В таких условиях наблюдаются удивительные отклонения в поведении. Если какой-нибудь предмет помещают в левую руку больного или предъявляют только левой половине поля зрения, больной не может назвать предмет. Дело не в том, что он не узнает предмета он безошибочно указывает на родственные объекты; причина кроется в том, что восприятие, осуществляемое правым полушарием, не ассоциируется с названием, которое "известно" только левому.
Определенные процессы памяти представляются связанными со структурами на внутренней поверхности височных долей, такими, как гиппокамп (окрашено). Установлено, что двухстороннее повреждение этих областей вызывает сильное и длительное расстройство памяти, характеризующееся неспособностью усваивать новую информацию. В случае поражений такого типа способность воспринимать, по-видимому, не снижается, но в значительной степени нарушается способность переводить новую информацию на хранение в долговременную память. Острые поражения этой области на одной височной доле иногда вызывают сходные, но менее стойкие расстройства памяти, которые отражают различную специализацию полушарий: характер информации, запоминание которой нарушается, зависит от того, какая сторона повреждена.
Однако специализацию отдельных полушарий не следует переоценивать. Правое полушарие все же имеет некоторые зачаточные лингвистические способности. Кроме того, без сомнения, имеется много задач, в которых оба полушария обычно действуют сообща. В одном тесте, проводимом после хирургического разобщения полушарий, предлагается воспроизвести простой узор из цветных блоков. В ряде случаев ошибки совершаются часто независимо от того, какой рукой выполняется задача-левой или правой, но ошибки эти имеют характерные отличия. По-видимому, ни одно из полушарий не в состоянии справиться с этой задачей самостоятельно и им приходится кооперироваться.
В мозгу человека обнаружена анатомическая асимметрия коры, которая может быть соотнесена с различной функциональной специализацией полушарий. Одно из проявлений асимметрии легко наблюдать на интактном мозге: сильвиева борозда, которая определяет верхнюю границу височной доли, на правой стороне мозга поднимается более круто. Еще более впечатляющая асимметрия обнаружена на planum temporale, которая формирует верхнюю поверхность височной доли и которую можно увидеть только тогда, когда сильвиева борозда расширена. Задняя часть planum temporale обычно намного больше на левой стороне. Увеличенная область является частью зоны Вернике, что позволяет предполагать связь этой асимметрии с доминированием левого полушария в отношении речи. Распределение указанных асимметрий зависит от доминирующей руки.
Одно из самых удивительных последних открытий - это установление того факта, что повреждения правого и левого полушарий мозга вызывают различные эмоциональные реакции. Поражения большинства областей левого полушария сопровождаются ощущением потери, которое можно ожидать при любой тяжелой травме. Больного угнетает его беспомощность и он часто бывает в подавленном настроении. При повреждении в большей части правого полушария больной иногда остается в неведении относительно своего состояния. Г. Гайнотти (G. Gainotti) из Католического университета в Риме тщательно собирал факты, касающиеся этих различий в эмоциональных реакциях.
Эмоции и "расположение духа" часто связывают со структурами лимбической системы, но в последние годы было обнаружено, что кора, и особенно кора правого полушария, также вносит сюда свой значительный вклад. Поражения правого полушария не только вызывают неадекватные эмоциональные реакции больного на его собственное состояние, но и нарушают способность узнавать эмоции собеседника. При левостороннем поражении больной иногда неспособен понять утверждение, но во многих случаях может все-таки оценить эмоциональную окраску, с которой оно высказано. Больной с повреждениями правого полушария обычно понимает смысл того, что сказано, но часто неспособен определить, как это сказано - с раздражением или с юмором. Хотя о явлениях доминирования полушарий большого мозга у человека известно более ста лет, сопоставимые асимметрии у других видов были обнаружены всего несколько лет назад. Пионером в этой области явился Ф. Ноттебом (F. Nottebohm) из Рокфеллеровского университета, который исследует нервные механизмы пения у певчих птиц. У большинства видов, изученных им к настоящему времени (но не у всех), левая половина мозга более важна для пения. Примеры доминантности у млекопитающих, помимо человека, также были описаны, хотя и намного менее детально. Как показал В. Дененберг (V. Denenberg) из Коннектикутского университета, при определенных условиях повреждения правой половины мозга у крыс меняют эмоциональное поведение животных. Доминирование коры левого полушария для некоторых слуховых задач открыл у одного вида обезьян Дж. Дьюсон III (J. Dewson III), который сейчас работает в Стэнфордском университете. М. Петер-сен (М. Petersen) и другие исследователи из Мичиганского и Рокфеллеровского университетов показали, что у японских макаков, которые используют необычайное разнообразие звуковых сигналов, при узнавании видоспепифических криков доминирует левое полушарие. Однако у ближайших родственников человека - человекообразных обезьян - до настоящего времени никаких определенных примеров функциональной асимметрии описано не было.
