Современная электронная библиотека ModernLib.Net

Энергетика сегодня и завтра

ModernLib.Net / Проценко Александр / Энергетика сегодня и завтра - Чтение (стр. 10)
Автор: Проценко Александр
Жанр:

 

 


      И в европейской части СССР есть местности, богатые подземным кипятком. Например - Прибалтика. Почти на всей территории Прибалтийских республик обнаружен подогретый артезианский бассейн. Температура воды меняется от 20-25 градусов в районе Риги до 70 градусов под Клайпедой. К сожалению, в ней содержится много различных солей. Но если есть возможность их экономично извлечь, то эффективность использования гидротермальных ресурсов возрастает. Так, из прибалтийских гидрозалежей рентабельно добывать бром.
      Термальными водами можно отапливать не только жилища, но и теплицы. Сейчас таких "парников" немного - всего 50 гектаров в Краснодарском крае, в Грозном, Махачкале, Петропавловске-Камчатском. Но не утопия - расширить площади до сотен и тысяч гектаров.
      Гидротермальные месторождения, расположенные в основном в зонах сегодняшней или давней вулканической деятельности, хранят много энергии. Но еще больше тепла содержат прогретые массы пород в глубинах земли там, где подземный кипяток отсутствует. Такое тепло называют петрогеотермальным.
      С каждого квадратного метра поверхности Земли в космос улетучивается тепловой поток мощностью около 0,06 ватта. Другими словами, через территорию нашей страны уходит в пространство поток в полтора миллиарда киловатт. Однако недрам планеты не грозит остывание. Они прогреваются в основном снизу, из горячего ядра земли. Благодаря плохой теплопроводности глубинных пород на поверхности земного шара царит приемлемая для жизни температура. Чем глубже в земную кору, тем "горячее". Но температура меняется медленно - на каждые 30 метров вниз она возрастает на один градус. В некоторых же местах она повышается гораздо быстрее - на один градус чар"ез каждые 2-3 метра вглубь. Здесь-то и выгодно извлекать петрогеотермальную энергию.
      Наука о тепловом состоянии земли - геотермика - родилась относительно недавно. В середине прошлого века лорд Томсон (лорд Кельвин) исследовал в своей диссертации, как скоро охладится тело планеты, надеясь на основе вычислений определить ее возраст. Однако задачу удалось решить только после открытия радиоактивности.
      Поток радиоактивного тепла из ядра земли на глубинах 4-6 километров в тысячи раз больше всей энергии, потребляемой народным хозяйством СССР. Можно ли его утилизовать?
      Способ есть, и в принципе он очень простой. Пробурите ряд скважин. После этого в одни нужно закачивать холодную воду, а из других отбирать подогретую. Если на глубине встретится развитая поверхность теплоотдачи, этот способ окажется вполне эффективным.
      Пористые пласты или зоны естественной трещиноватости - удобные породы для отвода тепла. Но ведь не всегда такие породы бывают именно там, где особенно нужно тепло. Поэтому заманчиво создать искусственную трещиноватость.
      Нельзя ли применить метод искусственных гидроразрывов, как это делается и при интенсификации добычи нефти? Затем в образующуюся при гидроразрыве трещину пробурить скважины для подачи и отбора воды.
      Подобная экспериментальная система для извлечения тепла из горячих пород разработана в США. Однако, несмотря на полученные интересные результаты и открывающиеся перспективы, стоимость извлекаемого тепла оказалась очень высокой. С петрогеотермальными станциями придется подождать.
      Второе дыхание ветра
      Вернемся опять в Крым, где получали апробацию многие необычные энергоустановки. В 1931 году около Севастополя была построена и проработала до 1942 года самая мощная по тем временам 100-киловаттная ветроэлектрическая станция. В те годы и вплоть до 60-х годов тысячи ветряков - эоловых работников - производили электроэнергию в разных концах нашей страны.
