Современная электронная библиотека ModernLib.Net

Опыты без взрывов

ModernLib.Net / Ольгин Олег / Опыты без взрывов - Чтение (стр. 8)
Автор: Ольгин Олег
Жанр:

 

 


      Обработанную поверхность надо сразу же серебрить. Если вы почему-либо не успели приготовить раствор для серебрения, то опустите стекло в теплую дистиллированную воду и не вынимайте из нее, пока все не будет готово. Кстати, такая операция полезна во всех случаях: хорошо, если стекло градусов на 8-10 теплее, чем раствор для серебрения.
      Этот раствор необходимо готовить только в резиновых перчатках. Его получают, смешивая два раствора, каждый из которых готовят отдельно. Мы укажем количества веществ на литр раствора, а вы прикиньте сами, сколько раствора вам требуется.
      Первый раствор: 4 г нитрата серебра, 10 мл 25%-ного раствора аммиака, 4 г едкого натра. Порядок приготовления раствора не совсем обычен. Весь нитрат серебра растворите в 300 мл воды, 9/10 раствора отлейте в чистый стакан и добавьте по каплям раствор аммиака, все время перемешивая жидкость стеклянной палочкой. Мутная жидкость будет становиться все более прозрачной, и, наконец, окраска исчезнет. Прибавьте немного раствора нитрата серебра - раствор вновь станет мутным. Добавьте раствор едкого натра, тогда раствор примет светло-коричневый оттенок. Вновь по каплям прибавляйте раствор аммиака, и раствор опять посветлеет, теперь он кажется слегка синеватым. Влейте оставшийся раствор нитрата серебра и аммиак, как следует размешайте и долейте дистиллированную воду до литра.
      Если придется хранить этот раствор, то перелейте его в бутылку или склянку с хорошо подогнанной пробкой. В открытой посуде раствор хранить нельзя! Второй раствор: на литр раствора - 100 г сахара-рафинада и 10 мл разбавленной (примерно 10%-ной) серной или азотной кислоты. Сахар заранее растворите в дистиллированной воде, добавьте кислоту, покипятите четверть часа и долейте воду до расчетного объема.
      Смешайте оба раствора: на один миллилитр второго раствора (с сахаром) возьмите примерно 100 мл первого раствора (с нитратом серебра). Точное соотношение придется подобрать на опыте. Если будет избыток сахарного раствора, то при серебрении начнут выпадать хлопья; если же, напротив, этот раствор в недостатке, то серебрение пойдет слишком медленно. Полученную смесь быстро и тщательно размешайте; сначала она станет оранжево-красной, а затем почернеет. Это сигнал: пора приступать к серебрению. Не упустите момент!
      Сразу вылейте смесь на стекло. Она растечется по всей поверхности, и стекло станет темным, но потом быстро начнет светлеть, на нем образуется слой металлического серебра, которое восстанавливается из нитрата. Через 5-10 мин осторожно сгоните смесь со стекла с помощью марли (а еще лучше -ї кусочка замши), смоченной в дистиллированной воде, вновь налейте смесь и подержите ее еще четверть часа. Уже посеребренную поверхность промойте дистиллированной водой. Если на стекле окажутся темные пятна, их надо протереть тампоном со смесью пемзы, затем раствором хлорида олова (IV), снова налить на эти места смесь и промыть водой.
      Чтобы проверить, достаточно ли осадилось серебра на стекле, посмотрите сквозь зеркало на лампу мощностью 60 Вт - она должна быть едва видна сквозь посеребренное стекло.
      Серебряный слой еще недостаточно прочно держится на стекле. Чтобы укрепить его, поставьте зеркало в вертикальном положении на час-другой нагреваться при температуре 100-150+С. Воспользуйтесь сушильным шкафом, в крайнем случае несильно нагретой духовкой. Когда зеркало остынет, покройте серебряную пленку водостойким прозрачным лаком из пульверизатора (кисть может ее повредить). После высыхания нанесите поверх лака толстый слой непрозрачной краски или черного битумного лака. Водите кистью или направляйте струю из пульверизатора только в одном направлении: либо сверху вниз, либо слева направо.