В течение многих лет среди неврологов господствовало мнение о том, что функциональная асимметрия мозга не коррелирует с анатомической асимметрией. Считалось, что если бы существовали сколько-нибудь существенные различия между полушариями, они давно были бы замечены хирургами или патологоанатомами. Около 10 лет назад мой коллега В. Левицкий (W. Levitsky) и я решили пересмотреть этот вопрос заново, исходя из более ранних наблюдений немецкого невропатолога Р. Пфайфера (R. Pfeifer). Мы исследовали planum temporale человеческого мозга в 100 случаях; эта область расположена на верхней поверхности височной доли и уходит внутрь сильвиевой борозды. Наше исследование касалось только макроанатомии, и мы не пользовались никакими сложными инструментами, ограничившись фотоаппаратом и линейкой; тем не менее было обнаружено недвусмысленное доказательство асимметрии. Как правило, длина и ориентация сильвиевоей борозды на левом и правом полушариях неодинаковы. И что более существенно - задняя часть planum temporale, которая входит в состав зоны Вернике, обычно больше на левой стороне. Эти различия не слишком малы, их легко заметить невооруженным глазом.
В речевой зоне у больного с врожденным дефектом способности к чтению была обнаружена аномальная клеточная организация. А. Срез нормальной коры на задней части planum temporale - области, которая составляет часть зоны Вернике. Можно выделить несколько слоев и отметить наличие характерных колонок. Б. Срез из той же области мозга больного с дизлексией. Одной из особенностей является присутствие тел нейронов в самом поверхностном слое (у верхнего края фотографии), где они в норме не встречаются. Кроме того, по всей ткани расположение клеток нарушено. Эта аномалия была обнаружена А. Галабурдой из Гарвардской медицинской школы и Т. Кемпером из Медицинской школы Бостонского университета.
Вслед за нами Дж. Вада (J. Wada) из Университета Британской Колумбии показала, что асимметрию planum temporale можно обнаружить и у человеческого плода. Таким образом, оказалось, что увеличение левой planum temporale не может быть реакцией на развитие лингвистических способностей в детстве. Наоборот, "лингвистическое превосходство" левого полушария, по-видимому, имеет анатомическую основу. Не так давно мой коллега А. Галабурда (A. Galaburda) установил, что левая planum temporale не только больше по размеру, но отличается и по клеточной организации. На planum temporale есть область с характерным расположением клеток, обозначаемая Tpt. Галабурда обнаружил, что протяженность этой области значительно больше в левом полушарии; у первого же мозга, который был исследован, эта область на левой стороне более чем в семь раз превосходила такую же область справа.
А. Галабурда и Т. Кемпер (Th. Kemper) из Медицинской школы Бостонского университета исследовали мозг пострадавшего от несчастного случая, у которого была стойкая дизлексия. Они обнаружили, что области Tpt в двух полушариях были примерно одинаковой величины. Кроме того, клеточная структура области Tpt слева была аномальна. В нормальной коре нейроны располагаются последовательными слоями, для каждого из которых характерна своя популяция клеток. У больного с дизлексией эти слои были нарушены, причем бросалось в глаза присутствие тел нейронов в самом поверхностном слое коры, где их обычно не бывает. Островки корковой ткани были также обнаружены в белом веществе мозга, которому они не принадлежат. Хотя на основании единичного случая нельзя делать определенных выводов, все же создается впечатление, что в случае лингвистических расстройств можно обнаружить структурные нарушения в речевых зонах.