      А еще раньше в России, по подсчетам любителей статистики и истории, вертелись лопасти около 250 тысяч ветряков-мельниц.
      И это неудивительно. Ведь" местностей, где на протяжении 200 и даже 300(!) дней в году скорость ветра в приземном слое достигает 5-10 метров в секунду, в нашей стране много. Это и Крайний Север, и юг вдоль Черного, Азовского и Каспийского морей. Прибавьте также Тихоокеанское и Балтийское побережья. Даже там, где ветер не отличается постоянством и силой, его все же можно использовать для промышленных и хозяйственных нужд.
      И тем не менее в 60-е годы эоловы станции отступили под натиском более дешевых источников энергии на нефти, а потом и на газе. Такая же картина наблюдалась и во многих других индустриальных странах: в ФРГ, США, Испании и в самой "ветреной" стране Европы - Голландии, где поныне украшают ландшафт около тысячи ветряков - памятников старины.
      Только ли дешевизна газа и нефти стала причиной неконкурентоспособности ветровых станций? Вряд ли.
      Немаловажно, что на протяжении сотен лет ветродвигатели совершенствовались несравненно медленнее, чем энергетические установки других видов.
      Ветряные мельницы появились в Европе в VII-XI веках. Пришли они с Востока и Юга. В Китае, Персии, Египте они существовали задолго до нашей эры.
      Основные элементы их - башня, редуктор, вертикальная и горизонтальная оси, четыре-шесть лопастей - менялись незначительно на протяжении веков. Конечно, кое-что улучшалось, но ветрякам далеко было до того аэродинамического совершенства, которым обладают крылья самолетов. Лишь в XVIII веке Бернулли и Эйлер, а затем Жуковский заложили основы теории ветровых станций. Сейчас испытания лопастей и ветряных колес ведутся в аэродинамических трубах, создаются все более эффективные конструкции.
      Наступило время "второго дыхания" ветра. Вновь начинается массовое строительство ветряков. Пример подает все та же Голландия. Там объявлено о проекте строительства ветроэнергетической установки, состоящей из 10 или 20 ветродвигателей мощностью по 300-500 киловатт. Планируется и создание ветродвигателей мощностью в несколько мегаватт.
      Основная трудность связана с переменной силой ветра. Мощность ветростанции пропорциональна скорости воздушных струй в третьей степени. Предположим, станция с диаметром колеса 50 метров при не очень большой скорости ветрового потока - 8 метров в секунду - имеет мощность около 1000 киловатт. Если же скорость понизится вдвое, то мощность упадет сразу до 120 киловатт, а то и ниже. Станция практически перестает работать.
      С другой стороны, при возрастании скорости ветра резко повышается мощность, и чтобы ее регулировать, сначала достаточно изменить угол атаки лопастей, а потом при некоторой критической величине нужно останавливать ветроколесо. Естественно, башня должна сдерживать напор бурь и ураганов. С этим связана ее большая металлоемкость и дороговизна
      Энергия ветров пока дорога, но кое-где она вполне рентабельна. Так, соединив ветродвигатель с компрессором, можно экономично аэрировать водоемы, вентилировать овощехранилища. Во многих районах ветродвигатели целесообразно сочетать с опреснительными установками. Станции малой мощности способны обслуживать водопойные пункты в степях. В СССР уже налажено производство четырехкиловаттных станций, смонтированных на семиметровой башне. Для орошения оазисов нужны установки с мощностью в десятки и даже сотни киловатт.
      Разработан проект большого ветродвигателя мощностью 2500 киловатт в виде огромного двухлопастного колеса диаметром 100 метров, установленного на 60-метровой башне. Пока столь большие мощности доступны лишь в экспериментальных или опытно-промышленных установках. А вот установки мощностью 100-300 киловатт и сейчас можно эффективно использовать, например, в прибрежной 100-километровой полосе вдоль Северного Ледовитого океана - в первую очередь в районах Надымского и Тазовского газовых месторождений, где средняя скорость ветра 5 метров в секунду, а на севере Ямала - вдвое больше.