      Зеркало почти готово. Осталось лишь привести в порядок его лицевую, непосеребренную сторону. На ней могут оказаться затеки серебра; удалите их тампоном, смоченным слабым раствором соляной кислоты. Если вы запачкали руки, то удалите пятна слегка подогретым раствором гипосульфита и хорошенько вымойте руки теплой водой.
      Много ли серебра пошло на изготовление зеркала? И сколько серебра в настоящем зеркале? Вопросы вроде бы нехитрые, но ответить на них не так-то легко. Пленка серебра настолько тонка, что даже будь у вас микрометр, ее не измерить...
      Чтобы не портить хорошее зеркало, возьмите какой-нибудь осколок, удалите слой лака и краски ватой, смоченной ацетоном, и положите на посеребренную поверхность небольшой кристаллик йода. Уже при комнатной температуре йод довольно быстро испаряется, его пары растекаются по стеклу, потому что они намного тяжелее воздуха. Чтобы их не разогнал случайный сквозняк, накройте кристаллик перевернутым стаканом.
      При взаимодействии йода с серебром образуется иодид серебра, и возле кристаллика медленно расплывается прозрачное пятно: иодид в тонком слое прозрачен. А у краев прозрачного пятна серебряная пленка не исчезает, но становится тоньше. И в результате на зеркале появляются окрашенные кольца, которые видно особенно хорошо в отраженном свете.
      Кольца кажутся цветными по той же причине, по которой нам кажутся радужными мыльные пузыри и масляные пятна на воде. Явление это называется интерференцией света в тонких пленках, его изучают в курсе физики. Для нас самое важное вот что: чем больше колец, тем толще серебряная пленка. Если их два, то толщина пленки около 0,03 мкм, три кольца соответствуют 0,06 мкм, четыре - 0,09, пять - 0,12, шесть - 0,15, семь - 0,21 мкм.
      Зная толщину серебряного слоя, легко подсчитать и количество серебра: надо лишь умножить толщину на площадь зеркала и полученный объем еще раз умножить на плотность серебра (10,5 г/см3).
      Вот ориентир для проверки расчета: зеркало площадью около квадратного метра содержит чуть больше грамма серебра.
      5. ЛОВКОСТЬ РУК
      Нас окружает множество вещей и веществ, которые кажутся обыденными и ничем не примечательными. Однако очень часто они обладают удивительными свойствами надо только суметь их заметить. Скажем, алюминиевой ложкой можно выпрямлять переменный ток, спичкой - зажечь электрическую лампочку, сахаром-рафинадом высечь искры, а марганцовкой из аптеки - начистить до блеска кастрюлю. Но для этого надо, во-первых, знать свойства веществ и, во-вторых, уметь этими свойствами пользоваться, иными словами, необходима ловкость рук, приобретаемая с опытом. И, как в старые времена говорили фокусники, - никакого мошенничества!
      Итак, займемся фокусами - серьезными химическими фокусами. Иногда - для забавы, но чаще - для демонстрации необычных явлений и изготовления необычных вещей.
      ЛОЖКА-ВЫПРЯМИТЕЛЬ
      Для этого опыта годится любая алюминиевая ложка - чайная или столовая. Ее надо тщательно вымыть и обезжирить; как это сделать, вы знаете из опытов с анодированием алюминия. Ложка будет первой деталью будущего выпрямителя тока, а второй нам пока послужит пустая консервная банка, высотой примерно с ложку, во всяком случае, не намного ниже.
      Жестяную банку вымойте с мылом или стиральным порошком, ополосните и заполните раствором для анодирования алюминия: на 100 мл воды - 20 мл серной кислоты (осторожно!). Кислоту можно заменить, карбонатом аммония (NН4)2СО3 (10 г) или в крайнем случае пищевой содой, растворив ее в воде до насыщения. Вода должна быть дистиллированная, годится и чистая дождевая.