Новое направление исследований асимметрии мозга было позднее открыто моей сотрудницей М. ЛеМэй (М. LeMay). Она разработала несколько методов обнаружения анатомической асимметрии у живых людей. Один из этих методов церебральная артериография: в кровяное русло вводят рентгеноконтрастное вещество и исследуют его распределение в сосудах мозга. Артериографию часто используют для диагностики опухолей и других заболеваний мозга, и артериограммы, которые исследовала ЛеМэй, были получены с диагностической целью. Одна из внутричерепных артерий (средняя мозговая) идет вдоль сильвиевой борозды; ЛеМэй показала, что вид этой артерии на артериограмме отражает длину и ориентацию борозды. Оказалось, что у большинства людей правая средняя мозговая артерия идет круче и в конце концов поднимается выше, чем соответствующая артерия на левой стороне.
ЛеМэй обнаруживала асимметрию мозга также с помощью компьютерной аксиальной томографии (КАТ)-метода, при котором из набора рентгеновских проекций реконструируется картина мозга в поперечном сечении. На полученных изображениях видны характерные отклонения от билатеральной симметрии. У правшей правая лобная доля обычно шире, чем левая, но зато левая теменная и затылочная доли шире, чем правые. Внутренняя поверхность самого черепа сильнее вдавлена в правой лобной и левой затылочной областях в соответствии с этими выпуклостями.
ЛеМэй даже сообщила об обнаружении асимметрии на слепках ископаемых черепов неандертальцев и других гоминидов. На внутренней поверхности черепа есть гребень, соответствующий сильвиевой борозде; в тех случаях, когда этот гребень сохранился достаточно хорошо для того, чтобы отпечататься на слепках, ЛеМэй нашла те же проявления асимметрии, которые наблюдаются у современного человека; это заставляет предполагать, что доминирование полушарий возникло по крайней мере 30000 лет назад. ЛеМэй и я показали, что аналогичная асимметрия сильвиевых борозд существует и у крупных приматов, но не у низших обезьян. Об аналогичных открытиях сообщили Г. Йени-Комшиан и Д. Бенсон (G. Yeni-Komshian, D. Benson) из Медицинской школы Университета Джонса Гопкинса. Если удастся обнаружить функциональные корреляты этих анатомических отклонений, можно будет составить представление о доминировании полушарий у человекообразных обезьян.
Одно из самых банальных проявлений доминирования полушарий является в то же время и одним из самых поразительных: это феномен доминирования руки. У многих животных наблюдаются какие-то проявления этого свойства; например, если заставить обезьяну выполнять некоторую задачу только одной рукой, она всегда будет использовать одну и ту же руку. Однако в любой большой популяции обезьян левши и правши встречаются одинаково часто. В человеческой популяции левши составляют не более 9 процентов. Возможно, что такой значительный сдвиг в сторону доминирования правой руки служит выражением уникальной специализации человеческого мозга.
Генетика и наследование доминирования руки являются предметом живой полемики. Р. Коллинз (R. Kollins) из Джексоновской лаборатории в Бар-Харборе показал, что продолжительный инбридинг мышей с доминирующей правой лапой не приводит к увеличению числа таких особей в потомстве. У человека положение совершенно иное. М. Аннетт (М. Annett) из Ланчестерского политехнического института в Англии выдвинула теорию, согласно которой один аллель из генной пары благоприятствует развитию праворукости, однако комплементарного ему аллеля леворукости не существует. В отсутствие аллеля, благоприятствующего развитию праворукости, доминирующая рука определяется случайным образом.
Исследования, предпринятые ЛеМэй и ее сотрудниками, показали, что распределение асимметрий у левшей иное, чем у правшей. У правшей и, значит, у большинства людей правая сильвиева борозда расположена выше левой в 67% случаев, левая борозда выше в 8%, и обе борозды находятся на одинаковой высоте в 25% случаев. У 71% левшей сильвиевы борозды примерно симметричные; у остальных правая борозда чаще расположена выше (21% против 7). Асимметрии, наблюдаемые с помощью томографии, также по-разному распределяются у правшей и левшей. У части населения с доминирующей левой рукой асимметрия менее выражена. Эти данные находятся в качественном согласии с теорией Аннетт.
