Физические эффекты и явления
ModernLib.Net / Неизвестен Автор / Физические эффекты и явления - Чтение
(стр. 7)
Автор:
|
Неизвестен Автор |
Жанр:
|
|
-
Читать книгу полностью
(454 Кб)
- Скачать в формате fb2
(157 Кб)
- Скачать в формате doc
(161 Кб)
- Скачать в формате txt
(156 Кб)
- Скачать в формате html
(158 Кб)
- Страницы:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
|
|
Поляризация может возникнуть вследствие отсутствия осевой симметрии в возбуждающем волну излучателе (например, в лазерах), при отражении и приломлении волн на границе двух сред (наибольше степень поляризации имеет место при отражении под углом Брюстера тангенс угла равен коэффициенту преломления отражающей среды) при рапространении волны в анизотропной среде. А.с. 269 588: Способ определения стойкости стекла в спаях с металлом к электролизу, состоящий в том, что через термостатированный образец пропускается электрический ток, причем напряжение питающего источника остается постоянным, и измеряют величину тока, проходящего через образец, отличающийся тем, что с целью повышения точности наблюдений, о ходе процесса электролиза судят по измерению картины механических напряжений в местах спая с металлом, наблюдаемой в лучах поляризованного света. А.с. 452 786: Способ магнитного контроля ферромагнитных материалов, заключающийся в том, что на поверхность предварительно намагниченного материала наносят индикатор и по рисунку, образованному под воздействием полей рассеяния, судят о качестве изделия, отличающийся тем, что с целью повышения его чувствительности, в качестве индикатора используют монокристаллическую пленку магний-марганцевого феррита с полосовой доменной структурой, а изменение состояния индикатора наблюдают в поляризованном свете. А.с. 221 345: Способ контроля кристаллизации кондитерских масс, например, ирисной, в процессе производства путем микроскопирования исследуемого образца, отличающийся тем, с целью повышения точности контроля, микроскопирование осуществляют в проходящем поляризованном световом луче с измерением при этом интенсивности светового потока с последующим определением содержания кристаллов. А.с. 249 025: Способ оценки распределния контактных напряжений по величине деформации пластичной прокладки, располагаемой в зоне контакта между соприкосающимися поверхностями, отличающийся тем, что с целью повышения точности, в качестве пластичной прокладки используют пленку из оптически чувствительного материала, которую затем просвечивают поляризованным светом в направлении действия контактных сил, и по картине полос судят о распределении контактных напряжений. 5.4.4. Вобщем случае д и ф р а к ц и я - это отлонения волновых движений от законов геометрической /прямолучевой/ оптики. Если на пути распространения волны имеется препятствие, то на краях препятствия наблюдается огибание волной края. Если размеры препятствия велики по сравнению с длиной волны, то распрстранение волны почти не отклоняется от прямолинейного, т.е. дифракционные явления не значительны. Если же размеры препятствия сравнимы с длиной волны, то наблюдается сильное отклонение от прямолинейного распространения волнового фронта. При совсем малых размерах препятствия волна полностью его огибает - она "не замечает" препятствия. Очевидно, величина отклонения /количественная характеристика дифракции/ при заданном препятствии будет зависеть от длины волны; волны с большей длиной будут сильнее огибать препятствие. Такое разделение волны используется в дифракционных спектроскопах, где белый свет /совокупность волн различной длины/ располагается в спектр с помощью дифракционной решеткисистемы частых полос. В авторском свидетельстве N'249 468 изменение дифракционной картины при изменении размеров препятствий использовано для градировки магнитного поля, под действием которого изменяются параметры ферромагнитной пленки с полосовой доменной структурой: Способ градировки магнитного поля спомощью эталона, отличающийся тем, что с целью повышения точности и упрощения процесса градуровки эталон, в качетве которого использована тонкая ферромагнитная пленка с полосовой доменной структурой, на которую нанесен магнитный коллоид, намагничивают под определенным углом к направлению силовых линий градуируемого поля, освещают его светом и наблюдают диффрагировавший на эталоне луч света, затем увеличивают градуируемое поле по величине, при которой исчезает наблюдаемый луч, сопоставляют эту величину с известным значением поля переключения эталона. А.