100 великих - 100 великих чудес техники
ModernLib.Net / Биографии и мемуары / Мусский Сергей Анатольевич / 100 великих чудес техники - Чтение
(стр. 10)
Автор:
|
Мусский Сергей Анатольевич |
Жанр:
|
Биографии и мемуары |
Серия:
|
100 великих
|
-
Читать книгу полностью
(2,00 Мб)
- Скачать в формате fb2
(450 Кб)
- Скачать в формате doc
(438 Кб)
- Скачать в формате txt
(428 Кб)
- Скачать в формате html
(460 Кб)
- Страницы:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37
|
|
В таких случаях часто показана диагностика с помощью сердечного катетера, который вводят в сердце через кровеносные сосуды. Это серьезная нагрузка для организма обследуемого, и многие пациенты предпочитают традиционной методике новую, самую современную, безвредными для человека магнитными полями: сердце «просвечивает» ядерно-магниторезонансный томограф. Предшествующие модели ЯМР-томографов из-за слишком длительных периодов измерений давали недостаточно четкие изображения (сердце непрестанно бьется, и снимок «с большой выдержкой» получается смазанным). Новейшие устройства, улучшенное аппаратное и программное обеспечение позволяют делать достаточно четкие снимки сердца в промежутках между его ударами.
«Точность теперь явно выше, чем при прежних неинвазивных методах, – поясняет Айке Нагель из Немецкого центра сердца в Берлине. – Используя технику, число обследований с помощью сердечного катетера можно сократить, по меньшей мере, на 20 процентов». А по оценке оптимистов – наполовину.
Будучи прибором для всесторонней диагностики, ЯМР-томограф изображает сердце и большие артерии пространственно, измеряет параметры кровоснабжения и распознает омертвевшую ткань. Щадящий высокотехнологичный метод подходит как для профилактики, так и для лечения сердечных больных.
ЯМР-томография избавляет инфарктных пациентов от излишних нагрузок. С помощью этого метода можно предсказать, обещает ли вообще успех расширение сосуда или операция на анастомозе. Это показали ученые из Северо-Западного университета в Чикаго в своем клиническом исследовании.
Очень важно, что новая техника может оградить от опасных вмешательств многих юных пациентов. Сильные магнитные поля, воздействию которых подвергаются обследуемые, практически безвредны – по крайней мере, так считает современная наука. Альтернативные методы, к примеру, компьютерная и позитронно-эмиссионная томография, работают, напротив, с небезопасными для организма субстанциями – рентгеновскими лучами и радиоактивными изотопами.
Своего рода бум испытывает томографическая профилактика сердечно-сосудистых заболеваний в столице Тайваня Тайбэе. Там недавно открылся специальный центр осмотра, где примерно получасовое обследование сердца и сосудов ЯМР-томографом стоит тысячу долларов, при этом расслабиться пациентам помогают видеоочки и приятная музыка…
Лазер-хирург
Пожалуй, сегодня чаще всего лазер используется для операций на глазах. Всем известны успехи знаменитой клиники Святослава Федорова. Но восстановлением зрения, к счастью, его применение не ограничивается. Ежегодно более 150000 жителей России нуждаются в операциях по поводу ишемической болезни сердца, то есть недостаточного кровоснабжения ткани сердечной мышцы.
Такие люди рано или поздно становятся пациентами хирурга. Для того чтобы решить, что делать с больным, проводится тщательное диагностическое исследование – коронарография. По ее результатам врач делает выводы. Если поражен один сосуд, его можно расширить катетером, подобная операция называется ангиопластика. У других больных поражение множественное, тогда им предписывают операцию аортокоронарного шунтирования. Такую успешно сделали первому президенту России Б.Н. Ельцину. Однако иногда тонкие коронарные сосуды настолько забиты атеросклеротическими бляшками, что аортокоронарное шунтирование невыполнимо. Таких пациентов может спасти лишь трансмиокардиальная реваскуляризация – операция с помощью лазера. Ее суть состоит в создании новых сосудов в мышце сердца.
Эта уникальная операция разработана россиянами – директором Научного центра сердечно-сосудистой хирургии им. А.Н. Бакулева, академиком РАМН Лео Бокерия и его коллегами.
«Известно, что у ряда видов пресмыкающихся коронарных сосудов вообще нет, – рассказывает Бокерия Борису Самойлову, корреспонденту журнала «Техника – молодежи». – Их сердечная мышечная ткань получает кислород непосредственно из полости миокарда. Идея наших ученых в том, чтобы пробить лазерным лучом через всю толщу сердца от 45 до 70 микроскопически узких сквозных отверстий в разных направлениях и получить сеть канальцев. Позже канальца в процессе нормальной физиологической эволюции начинают между собой сообщаться. В результате они создают новую кровеносную систему сердца. Только так можно помочь больному. Ведь старые сосуды восстановить уже нереально – они «намертво» закупорены бляшками, оттого кровь не поступает к некоторым участкам сердца. Через них-то мы и пробиваем канальцы. Операция проходит без подключения системы искусственного кровообращения. Это ведет к снижению травматизма во время операций и сокращает их по времени».