Если такие узко ограниченные функции, как узнавание лиц, обеспечиваются специфическими нейронными сетями мозга, то кажется вероятным, что многие другие функции представлены аналогичным образом. Так, например, одна из главных целей воспитания детей - выучить их набору высоко дифференцированных реакций на эмоциональные стимулы, такие, как гнев и страх. Ребенок должен также научиться подходящим реакциям на стимулы из своей внутренней среды, такие, как голод или ощущение наполнения мочевого пузыря и кишечника. Большинство детей научается этим типам поведения точно так же, как они научаются языку, на основании чего можно предположить, что и тут существуют процессоры специального назначения. К настоящему времени о таких нейронных системах мало что известно. На самом деле, даже если картирование специализированных зон будет продолжаться, на повестку дня должна быть поставлена следующая главная задача-задача описания их внутренних операций.
С. КИТИ
Заболевания человеческого мозга
Они могут быть следствием наследственного нарушения обмена, сосудистого заболевания, инфекции, опухоли, травмы. При исследовании психических заболеваний важны отношения между генетическими факторами и факторами внешней среды
В такой сложной структуре, как человеческий мозг, может возникнуть множество нарушений. Удивительно то, что у большинства людей мозг работает эффективно и непрерывно дольше шестидесяти лет. Это говорит о пластичности, избыточности и самовосстанавливающейся природе его механизмов. Но дело в том, что в мозгу иногда нарушается его структурная архитектоника или электрические и химические процессы. Более ста лет назад патологи уже умели обнаруживать заболевания, связанные с повреждением крупных анатомических структур мозга и возникающие в результате кровоизлияния, компрессии, смещения, воспаления, дегенерации и атрофии. Микроскоп и избирательное окрашивание дали возможность увидеть, как морфологическое повреждение вызывает голодание, дегенерацию и гибель нейронов.
Компьютерная аксиальная томография (КАТ) использует рентгенограммы, сделанные под разными углами, с целью получения картины головного мозга в поперечном разрезе. Инъекция йодистого препарата в венозную систему усиливает контраст. На кадрах а и б для выявления плотного сгустка крови в пространстве между мозгом и черепом иод был не нужен. Кровоизлияние произошло от удара тупым орудием по этой части черепа. По диагонали от сгустка видно кровоизлияние на поверхности мозга или непосредственно под поверхностью; это кровоизлияние вызвано повреждением мозга по механизму "противоудара" (contre-coup). Желудочки (в центре) сужены из-за набухания ткани мозга. На кадре в препарат иода выявил опухоль (в центре внизу) у больного с метастазами рака. Справа от узла опухоли - нормальная вена, которая отчетливо видна благодаря контрастному веществу - введенному в кровь иоду. Желудочки смещены набуханием тканей вокруг опухоли. На кадре г менингиома (доброкачественная опухоль) без иода едва видна. Внутри опухоли лежит небольшой островок кальция. Гиперостоз, разрастание кости вблизи опухоли, характерно для менингиомы. На кадре д под действием иода та же самая опухоль стала видна гораздо лучше. Тонкая белая линия, пересекающая опухоль, проведена сканирующим аппаратом с целью измерения. На кадрах е и ж злокачественная опухоль (в середине) без иода едва видна, но на кадрах з и и, полученных с применением иода, она ясно выделяется в виде пятнистого участка. Желудочки смещены, и границы их зазубрены. На кадре е кальцинированный эпифиз (в середине) тоже слегка смещен. Усиленные иодом белые кольцевые зоны характерны для злокачественной опухоли. Девять кадров КАТ любезно предоставлены Ф. Ходжесом III (F. Hodges III) из Медицинской школы Университета Джонса Гопкинса.