с. 252 625: Способ определения статистических характеристик прозрачных диэлектрических пленок, заключающийся в том, что через исследуемую пленку пропускают луч света, отличающийся тем, что с целью упрощения процесса и сокращения времени определения, на пути луча когенентного света за исследуемой пленкой устанавливают экран с отверстием, вращают исследуемую пленку в плоскости, перпендикулярной оси луча, получают усредненную дифракционную картину от отверстия и затем из сравнения полученной усредненной дифракционной картины с расчетной картиной определяют статические характеристики пленки. 5.4.5. Интенференция волны. Явление, возникающее при наложении двух или нескольких волн и состоящее в устойчивом во времени их взаимном усилении в одних точках пространства и ослаблении в других в зависимости от соотношения между фазами этих волн. Интерференционная картина может наблюдаться только в случае когерентных волн, т. е. волн, разность фаз которых не зависит от времени. При интерференции поперечных волн помимо когерентности волн необходимо, чтобы им соответствовали колебания, совершающиеся вдоль одного и того же или близких напрвлений: поэтому две когерентные волны, поляризованные во взаимно перпендикулярных направлениях интерферировать не будут. Существует много различных методов получения когерентных волн: наиболее широко распространенными Являются способы, основанные на использовании прямой и отраженной волны; если отраженная волна направлена точно назад т.е. на 180 градусов, то могут возникнуть стоячие волны. А.с. 154 676: Способ определения абсолютного значения ускорения силы тяжести, отличающийся тем, что с целью повышения точности измерения абсолютного значения ускорения силы тяжести, время падения измеряют путем подсчета количества временных периодических интервалов, задаваемых эталоном частоты, в период между моментами совпадения отрезков пути свободного падения с длиной трубчатого концевого эталона, сличаемых интерференционным методом в процессе свободного падения тела. Патент США 3 796 493: Аппарат для измерения шага резьбы прецизионного ходового винта посредством оптической интерференции. Два чувствительных элемента приводят в контакт с одной и той же стороной резьбы винта в двух точках, фазы которых отличаются на 180 градусов. Щупы смонтированы на направляющей, которая может перемещаться в любом направлении на каретке, в плоскости, параллельной плоскости движения каретки вдольоси винта, регулируют таким образом, чтобы она приблизительно равнялась шагу винта. Средняя точка между сферическими концами двух щупов располагается в вершине кубического уголкового отражателя, смонтированного на направляющей. Световой луч от уголкового кубического отражателя отражается рефлектором. Шаг резьбы измеряют используя интерференцию между световыми лучами, разделенными полупрозрачным зеркалом. Один из лучей испытывает отражения от уголкового отражателя и рефлектора. Измеренную величину сравнивают с эталонным шагом. 5.4.6. Голография. Явления интерференции и дифракции волн лежат в основе принципиально нового метода получения обьемных изображений предметов - голографии. Теоретические предпосылки голографии существовали давно / Д.Габор, 1948г./, однако практическое ее осуществление связано с появлением лазеров - источников света высокой интенсивности, когерентности и монохроматичности. Суть голографии состоит в следующем. Обьект освещают когерентным светом и фотографируют интерференционную картину взаимодействия света, рассеянного обьектом, с когерентным излучением источника, освещающего обьект. Эта интерференционная картина - чередование темных и светлых областей сложной конфигурации, зарегистрированная фотопластинкой и есть голограмма. Она не имеет никакого сходства с обьектом, однако несет в себе полную визуальную информацию о нем, так как фиксирует распределение амплитуд и фаз волнового поля - результата наложения опорной когерентной волны и волн, дифрагированных на обьекте. Для восстановления изображения голограмму освещают опорным пучком света, который дифрагируя на неоднородностях почернения фотоэмульсии, дает обьемное изображение, обладающей полной иллюзией реального обьекта. Голограммы обладают рядом интересных особенностей. Например, если голограмму расколоть на несколько кусков, то каждый из них при просвечивании дает полное изображение предмета, как и целая голограмма. Изменяются лишь четкость изображения и степень обьемности. Если же с голограммой контактным способом снять обращенную копию /негатив/, то изображение полученное от этой копии все равно останется позитивным. Одно из фундаментальных открытий в области голографии принадлежит Ю.