      Существует также проект ветростанции башенного типа с восемью ветровыми двигателями. Башня закреплена на вращающейся тележке и с помощью специального электродвигателя всегда ориентирует ветроколеса в оптимальном направлении. По оценкам проектантов, себестоимость электроэнергии составит всего 0,4 копейки за киловатт-час. Между тем электроэнергия, вырабатываемая на Севере дизельной электростанцией, обходится в 10 раз дороже. Правда, расчеты себестоимости сделаны при допущении, что ветер будет беспрерывно дуть с постоянной скоростью А ведь ветродвигатель даже в "ветреных" северных районах вряд ли проработает на номинальной расчетной мощности больше 2500-4000 часов.
      Значит, необходимы аккумуляторы энергии, а они стоят недешево.
      Предложено еще несколько интересных конструкций ветродвигателей, в которых изобретатели стараются преодолеть недостатки лопастных ветростанций башенного типа.
      Например, по кольцевому рельсовому пути ветер гоняет тележки, снабженные алюминиевыми крыльями-парусами. Колеса тележек соединены с электрогенераторами, отдающими через рельсы ток в сеть. Уже построена небольшая опытная установка с крыльями высотой около 10 метров.
      В конструкции, которая получила название "яйцесбивалка", ось ветродвигателя - вертикальная. На ней размощено эллипсовидное алюминиевое кольцо длиной 27 и шириной 5 метров, которое и есть привычная нам лопасть. Высота созданной экспериментальной установки 19 метров (большая ось эллипса), а ширина - 5 метров (малая ось). Мощность двигателя - 100 киловатт.
      У этой конструкции - ряд преимуществ. Она использует ветер, дующий с любой стороны. Отпадает необходимость в оборудовании для фиксации и поворота ветродвигателей. Алюминиевые плоскости кольца в пять раз дешевле лопастей из композитных материалов, применяемых в привычных нам ветродвигателях. Кроме того, становится ненужной башня. Впрочем, от дорогостоящей башни удалось избавиться и в другой установке, предложенной немецким инженером Г. Вагнером.
      Представьте себе две лопасти с углом между ними 110 градусов. Они вращаются вокруг оси, наклоненной к горизонту под углом 55 градусов. Благодаря такой геометрии башня оказывается лишней. Когда при вращении оси одна лопасть смотрит вверх, то другая проходит над землей горизонтально.
      Ветряки Вагнера, автоматически принимающие необходимое положение по отношению к ветру, можно размещать на судах и по"нтонах. На понтоне в Северном море уже работает опытный образец. Есть у этой конструкции и недостатки. С потоком ветра встречается всегда только одна лопасть, и ее длину для получения большой мощности нужно существенно увеличивать. Изобретатель предлагает убрать одну из двух дорогих лопастей, установить вместо нее только противовес. Тем самым можно сэкономить на изготовлении крыла сложного профиля и редукторе, так как ветряк станет вращаться вдвое быстрее.
      Разговор о ветро закончим проектом будущего. Примерно раз в месяц на черноморский город Новороссийск обрушивается сильнейший ураган - бора. Раз в год он приобретает катастрофический характер. Виной всему - тянущийся вдоль Цемесской бухты Вакадский хребет.
      Он не пропускает с Кубанской низменности, расположенной за хребтом, холодный воздух к морю. Но вблизи от города в хребте есть одна низкая точка - седло, черзз которое время от времени и устремляются скопившиеся воздушные массы.
      Специалисты-энтузиасты предлагают "спасти" город от напасти и заодно использовать силу боры. Для этого сквозь хребет нужно пробить три шахты, которые соединяются в один туннель под склоном, обращенным к морю. Затем достаточно установить в туннеле воздушную турбину.