Глиальная клетка, которая вырабатывает и обновляет жироподобный слой миелина, образующий оболочку аксонов в центральной нервной системе, может играть роль в расстройствах функции головного мозга. А. Электронная микрофотография нормальной глиальной клетки; это сравнительно темная клетка с плотно упакованными внутриклеточными органеллами, в том числе митохондриями, шероховатым эндоплазматическим ретикулумом и четко очерченным аппаратом Гольджи (рядом дана карта органелл). В этой нормальной клетке хроматин - носитель генетического материала - равномерно распределен по всему ядру. На периферии клетки лежат части нескольких миелинизированных аксонов; миелин является прямым продолжением специализированной цитоплазматической мембраны глиальной клетки. Б. Глиальная клетка больного хроническим лимфатическим лейкозом. Органеллы клетки сильно разрушены. Клетка, находящаяся в ткани, взятой при аутопсии, отличается увеличенным и смещенным ядром, конденсированным хроматином и наличием многочисленных вирусных частиц, уничтожавших клетку. В результате миелин аксонов не обновлялся. Постепенная демиелинизация основных нервных путей привела к развитию симптомов болезни. Приблизительно за четыре месяца до смерти больной жаловался на ухудшение зрения (что закончилось слепотой в левом поле зрения), на то, что он не различает лиц и не может читать. В конце наступила полная слепота, некоторая спутанность сознания с двусторонним парезом. В. Глиальная клетка в ткани, взятой при аутопсии у больного подострым склерозирующим панэнцефалитом. Отдельные органеллы в клетке неразличимы, хотя близлежащие миелинизированные аксоны еще видны. Хроматин образовал комки и сдвинут частицами, характерными для парамиксовируса. Электронные микрофотографии получены Дж. Волынским (J. Wolinsky) из Медицинской школы Университета Джонса Гопкинса.
В течение многих лет препятствием для изучения заболеваний мозга служило отсутствие способов исследования живого мозга. То немногое, что было известно о таких болезнях, явилось результатом посмертных исследований. Открытие рентгеновских лучей в конце XIX в. позволило ученым заглянуть в живой мозг. Теперь есть возможность обнаруживать грубые структурные разрушения, касающиеся желудочков головного мозга, при помощи пневмоэнцефалографии, т.е. рентгенологической методики, при которой жидкость, окружающая мозг и наполняющая его желудочки, замещается воздухом, что позволяет получить картину их формы. При другом методе - церебральной ангиографии - в кровь вводят рентгеноконтрастное вещество и это дает возможность видеть на рентгенограмме патологическое смещение кровеносных сосудов мозга. Обычное рентгенологическое исследование при всей своей ценности страдает одним крупным недостатком: на проявленной пленке рентгенографические проекции патологически измененных областей могут наложиться на проекции нормальных структур, из-за чего трудно или даже невозможно отличить их друг от друга. Это особенно дает себя знать при одинаковой проницаемости соседних структур для рентгеновских лучей, как, например, в случае опухоли, окруженной нормальной тканью такой же плотности.
Создание метода компьютерной аксиальной томографии (КATI позволило преодолеть этот недостаток. КАТ-сканирование - это особая методика, при которой сопоставляются многочисленные рентгеновские снимки, сделанные под разными углами, с целью получения изображения внутренней структуры головного мозга в поперечном сечении. Такое сканирование выявляет увеличение или атрофию нормальных структур и любые патологические образования.
В середине нашего столетия возникли электрические методики, ставшие важными инструментами исследования мозга. Сообщения, получаемые мозгом от органов чувств, директивы, которые он им посылает, и сообщения между миллиардами нейронов в самом мозгу - все они передаются с помощью электрических сигналов. Электрические поля у поверхности мозга улавливаются и усиливаются электроэнцефалографом. Это позволяет определить специфическую локализацию источников нарушения электрической активности.
В течение последних двух десятилетий изучение функции мозга распространилось на химические процессы. Как мозг использует энергию, можно исследовать, измеряя кровоток и использование кислорода из глюкозы. Благодаря недавним работам Н. Лассена (N. Lassen) из Клиники Биспебьерга в Копенгагене и Д. Ингвара (D. Ingvar) из Копенгагенского университета появилась возможность наблюдать на рентгеновском экране, как при таких специфических видах умственной деятельности, как чтение вслух или чтение про себя, быстро меняется кровообращение в разных участках мозга. Л. Соколов (L. Sokoloff) с сотрудниками из Национального института охраны психического здоровья разработали приемы для количественной оценки метаболизма глюкозы в любой точке мозга. Поскольку функциональная активность тесно связана с интенсивностью кровотока и использованием глюкозы, такие методики служат средством для картирования живого мозга в отношении функционирования его компонентов.