«Лазер у нас особый и заслуживает хотя бы нескольких слов. Он функционирует на углекислом газе, но не в том его уникальность, установки с двуокисью углерода в качестве рабочего тела известны. Главное в другом: наш лазер обладает огромной мощностью, и его воздействие нетрудно синхронизировать с тем или иным этапом работы сердца – в данном случае с диастолой, периодом, когда оно «отдыхает» от очередного сокращения. Именно тогда лазерная установка наносит разряд длительностью 10-20 мс и мощностью 800 Вт – в итоге образуются очень узкие канальцы с идеально ровными краями. Последнее обстоятельство крайне важно, чтобы вновь образованные сосуды сразу не забивались, чтобы в них не формировались дополнительные источники тромбообразования. Иного способа, более эффективного и безопасного, нынешняя медицинская практика предложить не в силах; теоретически-то, конечно, можно придумать что угодно…»
Габариты лазерной установки для трансмиокардиальной реваскуляризации внушительны, потому что огромна его мощность. Мощность нужна затем, чтобы все сделать быстро и точно в удобный момент, и не зависеть от толщины мышечной ткани стенки сердца. Ее толщина у разных людей и на разных участках колеблется от 10 до 35 миллиметров.
Лазерная установка – совместный продукт Центра лазерных технологий, Научного центра сердечно-сосудистой хирургии им А.Н. Бакулева и ФИАНа. Ее конструировали специально для лазерной хирургии сердца. С виду аппарат очень напоминает бормашину, только заметно крупнее. От установки отходит особым образом устроенный рукав, который подносят к участкам миокарда, лишенным кровоснабжения. Вся оптика здесь – сменная. В ходе операции она в любой момент может запачкаться кровью или физраствором.
Последовательность действий такова. Сначала хирург задает режим разряда. Потом наступает пауза. Ее длительность выбирается такой, чтобы лазер сработал в нужном временном интервале. Для контроля хода операции в пищевод пациента помещается небольшая «таблетка» на тонком проводе – эхокардиографический датчик. Он регистрирует результат проникновения лазерного луча внутрь сердечной мышцы.
«…Вообще-то сама идея создания искусственных сосудов-канальцев уж лет 40 носится в воздухе, – говорит Бокерия, – или, если угодно, бродит в умах ученых. Так что и раньше выполнялись исследования, подобные нашему, в том числе в СССР, но они носили скорее научно-поисковый характер. Да и подобие тут довольно приблизительное – во-первых, лазер, нами применяемый, оригинален по качественным параметрам и заметно превосходит существующие аналоги (в частности, американские) по количественным. Во-вторых, в прежние времена возможности контроля были ограничены – а мы благодаря эхокардиографу сразу и в деталях видим, что делаем».
Лео Антонович с гордостью отмечает, что Россия, несмотря ни на что, располагает высочайшими лазерными технологиями, дающими возможность быстро оснастить новой установкой кардиоклиники.
Биочип
Биочип трудно заметить невооруженным глазом. Это едва заметный матовый квадратик на блестящей черной пластинке, размер которой не больше обычной почтовой марки. Но, похоже, этот кроха способен перевернуть всю медицину. Ведь биочип в состоянии заменить целую лабораторию с ученым штатом, сотнями приборов. Принцип действия такого чипа основан на молекулярной биологии.
О технологии производства рассказывает заместитель заведующего центром биочипов Института молекулярной биологии РАН Александр Заседателев:
«Сначала на пластинку наносится гель, на 99 процентов состоящий из воды. Через специальное «сито» его облучают ультрафиолетовыми лучами. Лучи полимеризуют гель, получаются ячейки размером 100x100x20 микрон. На биочипе их может быть от шестисот до нескольких тысяч.
Автомат под контролем компьютера наносит на ячейки различные растворы. В каждом содержатся молекулы-зонды биологических объектов – фрагментов ДНК, бактерий, вирусов…»
Так получают биочип. Для анализа на него надо нанести каплю «подопытной» крови или плазмы. Затем к каждой их молекуле присоединяют «фонарик» флуоресцентного вещества. За процессом наблюдают в специальный микроскоп, созданный в санкт-петербургском Государственном оптическом институте. Молекулы, завидев «родственников» на биочипе, соединяются с ними. В результате, где больше «фонариков», там и ячейка светится ярче. Так удается определить бактерии или дефектные гены. В принципе же можно распознать любое молекулярное вещество.