      Интересный, красивый и, будем надеяться, осуществимый проект.
      Океаны энергии
      Океан - огромная кладовая беспокойной энергии.
      Здесь рождаются приливы и отливы, текут такие могучие реки, которых не знает суша, плещут волны.
      Мощность океанских течений Куросио и Гольфстрим достигает трех миллиардов киловатт. Еще несколько десятилетий назад появились предложения об использовании энергии этих гигантских океанских "рек". Сегодня разработаны и конкретные проекты. Так, по мнению американских энтузиастов-энергетиков, при скорости течения 5-7 километров в час турбина диаметром 170 метров и длиной 80 метров, закрепленная якорем на глубине 30 метров под поверхностью океана, сможет обеспечить мощность 50 тысяч киловатт. Американские энтузиасты-энергетики предложили проект, согласно которому двести алюминиевых турбин, установленных под водой в 30 километрах от побережья Флориды, будто бы дадут 10 миллионов киловатт.
      Не все специалисты уверены в правильности расчетов.
      "Нужно изучить, как изменится скорость течения и его температура. Не погубят ли рыбу вращающиеся лопастн алюминиевых турбин?" - тревожатся океанологи.
      "Не дорого ли передавать энергию из-под воды на расстояние десятков километров? Смогут ли станции проработать 30 лет в океане?" - вопрошают оппоненты.
      Пока решено построить опытную установку с турбиной диаметром 10 метров.
      Океан аккумулирует много солнечной энергии, но распределяется она неравномерно. Вода нагревается в тропических и субтропических зонах и оттуда растекается к полюсам. Холодная вода от полюсов течет в обратном направлении, но уже в глубине океана. Разница температур между поверхностью океана и на полукилометровой глубине может составлять 30 градусов. Если имеется столь значительная разность температур, то в принципе несложно создать электрогенератор.
      Устройство для получения электроэнергии не отличается принципиально от существующих тепловых электростанций. Нагретая солнцем океанская вода с температурой 24-28 градусов в теплообменнике испаряет аммиак. Пары аммиака вращают турбину электрогенератора и поступают в другой теплообменник, где охлаждаются пятиградусной водой и конденсируются. Одна из основных трудностей - как поднять с полукилометровой или километровой глубины громадные массы холодной воды. Скажем, электростанция мощностью 200- 400 мегаватт потребует для своей работы 5 тысяч кубических метров такого охладителя в секунду, что лишь немного уступает стоку Волги. Труба, пропускающая этот огромный водный поток, должна будет иметь диаметр около 30 метров.
      Предлагается использовать вместо аммиака теплую морскую воду. Чтобы превратить ее в пар, с помощью вакуум-насосов в 15 раз понижается атмосферное давление. Вода закипает, пары направляются в турбину, а из нее попадают в конденсатор, охлаждаемый морской водои с глубины. Достоинство этой схемы - не нужен аммиак или фреон. Кроме того, в конденсаторе побочно получается пресная вода. Но не будут ли выделяющиеся при испарении морской воды растворенные в ней газы препятствовать созданию необходимого вакуума? Не уйдет ли вся генерируемая полезная мощность на вакуумнасосы?
      А самое главное препятствие - при вскипании морской воды резко возрастает концентрация солей, которыми забивается оборудование, и оно из-за коррозии быстрее выходит из строя.
      Таким образом, еще не пришло время в широких масштабах практически использовать для производства электроэнергии течения и разницу температур. А вот волны и приливы уже сейчас дают энергию.
      Чем круче и мощнее волна, чем чаще она накатывает, тем больше полезной работы она способна совершить. Во внутренних морях типа Каспийского и Черного расстояние между соседними гребнями достигает 60 метров, а высота волн - 6-7 метров, в Средиземном же море - соответственно 250 и 9 метров. В открытом океане встречаются и полуторакилометровые волны высотой 12-15, а иногда и 20 метров. Размеры волн во многом зависят от силы ветра.