На уровне нейрона мозговые расстройства могут возникнуть из-за аномальных химических процессов, действующих в синапсах между нейронами. Нарушения синтеза, высвобождения или инактивации определенного химического медиатора или нарушения чувствительности пост-синаптических рецепторов медиатора могут привести к дисфункции синапса. Такая дисфункция необязательно сопровождается морфологическими изменениями на макро- или микроуровне. Разработанные недавно гистофлуоресцентные и иммунофлуоресцентные методики, т. е. по существу методы окрашивания на специфические медиаторы или ферменты, позволяют обнаруживать и измерять действие медиатора на отдельные нейроны. Новые химические методики с применением радиоактивных изотопов дают возможность определять число и чувствительность постсинаптических рецепторов, а мощными аналитическими приемами можно исследовать жидкость в головном мозгу, спинномозговую жидкость, кровь и мочу на присутствие ничтожных следов медиаторов и их метаболитов.
Для успешного протекания таких сложных психических процессов, как восприятие, мышление, суждение и эмоции, необходимы идеально настроенные и бесперебойно функционирующие синапсы. Поскольку при психических заболеваниях такие процессы часто нарушаются, расширение представлений об этих процессах должно помочь раскрыть тайны нарушений психики. Лишь недавно эти новые способы изучения химизма синапса были применены в случаях психических заболеваний - шизофрении и маниакально-депрессивного психоза. Мне представляется вполне возможным, что эти орудия исследования будут для психиатрии тем, чем старые методики были для невропатологии.
Патологические процессы вызываются в мозгу большим разнообразием близких и отдаленных причин, которые часто делят на генетические факторы и факторы внешней среды. Поскольку всякое свойство живого организма в конечном счете определяется сложным взаимодействием генетических влияний и влияний внешней среды, попытка расчленить их может показаться бесплодной. Но все же есть возможность их дифференцировать, если проследить, каков вклад каждого из этих влияний в изменчивость данного конкретного признака. Например, способность к речи требует высокоразвитого механизма в головном мозгу, механизма, который совершенно очевидно зависит от генетических процессов. Но тот конкретный язык, на котором говорит человек, не обусловлен генетически, а почти полностью определяется фактором среды - принадлежностью к той или иной культуре и т.п. С другой стороны, существуют генетические дефекты головного мозга, которые выявляются только в условиях специфического питания. Если эти условия повсеместны, то отличие аномального индивидуума от нормального будет полностью обусловлено генетическим фактором; поэтому такое нарушение относят к генетическим болезням. Разумеется, большинство человеческих свойств не поддается классификации с такой легкостью. По-видимому, они оказываются где-то между двумя крайними точками.
Гены определяют последовательности аминокислот, образующих белки. Именно эти белковые молекулы, синтезируемые в особых местах и в особое время, служат структурными компонентами и ферментативными катализаторами, которые обусловливают развитие и работу мозга. Известно, что многие нарушения в центральной нервной системе, в особенности те, которые проявляются умственной отсталостью, обусловлены генетически. Например, фенилкетонурия и галактоземия вызываются генетически обусловленной недостаточностью определенных ферментов. При той и другой болезни из-за дефицита определенного фермента становятся токсичными некоторые компоненты обычной пищи. У ребенка с фенилкетонурией отсутствует фермент фенилаланингидроксилаза, - который обеспечивает дальнейший метаболизм фенилаланина. В результате эта незаменимая аминокислота в избытке накапливается в крови и тканях, что нарушает развитие и работу мозга.
При галактоземии новорожденный ребенок кажется нормальным, но через несколько дней или недель кормления молоком у него появляются анорексия и рвота, он начинает отставать в весе и погибает от истощения. Дети, выжившие без лечения, остаются карликами и умственно отсталыми. Галактоземия вызывается отсутствием фермента, необходимого для дальнейшего метаболизма сахара галактозы, который поэтому в избытке накапливается в организме. Вредные последствия этих болезней можно устранить внешним воздействием, а именно исключением из рациона ребенка (по крайней мере в раннем детстве, в период интенсивного роста и развития головного мозга) того вещества, метаболизм которого в организме нарушен (фенилаланина или галактозы).