Н.Денисюку, осуществившему голографию в стоячих волнах. Открытие зарегистрировано под N'88 со следующей формулой: "Установлено ранее неизвестное явление возникновения пространственного неискаженного цветного изображения обьекта при отражении излучения от трехмерного элемента прозрачной материальной среды, в которой распределение плотности вещества соответствует распределению интенсивности поля стоячих волн, образующихся вокруг обьекта при рассеянии на нем излучения". Такие трехмерные галограммы на стадии восстановления необязательно освещать когерентным излучением,- можно пользоваться обычным источником света. Возможности использования голографических методов неисчерпаемы. Например, если процессы регистрации и восстановления производить при разных длинах волн, то изображение обьекта во столько раз, во сколько длина волны восстановления больше длины волны регистрации /голографический микроскоп/. С помощью голографии можно получать интерференционные картины от обьектов, диффузно рассеивающих свет. Совмещая голографическое изображение с самим обьектом и изучая интерференционную картину, можно зафиксировать самые незначительные деформации обьекта. А.с. 250 465: Способ определения чистоты обработки поверхности изделия...., отличающийся тем, что с целью повышения чувствительности способа, сначала получают голограмму контролируемого изделия, производят освещение поверхности изделия, накладываемое на него восстановленное с голограммы его действительное изображение, и регистрируют при этом интенсивность зеркально и диффузно отраженного от поверхности изделия излучения, затем изменяют взаимное расположение изделия и его действительного изображения на величину большую, чем средняя высота микронеровностей поверхности, регистрируют интенсивность зеркально отраженного от поверхности изделия и по соотношению этих интенсивностейопределяют чистоту обработки поверхности. США патент N' 3 797 944: Испытание без разрушения пористых акустических панелей. В процессе испытания получают усредненную по времени голографическую фотографию перефорированно поверхности акустической панели, имеющей ячеистую структуру. При этом панель подвергается воздействию акустического излучения заданной интенсивности, частота которой равна частоте ячейки панели. Затем полученную фотографию просматривают, направляя через нее лазерный луч. Световые завихрения полученные на фотографии соответствуют хорошим ячейкам, тогда как темные участки соответствуют нерабочим или дефектным ячейкам. Если резонансная частота ячейки неизвестна, то ее можно определить получая изображение поверхности в реальном масштабе времени в отсутствие акустического возбуждения. Затем перфорированные листы просматривают через полученное изображение, подвергая перфорированную поверхность воздействию акустического излучения с медленно меняющейся частотой при постоянном уровне интенсивности и регулируя возникновение завихрений, соответствующих резонансу. Голография дает возможность создать оптическую память чрезвычайно большой емкости. С ее помощью успешно решается проблема машинного распознавания образов. Можно сделать так, что проекция на голограмму одних образцов будет вызывать появление других, определенным образом связанным с первым (ассоциативная память). Существенно, что голографическое изображение можно получать не только с помощью электромагнитных, но и акустических волн. Когерентные ультразвуковые волны дают возможность освещать большие обьекты. Следовательно можно получить трехмерное изображение внутренних частей обьекта, например, человеческого тела, недр Земли, толщи океана. США патент 3 585 848: Аппарат для записи акустических изображений и голограмм и метод их записи. Обьект облучается акустическими волнами для создания поля акустических колебаний в отражающей поверхности, в аппарате предусмотрено устройство разверстки бегущим лазерным пятном для сканирования поверхности коллимированным лучом света. Изменения отражаемой от поверхности компоненты луча обеспечивают генерацию выходного сигнала, изменения частоты котрого соответствуют изменениям интенсивности акустических колебаний в плоскости