      В 1806 году английским адмиралом Бофортом была разработана шкала для измерения силы ветра. Ноль баллов - мертвый штиль, а 12 баллов - скорость ветра 30 метров в секунду. Этой скорости соответствует волнение моря 9 баллов. Кстати, многие связывают легендарный девятый вал с 9 баллами. Однако исследования показали, что отнюдь не всегда девятая волна - самая мощная. Американцы самой сильной волной считают седьмую, древние римляне десятую, а греки - третью.
      Потенциальная мощность всех морских и океанских валов оценивается в 108-1010 мегаватт. Однако реально можно попытаться использовать лишь 107 мегаватт.
      Здесь важна мощность, приходящаяся на погонный метр фронта волны. Кое-где она достигает 70 киловатт.
      В морях нашей страны она меняется от 6 киловатт для Черного моря до 30 для Баренцева.
      Первая волновая станция была построена во Франции еще в 1910 году, а теперь устройств, преобразующих энергию волн в электричество, придумано множество.
      Тут и плавучие резервуары, в которых волна сжимает воздух, а тот, в свою очередь, вращает воздушную турбину, и каплеобразные поплавки, качающиеся на волне и приводящие в действие гидронасосы, и соединенные шарнирами плотики, угол между которыми изменяется в соответствии с формой волны.
      В Истринском отделении Института электромеханики разработана плавучая установка с ветроколесом, одновременно использующая энергию и волн и ветра.
      Еще один оригинальный проект осуществлен вблизи японского города Цуруока. Небольшая бухточка перекрыта колпаком с отверстием вверху. Над отверстием смонтирована воздушная турбина с электрогенератором. Турбина вращается потоком воздуха, возникающим при колебании уровня воды в бухточке. При однометровой высоте волн мощность генератора - 3 киловатта, а при двухметровой - в четыре раза больше. По очень похожему проекту сооружается станция, использующая прибой, в Норвегии.
      На океанские берега ежедневно набегает гигантская волна приливов, рожденная притяжением Луны. Запасы приливной энергии в нашей стране равны примерно 200 миллиардам киловатт-часов в год. В одной Мезенской губе на Белом море можно соорудить приливную ГЭС, вырабатывающую 90 миллиардов киловатт-часов.
      Для этого губу следует перегородить стокилометровой плотиной высотой 20 метров. При установке в ней 1000- 1500 турбин будет вырабатываться мощность в 25 миллионов киловатт. Перспективно сооружение приливпых станций и на Мурманском побережье; для некоторых его мест уже разработан ряд проектов. Огромны запасы энергии в Пенжинском и Гижигинском заливах, где амплитуда приливов достигает 13 метров.
      Рассматриваются проекты приливных плотин, которые приведут вдобавок к климатическим изменениям.
      Например, в проливе Невельского между островом Сахалин и мысом Лазарева (ширина около 8 километров, глубина - 7 метров) каждые шесть часов попеременно прилив сменяется отливом, в результате чего сначала теплая вода из Японского моря устремляется в Охотское, а затем холодные водные массы Охотского моря проникают на юг. Перегородить пролив дамбой технически несложно. Затраты вряд ли превысят стоимость сооружения крупной речной плотины. Но зато если nponvскать воду через шлюзы только в северном направлении, одновременно получая электроэнергию, то за год Охотское море получит четыре теплых годовых стока Волги, а Японское море будет наполняться ещо более теплой водой течения Куросио.
      Сейчас в мире работают две приливные станции. Одна из них сооружена во Франции на берегу Ла-Манша в устье реки Ране в 1967 году. Ее максимальная мощность - 240 мегаватт. При перемене течения лопасти турбин поворачиваются, чтобы использовать отлив. В течение года средняя мощность станции составляет всего четверть от максимальной.