      Прежде чем опускать ложку в банку, прикиньте, до какого места ложки будет доходить раствор. На границе раствор - воздух алюминий будет интенсивно растворяться, и ложка скоро развалится на две части. Чтобы этого не произошло, участок вблизи границы покройте слоем лака или водостойкого клея.
      Теперь подвесьте ложку в банке так, чтобы она не касалась стенок; устройство подвески вы, наверное, без труда придумаете сами. Под банку положите кафельную плитку или любую другую не проводящую электричество подставку. На этот раз мы будем пользоваться не батарейками или аккумулятором, а переменным током от сети, и, естественно, надо полностью себя обезопасить. По той же причине самым тщательным образом изолируйте все оголенные концы проводов, а во время опыта не прикасайтесь ни к ложке, ни к банке. Лучше всего, если перед включением тока вы накроете их перевернутым фанерным ящиком или пластмассовым ведерком.
      Электрическая схема проста: включите в цепь последовательно лампу мощностью около 40-60 Вт, переключатель, ложку и банку; если есть амперметр, можно подсоединить и его. Когда схема собрана и надежность изоляции проверена, включайте ток.
      Сначала, как вы и догадываетесь, лампа загорится, потому что раствор в банке электропроводен. Но примерно через полчаса она станет светить заметно слабее, а потом и вовсе погаснет. Ложка стала выпрямителем. Она пропускает ток только в одном направлении - от банки к ложке.
      В этом было бы легко убедиться, будь у вас осциллограф: на его экране в начале опыта светилась бы синусоида, а в конце нижняя ее ветвь исчезла бы: в цепи течет так называемый импульсный ток. Осциллограф помог бы сразу установить, где положительный полюс выпрямителя, а где отрицательный (это очень важно, если вы собираетесь ставить с самодельным выпрямителем электрохимические опыты). Но можно обойтись и без приборов: полярность выпрямителя легко установить, пользуясь полоской фильтровальной бумаги, смоченной слабым раствором поваренной соли с добавкой индикатора фенолфталеина.
      Отключите ток, прижмите листок к ложке и к банке и закрепите его, например, пластмассовыми бельевыми прищепками. Включите ток, и несколько минут спустя фильтровальная бумага покраснеет у одного из полюсов. Этот полюс отрицательный. При электролизе воды (соль нужна только затем, чтобы увеличить электропроводность) на отрицательном электроде (катоде) выделяется водород, а ионы ОН- остаются в избытке. Эти ионы и обусловливают щелочные свойства, поэтому индикаторная бумага краснеет.
      Такое же испытание влажной индикаторной бумагой с солью и фенолфталеином можно провести и в том случае, если вы перепутали полюса аккумулятора или батарейки. Так как здесь напряжение невелико, полоску бумаги можно просто прижать руками к обоим полюсам источника тока.
      Но отчего алюминиевая ложка стала выпрямителем? После включения тока на ней, как и при анодировании алюминия, растет пленка оксида алюминия. А эта пленка - полупроводник: пропускает ток только в одном направлении. Это ее свойство нередко используют в технике.
      С помощью самодельного выпрямителя можно ставить некоторые электрохимические опыты, которые описаны в этой книге. Но в соответствии с условиями опыта включайте выпрямитель через понижающий трансформатор. Напряжение ни в коем случае не должно превышать 40 В. А ток, который можно снимать с алюминиевой ложки, может достигать нескольких десятков ампер.
      Но обязательно ли брать для выпрямителя ложку и консервную банку? Разумеется, нет. Вместо ложки можно взять алюминиевый электрод любой формы, вместо банки - железный, свинцовый или графитовый электрод и погрузить их в стеклянный сосуд, в который налит раствор электролита. Более того, так мы и советуем вам поступить, если вы решите использовать самодельный выпрямитель на практике. Но если вы собираетесь продемонстрировать, как оксид алюминия выпрямляет переменный ток, то ложка с банкой выглядят гораздо эффектнее...
      ЗАЖГИТЕ ЛАМПУ СПИЧКОЙ!