поверхности обьекта. Выходной сигнал гетеродинируется с опорным сигналом, частота которого выдерживается в заданном соотношении с частотой облучающих акустических волн, соответствующая внутренней модуляции преобразуется в визуальную индикацию, что позволяет осуществить акустическую голограмму обьекта. Условное неголографическое изображение (акустическое) может быть получено путем амплитудного детектирования выходного сигнала без смешения его с опорным сигналом. Возможности оптической и акустической голографии изучены сейчас еще не полностью, голографические методы проникают во все области науки и техники, позволяя изящно и надежно решать неразрешимые задачи. 5.4.7. Д и с п е р с и я в о л н - зависимость фазовой скорости гармонических волн в веществе от их частоты. Область частот в которой скорость убывает с увеличением частоты, называется областью но р м а л ь н о й д и с п е р с и и, а область частот, в которой при увеличении частоты скорость также увеличивается, называется областью а н о м а л ь н о й д и с п е р с Дисперсия волн наблюдается, например, при распространении радиоволн в ионосфере, волноводах. При распространении световых волн в веществе также имеет место д и с п е р с и я с в е т а (зависимость абсолютного показателя преломления от частоты света). Если вещество прозрачно для некоторой области частоты волн, то наблюдается нормальная дисперсия, а если интенсивно поглащает свет, то в этой области имеет место аномальная дисперсия. В результате дисперсии узкий параллельный пучок белого света, проходя через призму из стекла или другого прозрачного вещества уширяется и образует на экране, установленном за призмой радужную полоску, называемую диспорсионным спектром. Для световых волн единственной недиспергирующей средой является вакуум. Патент США 3 586 120: Аппаратура передачи звука. Углы скандируемые световым лучом, увеличиваются посредством введения дисперсионного устройства на пути звуковых волн. Эти углы образованы вследствие взаимодействия света и звука. В одной из модификаций аппарата звуковые волны пропускаются черезнеподвижную решетку, или другими словами через среду, которая обладает дисперсией по своей природе. В другой модификации дисперсия достигается вследствие вибрации при образовании продольной волны растяжения или сжатия. А.с. 253 408: Устройство для измерения температуры, содержащее измерительный элемент, устанавливаемый на исследуемый материал, и источник белого света, отличающийся тем, что с целью расширения интервала измеряемых температур, измерительный элемент выполнен в виде прозрачной кюветы, заполненной смесью оптически неоднородных веществ, соответствующих заданному интервалу температур, показатели преломления которой зависят от длины волны и температурные коэффициенты показателей преломления отличаются знаком либо величиной. 6.ЭЛЕКТРОМАГНИТНЫЕ ЯВЛЕНИЯ. 6.1. В основе всеь физичиских явлений лижит взаимодействие между телами или частицами, участвующими в этих явлогласно представления современной физике всякое взаимодействие передается через некоторое поле. Электриче заряды взаимодействуют через электрическое поле, которое они создают, магниты и электрические токи - через магнитное поле. Механическое взаимодействие осуществляется через электромагнитные поля, создаваемые электронами вещества. 6.1.1 Взаимодействие заряженных тел или частиц в самом простейшем случае описывается з а к о н о м К у л о н а. Известно, что разноименные заряды притягиваются, а однаименные отталкиваются. А.с. 428 882: Способ соединения концов проводников, при котором осуществляют контактирование проводников, а затем сварку из концов, о т л и ч а ю щ и й с я тем, что с целью упрощения технологического процесса, контактирование концов проводников получают при помощи создания между ними электростатического поля от дополнительного источника постоянного напряжения, подключенного к проводникам. Изменяя форму поверхности заряженных тел можно изменить конфигурацию образующихся полей. А это, в свою очередь, открывает возможность управляти симами, действующими на саряженные частицы (тела), помещенные в такое поле. А.с. 446 315: Способ разделения диэлектрических волокон по диаметрам в неравномерном электрическом поле, отличающимся тем,что,с целью повыщения эффективности процесса,разделение производят при постоянном градиенте квадрата напряженност поля, увеличивающейся в сторону электрода, имеющего тот же знак, что и поверхностный заряд на . 