      Годом позже вблизи Мурманска в Кислой губе вступила в строй экспериментальная приливная станция мощностью 400 киловатт. Основная цель проекта - проверить, как проявят себя в суровых условиях Севера конструкции с применением новых технологических решений. Станция монтировалась на мысе Притыка, где расположен порт с необходимой производственной базой.
      Все системы станции были размещены на плавучем кессоне, который затем отбуксировали в Кислую губу и затопили там в горловине залива. Кессон по бокам был надстроен заранее заготовленными секциями плотины.
      В небольшой книжке "Океан энергии" американец Л. Голдин писал: "В случае успеха русские, известные как практичные мечтатели, планировали создать сеть небольших приливных электростанций на побережье Белого моря для получения дешевой энергии".
      Пока самый удобный
      Самый удобный и освоенный из возобновляемых источников энергии - реки. На территории Советского Союза сосредоточено почти 12 процентов мировых запасов гидроэнергии, что эквивалентно примерно 400 миллионам тонн условного топлива в год.
      Причем речь идет не о теоретических запасах, а о так называемых экономических. Их выгодно эксплуатировать уже сегодня.
      Освоено из них пока около 70 миллионов тонн условного топлива, так что неиспользованной гидроэнергии еще немало, причем не только на востоке страны. Так, в европейской части введена в оборот лишь приблизительно одна треть доступных ресурсов. Больше же половины ГЭС расположено на востоке страны.
      Интересно, что современная гидроэнергетика унаследовала многие идеи и рекомендации разработчиков плана ГОЭЛРО. Еще не закончилась гражданская война, а уже велись геологические изыскания для Днепрогэса.
      Строка из протокола заседания комиссии по ГОЭЛРО гласила: "...заслушан доклад о водных силах Ангары - участок выше Братского имеет все данные для развития". Сейчас мощность Братской ГЭС - 4500 мегаватт.
      Ныне Советский Союз - в числе передовых стран в гидростроении. При создании ГЭС используются самые прогрессивные методы. Например, каскады ГЭС позволяют полностью задействовать напор рек и осуществить регулирование стоков. Мы научились строить ГЭС в суровых климатических условиях Севера. Впервые в мире в нашей стране возведены крупные равнинные ГЭС, разработаны и осуществлены защитные меры по уменьшению площади затапливаемых территорий. За последние 20 лет площадь земель, уходящих под воду, уменьшилась в пять раз в подсчете на один киловатт установленной мощности. Уникальны некоторые плотины наших ГЭС. Так, самая высокая в мире арочная бетонная плотина Ингури-ГЭС - 272 .метра! Еще выше - на 300 метров - взметнулась каменно-земляная Нурекская дамба.
      Однако гидростроители не решили всех своих проблем. Еще в плане ГОЭЛРО есть раздел, предостерегающий от бездумной траты якобы "даровой энергии воды", При создании гидроэлектростанций следует учитывать некоторые тревожащие факторы, не всегда пока поддающиеся экономической оценке.
      В недавно вышедшей книге "Современные проблемы энергетики" в разделе "Перспективы развития ГЭС и ГАЭС" отмечается, что "к числу негативных явлений, вызываемых строительством ГЭС и ГАЭС, можно отнести: усложнение задачи сохранения необходимого по санитарным правилам качества воды в водоемах, активизацию деятельности синезеленых водорослей, изменение уровенных и ледовых режимов в нижних бьефах в сезон ном и суточном разрезах". Кроме того, образование водохранилищ перед плотинами ГЭС приводит к потерял!
      пахотной земли, гибели рыбы, изменению климата.
      Конечно, наши проектировщики стремятся создавать ГЭС не только как энергетическое предприятие; обычно предусматривается улучшение условий для работы речного транспорта, расширение ирригационных систем п возможностей для рыбохозяйств. Одновременно решаются проблемы промышленного водоснабжения, защиты от паводнений, создания зон отдыха. Тем не менее не все отрицательные последствия гидростроительства удается преодолеть.
