протяжении многих столетий все, кто занимался вопросами гидравлики, военными машинами и прочим, тратили много времени и денег на поиски вечного двигателя. Но с ними происходило то же, что и с алхимиками: всегда находилась какая-нибудь мелочь, которая якобы мешала успеху опыта. Моя небольшая работа принесет им пользу: им не придется больше спасаться бегством от королей и правителей, не выполнив своих обещаний".
Но не хотели изобретатели внять смыслу слов Леонардо да Винчи. Ведь все на земле вечно: моря, океаны, ветры, реки. Почему бы не быть и вечному двигателю? И появлялись новые и новые проекты.
Через сто лет голландец Симон Стевин написал трактат "Начало равновесия", где высказывалась мысль о невозможности вечного движения. И опять - глас вопиющего в пустыне. Лишь в 1770 году Парижская академия наук постановила не рассматривать проекты вечных двигателей.
Атаки на первый закон термодинамики продолжались еще почти два столетия. Пожалуй, они сошли на нет в основном потому, что внимание неуемных ниспровергателей переключилось на второй закон термодинамики. А ведь и он был сформулирован довольно давно.
В 1824 году лейтенант французского генерального штаба Сади Карно, сын математика Лазаря Карно, издал труд под названием "Размышление о движущей силе огня и о машинах, способных развивать эту силу".
В этой работе С. Карно доказывал: "Движущая сила тепла не зависит от агентов, взятых для ее развития, ее количество исключительно определяется температурами тел, между которыми в конечном счете и происходит перенос теплорода".
Согласно второму закону термодинамики теплота - это особая форма энергии, и самопроизвольное превращение ее в другие формы невозможно, для этого обязательно нужны какие-либо рабочие тела.
Давайте рассмотрим любой цикл превращения тепла в механическую энергию. В качестве рабочего тела возьмем аммиак, который в теплообменнике разогревается до 127 градусов. Пар направляется в турбину и вращает ее. Затем отработанный пар с температурой 27 градусов переводится в жидкое состояние, отдавая тепло в конденсаторе в окружающую среду. Жидкий аммиак насосом перекачивается в теплообменник-нагреватель. Цикл повторяется снова. Каков же его КПД?
Еще С. Карно определил: в идеальном цикле доля потерянного тепла равна отношению минимальной температуры цикла (выраженной в градусах Кельвина, которые отсчитываются от абсолютного нуля, то есть от минус 273 градуса по шкале Цельсия) к максимальной. В нашем случае это отношение (273 + 27)/(273+127) = 300/400 = 0,75 Если доля потерянного тепла равна 0,75, то оставшаяся четверть перешла в механическою работу. Это и есть максимальный теоретический КПД такого цикла. Реальный же из-за дополнительных потерь еще ниже и составляет не больше 15 процентов.
Единственный путь увеличения КПД - это повышение максимальной температуры. Если она будет 527 градусов, то доля потерь составит всего 300/800 = 0.38. Значит, идеальный КПД: 1 - 0,38 = 0,62, а реальный поднимется до 35-38 процентов. Примерно таков КПД в современных конденсационных станциях, использующих в качестве рабочего тела воду.
Конечно, можно добиваться и более высокого КПД.
Однако рост его с дальнейшим повышением температуры замедляется. Подъем температурного максимума еще на 100 градусов даст повышение КПД только на 3 процента. К тому же установка сильно усложнится, придется применять дорогостоящие материалы. По сути дела, 35-38 процентов - это предельный КПД для электростанций с паровыми турбинами.
Столь суровое ограничение побуждает некоторых "изобретателей" как-то обойти второй закон термодинамики.
Известны многочисленные прожекты вечного двигателя второго рода. В отличие от "старых" вечных двигателей для их работы нужна энергия. Но черпать ее предлагают просто из окружающей среды, не производя механическую работу, не организуя потоки тепла от более нагретого тела к холодному. Соответственно никуда не сбрасывается тепло.
Второй закон термодинамики отвергает возможность создания такого двигателя. Как уже отмечалось, доля теряющегося тепла в цикле Карно равна отношению минимальной температуры цикла к максимальной. Но если мы хотим черпать энергию из окружающей среды, не сбрасывая ее, то максимальная температура становится равной минимальной. Следовательно, налицо нулевой КПД.
Хотелось бы сделать небольшое отступление и рассеять одно ложное впечатление, если оно нечаянно возникло. Автор совсем не хотел сказать, что все сложившееся в понимании природы нужно принимать на веру и ни в чем не сомневаться. В сомнениях, неведении есть и хорошая сторона - они дарят неизменную радость открытия. Нельзя терять ощущение своего невежества и менять радость поиска на догму. Сократ слыл мудрецом не потому, что знал все, а потому, что и в самом зрелом возрасте знал, что ничего не знает. И все же, изобретая или шагая к открытию, нужно уважать законы природы.
Значит, нельзя черпать энергию из воздуха, воды, земли вокруг нас? Нет, закон не так суров. Тепло окружающей среды можно утилизовать, но не даром. Для этого нужно произвести работу.
Например, что изменится, если рассмотренный вшпо цикл с аммиаком провести наоборот? Вот как он тогда будет выглядеть.
Если ранее в теплообменнике-нагревателе мы разогревали аммиак, то теперь подадим в него аммиак, уже разогретый до температуры 65 градусов, и охладим, передав тепло, например, воздуху помещения. Охлажденный до 20 градусов аммиак пропустим через расширительдроссель (ранее это был насос). Давление снизится, аммиак охладится до 2 градусов и перейдет в полужидкое состояние. Затем в испарителе (в прямой схеме это был конденсатор) подведем тепло извне из окружающей среды и испарим жидкость. Полученный газ сожмем в компрессоре (ранее это была турбина). Подогретый при сжатии до 65 градусов газ снова направим в теплообменник и тем самым замкнем цикл.