      Для этого опыта удобнее взять настольную лампу. Один из ее проводов отсоедините от вилки и удлините, не забывая о хорошей изоляции.
      Возьмите небольшую узкую стеклянную трубку с тонкими стенками (проще всего воспользоваться стеклянными рейсфедерами с оттянутыми концами). Вставьте в трубку с двух концов электроды - проводки диаметром около 1 мм; закрепите их в трубке изоляционной лентой. Электроды не должны соприкасаться, расстояние между ними 1-2 мм.
      Удлиненный провод от лампы присоедините к одному из электродов, а другой электрод соедините проводом со свободным гнездом вилки и изолируйте. У вас получится цепь, разомкнутая в одном участке - между электродами. Закрепите стеклянную трубку в горизонтальном положении. Это совсем просто сделать, если провода жесткие, с пластмассовой изоляцией: зажмите провод, и трубка будет на нем держаться. Подготовка к опыту закончена, можно включать вилку в сеть. Лампа, конечно, гореть не будет.
      Поднесите к трубке, в которую вставлены электроды, зажженную спичку. Если трубка из не тугоплавкого стекла, то стекло размягчится и трубка при этом чуть-чуть провиснет. И тут же загорится лампа, несмотря на то, что цепь по-прежнему остается разомкнутой. Дело в том, что соли, входящие в состав стекла, при нагревании ионизируются, и стекло становится проводником.
      Если опыт не получается из-за того, что трубка широка, то вместо спички возьмите свечку или спиртовку. Зажечь лампу свечкой - тоже эффектный опыт.
      А еще можно ее зажечь с помощью расплавленной селитры. Закрепите вертикально пробирку, на дно которой насыпано немного калиевой или натриевой селитры (нитрата калия или натрия), и опустите в нее две медные проволочки. Чтобы медные электроды не соприкасались, пропустите их сквозь пробку. Подсоедините к электродам лампу так же, как в предыдущем опыте. Когда вы включите ток, лампа, естественно, не загорится: твердая селитра ток не проводит.
      Нагрейте селитру до плавления с помощью таблеток сухого горючего - лампа вспыхнет. Ионы, составлявшие кристаллическую решетку соли, приобретают подвижность, и цепь замыкается. Лампа будет гореть и после того, как вы уберете пламя: у расплава селитры высокое электрическое сопротивление, и то тепло, которое выделяется при прохождении тока, поддерживает селитру в расплавленном состоянии.
      Подобным образом можно поставить опыт не с расплавом, а с раствором, например, поваренной соли. Электроды в этом случае лучше взять графитовые. Погрузите их сначала просто в банку с водой, а потом небольшими порциями добавляйте соль, и лампа будет разгораться все ярче.
      Между прочим, таким способом удобно проверять электропроводность растворов. Проверьте, например, как проводят ток растворы соды, сахара и уксусной кислоты разной концентрации.
      И еще один, не вполне обычный опыт с электрической лампочкой, но не с большой, а от карманного фонаря. Укрепите ее в полоске жести, согнутой под прямым углом, и вставьте полоску в небольшой химический стакан так, чтобы стеклянный баллон лампочки оказался внутри стакана и был обращен к его дну. Подключите лампочку к батарейке: выступ на цоколе, самый крайний его участок соедините с отрицательным полюсом, а полоску жести - с положительным. Обратите внимание: припаивать проводники нельзя, потому что во время опыта припой может расплавиться. Надо придумать механический контакт или же использовать патрон от старого карманного фонаря.
      До начала опыта выньте лампу из стакана и насыпьте в него нитрат натрия (нитрат калия в этом случае не годится; почему - станет ясно позже). Поставьте стакан на асбестовую сетку или металлическую пластинку и нагрейте его на пламени газовой горелки или спиртовки; сухой спирт не очень удобен, так как трудно регулировать температуру расплава. Селитра плавится при 309+С, а при 390+С уже разлагается; вот в таком интервале и придется поддерживать температуру. Для этого изменяйте либо размер пламени, либо расстояние до стакана. Следите, чтобы расплав не застывал, даже с поверхности.