      Возрастающую роль играют гидроаккумулирующие станции (ГАЭС). Они работают благодаря большой разнице уровней водостока, большому водонапору. Исследование возможных площадок для их строительства показало, что наиболее распространен умеренный перепад высот от 80 до 120 метров. Между тем чем больше разница по высоте, тем меньше стоимость станции.
      Однако потребность в ГАЭС настолько велика, что приемлемы и умеренные перепады. Намечено в первую очередь построить около 10 "гидроаккумуляторов" мощностью от 1000 до 2500 мегаватт, работающих на обратимых гидроагрегатах мощностью 200 мегаватт.
      Некоторый опыт создания и эксплуатации ГАЭС уже имеется. В 1970 году на Киевском гидроузле была сооружена первая в стране опытная гидроаккумуляторная станция с напором 70 метров. На ней были установлены гидроагрегаты мощностью 33 мегаватта. Сейчас сооружается Загорская ГАЭС под Москвой мощностью 1200 мегаватт. Запланированы Кайшядорская на 1600 мегаватт, работающая в связке с Игналинской атомной станцией, и Южно-Украинская на 1800 мегаватт. В ближайшие годы начнется строительство Ленинградской, Центральной, Днестровской и Каневской ГАЭС.
      В двенадцатой и последующих пятилетках, как намечено в принятых XXVII съездом КПСС основных направлениях развития страны, будет продолжаться интенсивное освоение гидроресурсов Закавказья, Сибири, Дальнего Востока, Средней Азии и Северо-Запада европейской части. Наряду с возведением ГЭС-гигантов развертывается и сооружение малых ГЭС.
      Конечно, малая энергетика не заменит большую.
      Но последние достижения техники позволяют по-новому взглянуть на возможности небольших гидростанций. Оказывается, они могут быть вполне эффективными на многих водохранилищах неэнергетического назначения, на малых реках, перепадах оросительных каналов. Они рентабельны в районах, куда невыгодно прокладывать линии электропередачи от мощных электростанций, где дороже обойдутся дизельные электрогенераторы. Для того чтобы обеспечить электроэнергией территории Севера, Востока, Сре шей Азии и Кавгаза, необходимо произвести несколько тысяч гидроагрегатов.
      Опыт строительства малых ГЭС накоплен в Чехословакии, а также в Китае, где работает более 90 тысяч станций. У нас в предвоенные и особенно в послевоенные годы они тоже получили широкое распространение, но аатем многие из них были законсервированы или демон гированы. Сейчас же в стране небольших ГЭС мощностью менее 30 мегаватт (их называют МГЭС) насчитывается около 300, а их суммарная мощность едва достигает 1,5 миллиона киловатт.
      Просматривая список действующих МГЭС, я с удинлеаием обнаружил, что две были построены в 1900 - 1910 годах, а еще десятки - до 1930 года. Значит, они добросовестно трудятся по 70-80 лет и, видимо, вполне себя оправдывают. Конечно, для малых станций требуется оборудование, простое в обслуживании и ремонте. Ведь чем малочисленнее обслуживающий персонал, тем рентабельнее установка. Пока же доля зарплаты в стоимости электроэнергии на действующих неавтоматизированных МГЭС доходит до 60 процентов. Конструкторам и инженерам приходится ныне активизировать работу по совершенствованию нетрадиционных ГЭС.
      Хочешь изобилия - будь экономным
      Чтобы в доме было тепло и прохладно
      Четверть энергии, производимой в стране, потребляют наши жилища и коммунально-бытовые предприятия.
      Растет население, увеличиваются число и размеры квартир, высота зданий, и с ними растут расходы топлива на поддержание комфортных условий в жилищах.