6.2 При внесении хезаряженного проводника в электрическое поле носители заряда приходят в движение. В результате у концов проводника возникают заряды противоположенного знака,называемые индуцированными зарядами. А.с. 518 839: Способ снятия потенциальной кривой коллектора электрической машины постоянного тока, заключающийся в премещении элемента, обеспечивающего снятие электрического параметра, вдоль окружности коллектора работающей электрической машины, отличающийся тем, что с целью расширения функциональных возможностей, повышения точности и надежности, перемещение элемента, например датчика, использующего явление электростатической индукции, осуществляют над колектором на постоянном растоянии и измеряют на датчике величину заряда,наведенного зарядами коллекторных пластин, и по величинам зарядов определяют характер потенциальной кривой. Это же явление используется для защиты различных обьектов от вездействия электрических полей путем электрического экранирования и для получения свервысоких постоянных напряжений (генератор Ван-де Граафа). 6.3 при частично введении диэлектрика между обкладками конденсатора наблюдается втягивание диэлектрика между обкладками. А.с. 493 641: дозатор жидкости, содержащий герметичную емкость с регулятором уорвня, выпускным сифоном и воздухоподводяой, отличающийся тем,что с целью повыщения надежности и упрощения конструкции, в канале воздухопроводящей трубы установлен частично погреженный в житкость диэлектрик многоэлектродный электрический конденсатор, обкладки которого в момент выдачи жидкости соединены с источником напряженности. 6.4 Под действием электрического поля в проводнике при создании на его концах разности потенциалв заряды движутся - в проводнике возникает электрический ток. Любые нарушения кристаллической решетки проводника - дефекты, примеси,тепловые колебания - являются причиной рассеяния электронных волн, т.е. уменишения упорядочности движения электронов. При этом в проводнике выделяется тепло.(заокн Джоуля - Ленца). А.с. 553 233: Способ получения цементного клинкера путем подготовки, подогревания и спекания сырьевой смеси, отличающийся, тем что, с целью интенсификации процесса клинкерообразования, спекание осуществляют за счет пропуска через сырьевую массу элекирического тока с напряжением 10-500 в. 6.5 Высокая проводимость металлов связана с особенностью иь электронного спектра, в котором непосредственно над заполнеными уровнями находятся свободные уровни. У большинства металлов сопротивление увеличивается линейно с ростом температуры. в то же время ряд сплавов имеет отрицательных температурный коэффицент сопротивления.Меняется сопротивление и у неметаллов. 6.5.1. Сопротивление металлов при плавлении возрастает, если его плотность возрастает (в полтора-два раза, для свинца - в 3-4 раза) и, наоборот, падает, если плотность металла при плавлении уменьшается (висмут, сурьма, галлий). 6.5.2. При приложении внешнего гидравлического давления сопротивление металлов уменьшается. Это уменьшение максимально у щелочных металлов, имеющих максимальную сжимаемость. У ряда элементов на кривых зависмости сопротивления от давления имеются скачки, используемые в физике высоких давлений в качестве реперных точек. 6.5.3. Кроме того, на сопротивление металов очень сильно влияет наличие примесей (или состав сплава), что используется для идентификации сплавов. так например, при изменении количества примесей в стали от 0,1 до 1,1% ее удельное сопротивление изменяется от 10 до 30 10(в минус восьмой степени) Ом.см. Широко используются изобретателями и обычные изменения сопротивления обьектов за счет изменения размеров или состава обьекта. А.с. 462 067: Способ измерения линейных размеров изделия из электропроводного материала, заключающегося в том, что на поверхность изделия направляют струю жидкости, по параметрам которой судят о размерае, отличающийся тем, что с целью расширения диапазона измерений, подают электропроводящую жидкость и измеряют электрическое сопротивление струи. А.с. 511 233: Способ определения качества пишущего инструмента, например, шариковой авторучки путем нанесения ею на опорную поверхность пишущей жидкости и измерения электрического сопротпоследней, отличающийся тем, что с цель повышения точности измерения, в качестве опорной поверхности используют токопроводящую подложку, а измерение сопротивлений осуществляют в цепи подложкаседло шарика. А.