Больший процент самоубийств установлен среди биологических родственников тех приемных детей, которые страдали депрессией, по сравнению с числом самоубийств среди их приемных родственников и родственников приемных детей контрольной группы, не страдавших психическим заболеванием, что заставляет предполагать в основе этих самоубийств генетический фактор. На каждом графике показано число родственников-самоубийц по отношению к общему числу родственников. Данные взяты из работы, проведенной автором и Д. Розенталем (D. Rosenthal) из Национального института охраны психического здоровья. Ф. Шульзингером (F. Schulsinger) из Копенгагенского университета и П. Уэндером (P. Wender) из Университета Юты.
Некоторые генетически обусловленные болезни сцеплены с полом. Синдром Леша-Нихана, характеризующийся бесцельными и неуправляемыми движениями, умственной отсталостью и психотическим поведением ("самоповреждение"), возникает из-за отсутствия определенного фермента, что в свою очередь обусловлено отсутствием или дефектом гена в Х-хромосоме. Этот синдром встречается только у мужчин, у которых всего одна Х-хромосома. У женщин, у которых имеется две Х-хромосомы, отсутствие или дефект гена в одной из них компенсируется нормальным геном другой.
Мозговые расстройства возникают не только от недостатка генетического материала, но и от его избытка. Наличие добавочной Х- или Y-хромосомы сопровождается синдромами незначительных нарушение интеллекта и личности. При синдроме Дауна, который наблюдается у одного из каждых 700 новорожденных, имеется лишняя хромосома 21. Такие дети отстают в развитии как физическом, так и умственном.
Генетические болезни не всегда обнаруживаются при рождении. Например, симптомы хореи Гентингтона, а именно неконтролируемые движения и снижение интеллекта, появляются впервые в возрасте 30-50 лет. Эта болезнь, которая наследуется как доминантный генетический признак, связана с резко выраженной атрофией мозолистого тела и дегенерацией нейронов в хвостатом ядре и других глубоких ядрах, а также в лобной коре больших полушарий.
В 1968 г. Л. Полинг (L. Pauling) предположил, что существуют генетически обусловленные индивидуальные различия в потребности в витаминах. Он полагал, что эти различия связаны с заболеваниями центральной нервной системы, включая головной мозг. Примерами, свидетельствующими в пользу этой гипотезы, служат некоторые редкие неврологические синдромы у детей, при которых генетически обусловленная неспособность усваивать или перерабатывать определенный витамин создает тяжелую витаминную недостаточность, которая неблагоприятно сказывается на функции центральной нервной системы. Возникающие патологические синдромы успешно излечиваются большими дозами соответствующего витамина. Полинг предположил подобный механизм в основе шизофрении, однако повышенная потребность в том или ином витамине при шизофрении не доказана.
Психозы, в том числе шизофрения и аффективные расстройства, встречаются значительно чаще упомянутых выше заболеваний. В этих психозах главную роль, по-видимому, играют генетические факторы, хотя их биологические последствия еще не определены, в отличие от того, как это сделано для многих других заболеваний мозга. С тех самых пор, как около 100 лет назад были впервые описаны шизофрения и маниакально-депрессивный психоз, известно, что они носят характер семейных болезней. Около 10% родственников больного тоже страдают этим заболеванием. Поэтому такие болезни часто считали наследственными.
Однако членов одной семьи объединяют не только генетические влияния, но и общие влияния среды, и поэтому семейный характер заболевания еще мало говорит о его этиологии. Пеллагра - болезнь, обусловленная витаминной недостаточностью, которая в первые десятилетия нашего века была причиной 10% психических заболеваний в США, тоже поражает целые семьи, и поэтому одно время считалась наследственной. В 1915 г. Дж. Голдбергер (J. Goldberger) из Службы здравоохранения США показал, что главной причиной пеллагры является острый недостаток в пище ниацина - витамина группы В. Поскольку члены одной семьи обычно едят одинаковую пищу, болезнь носит семейный характер. При помощи соответствующего питания пеллагру удалось почти полностью искоренить.