      О высоте упоминается не случайно. Потери тепла пропорциональны поверхности здания. Чем больше поверхность, тем больше потери тепла. Значит, самый выгодный дом должен быть в виде шара. У него наименьшее отношение поверхности к объему. Внутри можно разместить много комнат. Однако жилым такой дом делать нельзя: внутренние комнаты не будут иметь доступа к дневному свету. Поэтому архитекторы и стараются часть помещений, в которых необязателен дневной свет (коридоры, ванные, санузлы, шахты для лифтов, лестничные клетки), размещать в центральных частях зданий Через наружные стены уходит до 40 процентов тепла. Тут никаких хитростей не придумаешь; нужно просто увеличить термическое сопротивление стен. Делать это можно по-разному. В ряде стран используются трехслойные панели: между двумя железобетонными или тами располагается теплоизоляция. Потери тепла в этих панелях уменьшаются не менее чем в полтора раза.
      У нас в стране пока такие панели не делают. Указываются две причины. Архитекторы и строители не удовлетворены темп решениями, которые предлагаются для соединения таких панелей между собой. Другая причина - и более простая, и более сложная - нет достаточного количества хороших теплоизоляционных материалов. Более простая потому, что организовать достаточно масштабное производство теплоизоляции можно и трудностей здесь нет. А вот сложная оттого, что теплоизоляционных материалов мало и они очень дороги.
      тогда как такая тепловая изоляция нужна не только домам: ждут ее трубопроводы с горячим теплоносителем.
      всевозможные печи, химическое и технологическое оборудование, автомашины, самолеты и зимняя одежда Это важнейшая проблема. Решить ее дело исследователей разных специальностей. Внесли и внесут свой вклад даже биологи.
      В далекой северо-восточной точке нашей страны, па реке Колыме, есть единственный в мире стацгопар для оленей - Рангифер. Ученые Магаданского института биологических проблем Севера изучают секреты оленя.
      Каким образом он, единственная зимняя пища которого всего-навсего подснежный ягель, способен пережить суровую зиму Севера? Тайн здесь много, не все они еще раскрыты. Но вот один из выводов: у северного оленя идеальная тепловая изоляция. Его мех состоит не из сплошных волосков, а из полых. Если величину теплоизоляции у оленя принять за 10 единиц, то по сравнению с ним белка просто раздета - всего 3 единицы.
      Но и это не все. Зимой кончики волосков как бы разбухают, утолщаются и не пускают холодный воздух к коже. Мех становится тепловой броней. Есть чему поучиться человеку!
      Использовать хорошую тепловую изоляцию можно по-разному: наклеить на стены теплоизолирующие обои (так делают в ФРГ) пли разместить ее снаружи, закрыв защитными листами (так поступают в Англии). У нас при реконструкции домов на стены напыляют смесь асбеста, минеральной теплоизоляции и цемента.
      Одни из наиболее емких потребителей теплоизоляции - теплотрассы. Таких трубопроводов у нас в стране более 200 тысяч километров. Изоляция для них должна быть прочной и не разрушаться, пока трубы везут с завода. Она должна защищать металл от коррозии и не поглощать влагу. Пока еще нет удовлетворительных решений всех этих задач. Иногда изоляцию делают многослойной: один слой теплоизоляционный, другой просто изоляционный, третий - прочный. (Такие теплотрассы очень дороги. Например, один ее километр от атомной станции теплоснабжения мощностью миллион киловатт стоит пока около миллиона рублей.)
      Теплопровод укладывается в специальный гидроизолированный канал с бетонными или кирпичными стенками. Однако все же грунтовые воды довольно быстро проникают в канал, изоляция намокает и разрушается, потери тепла возрастают в несколько раз. По оценкам Всесоюзного научно-исследовательского и проектного института энергетики, в промышленности только по этой причине ежегодные потери достигают 10-15 миллионов тонн условного топлива, то есть около 5 процентов тепла, требующегося для обогрева жилья и коммунально-бытовых предприятий. Неудивительно, что с этими потерями борются все и всюду. Но ведь это так и нужно: не везде оптимальные решения должны быть одинаковыми.

  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14