с. 520 539: Способ измерения удельного электрического сопротивления образцов, заключающийся в измернии пропускаемого через образец тока, отличающийся тем, что с целью повышения точности и упрощения процесса измерения, образец последовательно помещают в сосуды с растворами с известными удельными сопротивлениями, измеряют ток проходящий через эти растворы до и после погружения в них образца и об удельном сопротивлении образца судят по величине удельного сопротивления того раствора, при погружении образца в который, ток, проходящий через этот раствор, не менялся. 6.6. При низких температурах поведение сопротивления металлов весьма сложно. У некоторых металлов и сплавов обнаруживается явление с в е р х п р о в о д и м о с т и. Сверхпроводящее состояние устойчиво, если температура, магнитное поле и плотность тока не превышает некоторых критических пределов. В 1976 г. достигнуты следующие максимальные значения этих параметров: критическая температура 23,4К, критическое поле 600 кЗ, плотность тока 11 в 11-ой степени а см2. А.с. 240 844: Устройство для получения сверхсильных магнитных полей, представляющее собой охлажденный солиноид из несверхпроводящего материала, отличающийся тем, что с целью повышения напряженности магнитного поля, снижения себестоимости и потребления электроэнергии, снаружи солиноида расположен в кристалле с рабочим обьемом вне криостата сверхпроводящий соленоид. 6.6.1. Если один из параметров поддерживать вблизи критического значения, то сверхпроводящая система может быть использована для очень точного определения небольших изменений измеряемой величины, например, вблизи критической температуры - 10 см./градус. А.с. 525 886: Способ измерения скорости течения жидкости заключающийся в пропускании через чувствительный элемент электрического сигнала, подведения к нему тепла от дополнительного источника и определении скорости течения жидкости по изменению величины сигнала с чувствительного элемента, отличающийся тем, что с целью повышения точности измерния скорости течения криогенных жидкостей, ее определяют по величине теплового потока от дополнительного источника тепла в момент перехода чувствительного элемента из сверхпроводящего состояния в нормальное. 6.7. Электрическое и магнитные поля тесно связаны между собой. В природе существует электромагнитное поле - чисто электрические и чисто магнитные поля являются лишь его частными случаями. Изменяющиеся электрические и магнитные поля индуктируют друг друга.(под изменением поля надо понимать не только изменение его интенсивности, но и движение поля как целого). Патент США 3 825 910: Способ передачи магнитных доменов при помощи самовозбуждаемых управляемых полей. Устройство передачи магнитных доменов использует самовозбуждающее управляющее поле для перемещения магнитного домена в тонком магнитном слое из ферромагнитного материала. Слой управления перемещением доменов сформирован из тонкопроводящего материала. При подаче на управляющий слой электрического поля по соседству с магнитным слоем и в управляющем слое возникает равномерно распределенный электрический ток. Магнитный домен, расположеный в магнитном слое, изменяет плотность тока в управляющем слое и вырабатывает вблизи себя область токового возмущения. Ток возмущения, взаимодействуя с магнитным полем домена, обеспечивает выработку результирующего индуцированного управляющего магнитного поля. Скорость и направление распространения магнитного домена управляются путем изменения прикладываемого электрического поля или путем изенения тока возмущения в управляющем слое. Взаимное индуктирование электрического и магнитного полей происходит в пространстве с огромной скоростью /со скоростью света/ и представляет собой распространение электромагнитных волн. Такими электромагнитными волнами являются радиоволны, свет - инфракрасный, видимый, ультрафиолетовый, а также рентгеновские и гамма-лучи. Поэтому многие эффекты, описанные в этом разделе, имеют аналоги и в оптике, и, наоборот, "оптические" эффекты широко применяются в радиотехнике, особенно в диапозоне СВЧ (например, эффект Фарадея). Магнитное поле может быть создано постоянными магнитными, переменными электрическим полем и движущимися электрическими зарядами, в частности теми, которые движутся в проводнике, создавая электрический ток. А.