      В расплавленную селитру осторожно опустите лампочку. Большая часть стеклянного баллона должна быть погружена в расплав, но следите за тем, чтобы верхняя часть цоколя, к которой припаян проводник, не соприкоснулась с селитрой - произойдет короткое замыкание. Зажженную лампочку подержите в селитре около часа, потом отключите ток, погасите горелку и аккуратно доставьте лампочку. Когда она остынет, промойте ее водой, и вы увидите, что лампочка изнутри покрыта зеркальным слоем!
      Мы уже говорили, что при нагревании заряженные частицы в стекле приобретают подвижность (поэтому и зажглась лампа, когда трубку нагревали спичкой). Главные действующие лица - ионы натрия: уже при температуре выше 300+С они становятся достаточно подвижными. Само стекло остается при этом совершенно твердым.
      Когда вы погрузили включенную лампочку в расплав селитры, то стекло, из которого сделан баллончик, оказалось в электрическом поле: спираль отрицательный полюс, расплав, который соприкасается с полоской жести, положительный. Подвижные ионы натрия начали двигаться в стекле в сторону катода, т. е. по направлению к спирали. Иными словами, они перемещались к внутренней стенке баллона.
      Значит, зеркальный налет изнутри натриевый? Да. Но как же ионы превратились в металл?
      Раскаленные металлы (в том числе и те, из которых изготовлена спираль) испускают электроны. От спирали они попали на внутреннюю поверхность стекла и соединились там с ионами натрия. Так образовался металлический натрий.
      Но почему для опыта не годится калиевая селитра? Ведь нитрат вроде бы и не участвует в процессе... Нет, участвует. Когда ион натрия стал нейтральным атомом, в стекле осталась отрицательно заряженная ионная дырка. Тут и нужна натриевая селитра: из ее расплава под действием электрического поля в стекло проникают ионы натрия и заполняют дырки. А ионы калия примерно в полтора раза больше ионов натрия, они не смогут войти в стекло. В калиевой селитре лампа просто треснет.
      Такой необычный электролиз через стекло иногда применяют на практике, чтобы получить слой очень чистого натрия, или, более строго, - спектрально чистого.
      ДОЛГАЯ ЖИЗНЬ БАТАРЕЙКИ
      Представьте, что случилось такое: вы принялись за электрохимический опыт, собрали цепь - а батарейка вдруг "села", и запасной батарейки нет. Как быть? Но это еще полбеды. Гораздо хуже, когда карманный фонарик гаснет темным вечером, да еще в лесу. И как обидно, если батарейки транзисторного приемника отказывают как раз в ту минуту, когда по радио передают вашу любимую песню, или во время трансляции футбольного матча. Но что уж тут поделаешь...
      А между тем кое-что предпринять можно. Если запасной батарейки нет, не спешите выбрасывать старую, а попробуйте ее "оживить".
      Многиеї современныеї батарейки - "Крона", "Марс", "Сатурн", КБС и другие состоят из элементов марганцево-цинковой системы. При работе отрицательный электрод этих батареек - цинковый стаканчик - постепенно, но очень медленно, растворяется, а положительный электрод - диоксид марганца МnО2, восстанавливается до гидроксида трехвалентного марганца (его формулу можно представить как МnООН). Он постепенно покрывает зерна оксида, проникает вглубь зерен и закрывает доступ электролиту. Еще и половина оксида марганца не использована, а элемент уже перестает работать; цинка же к тому времени остается еще больше, до четырех пятых! Словом, почти годную батарейку приходится выбрасывать.
      Но если снять "скорлупу" МnООН, то электролит вновь сможет поступать к зернам и батарейка оживет. Только как ее снять? Самый простой способ: постучать по батарейке как следует молотком или камнем. Тогда зерна внутри элементов расколются, и электролит снова сможет в них проникнуть. Этот способ не ахти как хорош, но в лесу, пожалуй, лучшего не найти...