Подобный анализ ведется под микроскопом. При желании портрет биочипа можно увеличить, а затем и отпечатать на фотобумаге. Это простой и эффективный способ значительно убыстряет и удешевляет сложнейшие анализы. Затем чип можно высушить и хранить вечно.
Технология изготовления и использования биочипов отрабатывалась десять лет. Ее автору академику Андрею Мирзабекову удалось избрать самый эффективный путь. Конечно же, не случайно пять лет назад Национальная лаборатория Аргонн в США предложила ему возглавить центр биочипов. Академик дал согласие, поставив условие – сохранения центра в России и оказания ему финансовой помощи.
Что оставалось американцам. Они согласились на в общем-то беспрецедентные для Америки условия. Наши ученые получили возможность работать и у себя в институте, и в Чикаго. Но, главное, все права на производство биочипов в России и странах СНГ остались за нами. Конечно, российские ученые гордятся своей работой. Ведь действительно есть чем.
«Биочип для обнаружения спор сибирской язвы срабатывает за полчаса, а традиционный метод занимает полсуток, что в экстренных случаях многовато, – говорит А. Заседателев. – Быстро можно провести анализ многих инфекций и генетических мутаций.
Последняя из работ – биочип для определения 9 штаммов бацилл, вызывающих 93 процента заболеваний лекарственно устойчивыми формами туберкулеза. Диагностикум создан вместе с Московским НПЦ борьбы с туберкулезом. Сегодня, пока не выявлен характер возбудителя, больных долгие месяцы лечат вслепую, часто совсем не тем, что необходимо. Биочип выявит вид бациллы за 2-3 дня.
Доступны биочипу ранние стадии некоторых онкологических заболеваний, предрасположенность к болезням сердца и сосудов, вредные примеси в воде и в воздухе. Но все это пока в сослагательном наклонении. Если бы были средства на промышленное производство, если бы те, кому положено, оценили новейшую, дешевую и во многих случаях спасительную технологию…»
«Пока же ученые решают более актуальную проблему – отопительную, – пишет в «Известиях» Татьяна Батенева. – Высокие технологии можно создавать только теплыми руками, шутят молекулярные биологи, из холодных пробирок они вываливаются. Их амбиции не простираются дальше стремлений создать некий совет, который мог бы убедить начальников от науки в важности сделанного.
Тем временем консорциум фирм «Паккард» и «Моторола» готовится к промышленному производству биочипов, придуманных российскими учеными. Американские варианты оказались в сотню раз дороже».
«Пройдет еще 5-10 лет, и мы сможем купить анализатор-приставку к компьютеру и набор биочипов в аптеке. Узнаем о своем здоровье почти все, – говорит ведущий научный сотрудник ИМБ Виктор Барский. – Дешевыми анализаторами оснастят все поликлиники, травмопункты, отделения милиции – огромная экономия ресурсов…»
«Генное ружье»
«Генное ружье» – металлическая конструкция, сильно смахивающая на микроскоп. Этот прибор позволяет и животных, и человека «обстреливать» генами – частицами наследственной информации.
«Еще неизвестно, что оставит больший след в истории: автомат Калашникова или вот это ружье Колесникова, – говорит профессор Александр Зеленин, руководитель лаборатории Института молекулярной биологии РАН. – Наш сотрудник фактически в одиночку придумал и сделал то, над чем в США корпели целые коллективы.
Сначала эта идея использовалась для работы с трансгенными растениями. У растительных клеток очень толстые стенки, в них трудно ввести чужие гены привычными для биологов методами. Вот американцы и предложили применить энергию выстрела – это намного эффективнее и дешевле. Идей, как сделать такое ружье, было выдвинуто много, они публиковались и обсуждались. На какой конструкции остановились в реальности, до сих пор неизвестно – коммерческая тайна. Вскоре мы первыми в мире выяснили, что точно так же можно «обстреливать» клетки животных и людей».
«Кандидат биологических наук Виктор Колесников, – пишет в газете «Известия» Татьяна Батенева, – придумал конструкцию ружья, которая проще и остроумнее предложенных американцами. И вовремя. В последние три года в мире наблюдается настоящий бум работ с применением генного ружья, которое оказалось, в частности, просто незаменимым прибором для медицинских генетиков. У них сразу возник вопрос можно ли его использовать для генной терапии – одного из главных направлений медицины будущего. Оказалось, ружье можно применить для решения множества лечебных задач.