с. 553 707: Способ защиты человека от поражения электрическим током в сетях с напряжением до 1000 В. путем отключения сети при поступлении на исполнительные органы аварийного сигнала, вырабатываемого размещенными на теле человека датчиком на основе тока, протекающего через тело человека при его соприкосновении с токоведущими частями, отличающийся тем, что с целью повышения эффективности для формирования аварийного сигнала используют электромагнитные колебания, излучаемые телом человека, которые фиксирует антенны служащие указанным датчиком. А.с. 516 484: Способ автоматического регулирования положения электрода при сварке путем контроля физических возмущений в зоне сварки, отличающийся тем, что с целью повышения точности и обеспечения возможности регулирования при электрошлаковой сварке, вокруг контролируемого участка зоны сварки создают магнитопроводящий контур и о положении электрода при сварке судят по распределению магнитной индукции, наводимой сварочным током внутри этого контура. 6.7.1. Основной характеристикой электрического поля является напряженность, определяемая через силу, действующую на заряд. Основной характеристикой магнитного поля является вектор магнитной индукции, также определяемый через силу, действующую на заряд в магнитном поле. На неподвижные заряды магнитное поле вобще не действует. Движущийся заряд магнит не притягивает и не отталки, а действует на него в направл, перпендикулярном к полю и к скорости заряда. Сила, действующая на заряд в этом случае, называется силой Лоренца. А.с. 491 517: Способ изменения подьемной силы крыла с постоянным углом атаки, например, судно на автоматически управляемых подводных крыльях. С целью повышения быстродействия и надежности системы управления подводными крыльями, снижения уровня гидродинамических шумов по крылу пропускают магнитный поток, возбуждаемый электромагнитным полем, через морскую воду электрический ток, направленный поперек магнитного потока. Патент США 3 138 129: Гидродинамический электромагнитный движитель. Движетельная система для удлиненного гидродинамического плавсредства содержат цилиндрическую оболочку из ферромагнитного материала; несколько параллельных магнитных полюсов, расположенных по переферии оболочки на одинаковом расстоянии один от другого; электромагнитные катушки надетые на удлиненные электроды, число которых равно числу полюсов. На судне установлен источник переменного тока. Управляющее устройство соединяет источник переменного тока с электродами и катушками электромагнита для попеременного создания северного и южного полюсов в катушках и получения пересекающихся электрического и магнитного полей в нужных фазах, для создания однонаправленного движения заряженных частиц вокруг плавсредства. Управляющее устройство включает приспособление для раздельного возбуждения электродов при управлении плавсредством. 6.7.2. При движении зарядов в магнитнм поле не вдоль линии этого поля из -за силы Лоренца траектория их движения будет представлять собой спираль. Чем сильнее поле, тем меньше радиус этой спирали. Период обращения заряда не зависит от скорости движения, а только от отношения величины заряда к массе заряженной частицы. А.с. 542 363: Устройство для измерения заряда аэрозоли, содержащее измерительный электрод, блок питания, выпрямитель и операционный усилитель, отличающееся тем, что с целью повышения эффективности, оно снабжено магнитом, создающим поперечное к напрвлению движения аэрозоли поле, а измерительный электрод выполнен плоским и установлен так, что его плоскость параллельна силовым линиям магнитного поля и направления движения аэрозоли. В случае перпендикулярности силовых линий магнитного поля плоскости движения заряженной частицы она начинает двигаться по кругу, причем радиус этого круга зависит от напряженности магнитного поля. А.с. 516 905: Датчик расхода, содержащий корпус, крыльчатку, преобразователь угловой скорости крыльчатки в электрический сигнал, отличающийся тем, что с целью расширения облсти применения и диапазона измерения, а также упрощение конструкции датчика расхода, преобразователь угловой скорости крыльчатки выполнен ввиде магнетрона, анод которого выполнен с вырезами, расположенными в плоскости, параллельно оси вращения крыльчатки, в теле крыльчатки укреплены магниты с одноименными полюсами в одном торце, а на корпусе датчика расхода установлен подпорный магнит, причем магниты в теле крыльчатки и подпорный магнит обращены к магнетрону разноименными полюсами.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
|