      Если же батарейка отказала дома, то активировать диоксид марганца можно гораздо эффективнее. В цинковом стаканчике батарейки пробейте гвоздем отверстие и опустите батарейку в воду. Электролит в элементе не жидкий (это было бы неудобно), а загущенный. Он размокает в воде, разжижается, и ему легче проникнуть к зернам диоксида марганца. Этот нехитрый прием позволяет увеличить срок службы батарейки почти на треть. Но его можно еще более упростить.
      Заливать батарейку водой совсем необязательно. Достаточно только пробить отверстие в цинковом стаканчике. Оксид марганца в элементе смешан с графитовым порошком - это нужно для того, чтобы увеличить электропроводность. Как только воздух начнет поступать внутрь, графит будет поглощать кислород, и наряду с диоксидом марганца появится еще один положительный электрод - так называемый воздушный, на котором кислород восстанавливается. Словом, простой гвоздь превращает марганцево-цинковый элемент вї воздушно-цинковый!
      Справедливости ради скажем, что после такой процедуры батарейка будет разряжаться малым током - таковы уж свойства самодельного воздушно-цинкового элемента. Зато служить будет очень долго.
      И последнее: сделаем так, что старая батарейка станет почти совсем как новая. Для этого батарейку надо зарядить электрическим током, т. е. поступить с ней так же, как с аккумулятором. Реакция, идущая в батарейке, обратима, и МnООН может вновь превратиться в МnO2.
      Заметьте, что подзаряжать можно не все батарейки, а только те, в которых не засохла паста и корпус не поврежден. И заряжать надо не обычным постоянным током, как заряжают аккумуляторы. В этом случае цинк станет осаждаться на корпусе батарейки в виде разветвленных нитей - дендритов, и очень скоро это приведет к тому, что произойдет короткое замыкание и батарейка выйдет из строя. Заряжать ее надо так называемым асимметричным током. Чтобы получить его, надо выпрямлять переменный ток не полностью, например: включить в цепь диод-выпрямитель и параллельно ему - сопротивление (около 50 Ом). Напряжение источника должно быть около 12 В, поэтому использовать ток непосредственно от сети нельзя, нужен понижающий трансформатор.
      Марганцево-цинковые элементы можно заряжать до трех раз, их емкость при этом падает совсем незначительно. А маленькие, так называемые пуговичные элементы (в них использована ртутно-цинковая система) можно подзаряжать до десяти раз. Но пробивать их гвоздем или стучать по ним молотком нет смысла - в этих элементах после разряда практически не остается активных веществ.
      ИСТОЧНИКИ ТОКА ИЗ ПОДРУЧНЫХ СРЕДСТВ
      Чтобы оживить старую батарейку, действительно требуется ловкость рук. Но. в еще большей степени она будет вам нужна, если вы решите изготовить самодельный источник тока. Он может пригодиться для различных электрохимических опытов, например с анодированием алюминия или с никелированием.
      Есть множество химических источников тока, но, пожалуй, самый простой в изготовлении - элемент Грене. Для него нужны две пластинки - цинковая и угольная такого размера, чтобы они входили в стеклянную банку. Подберите к ней полиэтиленовую крышку, проколите ее в двух местах шилом и пропустите в отверстия проволочки. На этих проволочках подвесьте пластинки-электроды так, чтобы они не касались друг друга.
      Электролитом будет служить водный раствор, содержащий 16% серной кислоты и 12% бихромата калия (хромпика). Когда вы будете готовить раствор, лейте, как всегда, кислоту в воду и будьте очень осторожны.
      Электролит аккуратно перелейте в банку; раствор должен закрывать пластинки примерно на три четверти. Банку плотно закройте заготовленной крышкой с проводами и электродами. В тот момент, когда электроды, соприкоснутся с электролитом, возникнет электрический потенциал. Если цепь замкнуть, по ней пойдет электрический ток. Это легко проверить, подсоединив к проволочкам вольтметр: он покажет напряжение около 2 В. Однако сила тока не слишком велика, от элемента не будет даже работать лампочка для карманного фонаря. Но если вы изготовите не один, а два или три элемента Грене и соедините их последовательно - цинковую пластину с угольной, то лампочка будет гореть. А для опыта с никелированием достаточно и одного элемента Грене.
      Хотя элемент Грене работает надежно, у него есть как минимум два недостатка: во-первых, неудобно иметь дело с жидким электролитом, да к тому же содержащим серную кислоту, во-вторых, не всегда есть под рукой цинковые и угольные пластинки. Поэтому займемся и другими самодельными источниками тока. Пусть они и уступают жидкостным элементам, зато не будет проблем с материалами.
      Чай и сигареты часто заворачивают в фольгу, у которой одна сторона "серебряная", а другая - бумажная. В магазинах "Юный техник" продают медную фольгу. И ту и другую нарежьте на квадраты примерно 5 х 5 см и кладите одну на другую вперемежку так, чтобы медь ложилась на "серебро". Самый нижний слой должен быть бумажным, самый верхнийї - медным. У вас получилась батарея элементов; чем выше стопка, т. е. чем больше элементов, тем выше и напряжение.
      Из медной фольги вырежьте полоски - токоотводы, приложите их к стопке сверху и снизу и обмотайте изоляционной лентой, а потом погрузите батарейку в электролит - раствор поваренной соли. Чтобы убедиться в том, что батарейка начала работать, поднесите к ее полюсам, как вы это уже делали прежде, полоску фильтровальной бумаги, смоченной раствором фенолфталеина. У отрицательного полюса раствор покраснеет. Напряжение у такой батарейки может достигать нескольких вольт, но ток, к сожалению, слабоват.
      Для других источников тока проще всего будет воспользоваться готовыми уже материалами из старых, отслуживших свое батареек. Разломайте батарейки и извлеките из них активную массу оксида марганца, которой обмазаны электроды, графитовые стержни и засохшую пасту (загущенный электролит) - соскребите его и положите для набухания и воду. Оксид марганца разотрите в порошок и смешайте с несколькими каплями фотоклея или раствора желатины. Этой смесью обмажьте графитовый стержень или же грифель простого карандаша, оставив сверху свободный участок для крепления контакта. Когда смесь высохнет, обмотайте стержень "серебряной" бумагой в несколько слоев, "серебром" наружу, и обвяжите ниткой. Один проводок плотно обмотайте вокруг стержня, другой - вокруг "серебряной" бумаги и приклейте его липкой лептой. Обмотайте элемент изоляционной лентой - он готов к работе.
      Более совершенные элементы получаются, если активную массу и пасту увлажнять раствором хлорида аммония (24 г на 100 мл дистиллированной воды; полезно добавить 1 г хлорида кальция). Если этот раствор нагреть с крахмальным молоком, то получится электролит в виде пасты.
      Возьмите полиэтиленовую пробку от бутылки, проколите в дне отверстие и пропустите через него проволочку. В пробку положите кружок из оцинкованного железа, он должен быть прижат к проволочке-токоотводу. Из фильтровальной бумаги вырежьте кружок по внутреннему диаметру пробки, пропитайте его электролитом, смажьте пастой и вложите в пробку. Сверху положите размоченную активную массу с оксидом марганца из старой батарейки и прижмите кружком, вырезанным из графитового стержня - он будет служить вторым токоотводом. Из таких "пробочных" элементов тоже можно составить батарею, дающую напряжение в несколько вольт.
      Пластмассовую пробку можно заменить железной с оловянным покрытием - от бутылки с лимонадом или минеральной водой. Естественно, цинк в этом случае уже не нужен, равно как не нужно пробивать отверстие в пробке - она сама по себе электропроводна, но оловянный элемент дает невысокое напряжение.
      Еще более совершенный элемент - в виде стаканчика из алюминиевой фольги. Стаканчик можно изготовить с помощью короткого (3-4 см) отрезка пластмассового шланга. Внутрь вложите листок фольги заведомо большей высоты, прижмите к стенкам, а из "лишнего" материала сделайте донышко и распрямите его круглым стержнем, например обратной стороной шариковой ручки. Алюминиевый стаканчик вполне заменит цинковый.
      Картонный кружок положите на дно и смажьте стаканчик изнутри загущенным электролитом из старой батарейки или самодельным. Слой не должен превышать 1 мм. Мешочек из легкой ткани наполните увлажненной массой МnO2, уплотните, слегка надавливая тем же круглым стержнем, добавьте доверху массу и вдавите графитовый стержень (или грифель карандаша). Еще раз слегка уплотните массу, прикройте по возможности мешочек и наденьте на стержень второй картонный кружок с отверстием посередине - он не даст электроду наклоняться. Зажгите свечу и накапайте на эту шайбу, а потом на донышко элемента парафин для изоляции.
      Такой элемент дает напряжение около 1 В, ноток его больше, чем у элемента из пробок. Два-три "стаканчика" дают возможность слушать транзисторный приемник через наушники.
      КРИСТАЛЛЫ - БОЛЬШИЕ И МАЛЕНЬКИЕ
      О выращивании кристаллов написано так много, и эти опыты настолько эффектны и несложны в исполнении, что наверняка вы их ставили хотя бы раз и знаете, в чем принцип. Собственно, ничего мудреного тут нет: надо приготовить горячий насыщенный раствор какой-либо соли (хлорида натрия, сульфата меди или железа, квасцов, бихромата калия и т. д., перечень очень велик), осторожно охладить его, чтобы излишек растворенного вещества не выпал в осадок (такой раствор называется пересыщенным), и, наконец, ввести затравку - кристаллик той же соли, подвешенный на нитке. После этого остается только прикрыть сосуд листком бумаги, поставить в укромное место и ждать, пока не вырастет крупный кристалл, на что могут уйти недели или даже месяцы; единственное, что придется изредка делать - это подливать понемногу насыщенный раствор по мере испарения.
      Все это действительно известно. Но вариантов опыта очень много, и мы выберем не самые распространенные, например, с нитратом свинца и иодидом калия. Смешайте одинаковые объемы 10%-ных растворов этих солей, и в сосуде выпадет осадок иодида свинца. Аккуратно слейте с него жидкость. Вскипятите воду в каком-либо прозрачном сосуде, подкислите ее уксусом и, пока она кипит, добавьте еще влажный осадок иодида свинца, взболтав его. При медленном остывании жидкости в ней вырастут золотистые кристаллы.
      Вариация на ту же тему: слейте в пробирку растворы нитрата свинца и иодида калия, вскипятите содержимое вместе с осадком, чтобы он растворился, а затем быстро остудите под краном. В этом случае образуются мельчайшие золотые кристаллики, взвешенные в жидкости.
      Вообще размер кристаллов сильно зависит от скорости охлаждения. Всыпьте 20 г нитрата калия небольшими порциями в сосуд с 25 мл воды. После добавления очередной порции взбалтывайте смесь, чтобы соль растворилась, а затем насыпайте следующую порцию. Когда соль перестанет растворяться, немного нагрейте сосуд, всыпьте еще порцию, взболтайте, снова нагрейте. И так до тех пор, пока вся взятая соль не растворится. Теперь разлейте раствор в два сосуда, и один оставьте остывать на воздухе (для еще более медленного остывания можно накрыть его несколькими слоями плотной ткани). В этом сосуде образуется несколько крупных кристаллов, а при удачном стечении обстоятельств - и один кристалл. Другой сосуд сразу же поставьте в кастрюлю с холодной водой, и в нем выделится множество мелких кристалликов. Это общее правило.
      Следующие два опыта настолько впечатляющи, что их смело можно показывать зрителям, конечно, тщательно все подготовив. Первый из них - опыт Пелиго. Цилиндр высотой 25-30 см вымойте изнутри горячей водой и через воронку по стенке налейте в него горячий очень концентрированный раствор гипосульфита, чтобы он заполнил цилиндр на 1/3. Этот раствор готовят так: 450 г гипосульфита растворяют при нагревании в 45 мл воды.

  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12