Белый кролик, недовольно дергая носом, сидит в специальном приспособлении, которое не дает ему двигаться. Его розовое ухо – под прицелом ружья. Негромкий щелчок – и в ухо влетает смесь из микроскопических частиц золота и вольфрама, на которые «подвешены» нужные гены. Своеобразной ракетой-носителем для смеси служит тончайший пыж из тефлона, который энергией взрыва гремучей ртути разгоняется в ружье до 500 метров в секунду. Затем пыж резко тормозится, а пылинки золота и вольфрама вместе с генами продолжают полет, пробивая до десяти слоев клеток… Пройдет какое-то время, и гены, встроившись в наследственный аппарат животного, запустят процесс выработки нужных белков».
«Метод можно использовать в разных целях, – убежден Зеленин. – Например, для лечения наследственных болезней, когда собственные гены больного не обеспечивают выработку нужных организму веществ. Для введения «лечебных» генов в раковые клетки или в раны, чтобы они быстрее заживали. Эта идея, кстати, очень заинтересовала американских военных. Наконец, метод будет незаменим для безопасной и высокоэффективной вакцинации».
Как известно, любая вакцина – это белок. Вакцина, попадая в организм, вызывает естественный иммунный ответ – образование защитных антител. Таким образом, организм получает прививку от потенциальных болезней. Однако белок очень трудно очистить от примесей. Поэтому нередки случаи, когда после прививок возникают аллергические реакции. Другое дело выстрел золотой пулей. В организм сразу вводится необходимый ген. Он быстро запускает процесс производства антител естественным путем.
А не опасен ли такой способ вакцинации? «Однажды в ходе эксперимента я случайно подставил под ружье руку, – рассказывает Виктор Колесников. – Ощущение легкого ожога или ссадины. Но следов на коже не осталось».
Изобретатель продолжает совершенствовать конструкцию своего прибора. По прикидкам Колесникова, в серийном производстве российское «генное ружье» должно стоить в десять раз меньше, чем американское. Последнее «тянет» на 30000 долларов.
СООРУЖЕНИЯ
Плотины
Гидроэлектростанция (ГЭС) – это комплекс сложных гидротехнических сооружений и оборудования. Его назначение – преобразовывать энергию потока воды в электрическую энергию. Гидравлическая турбина – главный двигатель на ГЭС. С ее помощью энергия воды, движущейся под напором, превращается в механическую энергию вращения, которая затем, благодаря электрическому генератору, преобразуется в электрическую энергию.
Важнейшее гидротехническое сооружение – плотина. Строится она поперек реки от берега до берега и перекрывает русло реки, что препятствует свободному стоку ее вод. Перегородив реку, плотина с одной своей стороны удерживает воду на более высоком уровне, чем с другой, создавая перепад в уровнях и увеличивая тем самым ее энергию. Ведь энергия падающей воды намного больше, чем энергия спокойно текущей воды. Плотины строят для использования водной энергии и производства электроэнергии, для задержания паводковых вод (орошение полей), для водоснабжения крупных городов, улучшения судоходства по рекам. Плотины бывают глухие, ни при каких условиях не пропускающие воду с высокого уровня на нижний, и водосливные, допускающие перелив воды через гребень плотины.
Плотина, которая является частью гидроэлектростанции, – водосливная. В ее теле – водопропускные отверстия, через которые вода с верхнего уровня сбрасывается в нижний. Падающая вода приводит во вращение гидравлические турбины – главные двигатели ГЭС, вырабатывающие электроэнергию.
Высота перепада (как говорят специалисты – напора), создаваемого плотиной, определяется требованиями энергетики, ведь энергия, вырабатываемая ГЭС, зависит не только от количества пропускаемой плотиной воды, но и от высоты, с которой она сбрасывается.
Высоту плотины определяет строительный материал, из которого ее сооружают. Плотины бывают земляные, каменные, каменно-земляные, бетонные и железобетонные.
Наиболее распространены среди средних и крупных плотин бетонные и железобетонные. По конструкции они подразделяются на массивные (гравитационные), арочные и гравитационно-арочные. Массивные плотины противостоят силе давления воды собственным весом. Арочные плотины строятся криволинейными, благодаря этому они передают нагрузку со стороны водохранилища на скалистые берега. Арочно-гравитационные плотины противостоят нагрузке и собственным весом, и упором на берега.
Самые древние плотины были обнаружены в Иерусалиме и у Джавы в Иордании. Эти земляные дамбы с каменной облицовкой построили еще в 3200 году до нашей эры.
Сегодня самые высокие плотины в мире находятся на территории бывшего СССР: высота плотины Ингурской ГЭС – 271,5 метров, Токтогульской ГЭС – 215 метров, Саяно-Шушенской ГЭС – 245 метров. Самая высокая в мире плотина Нурекской ГЭС – 310 метров.
Саяно-Шушенская плотина – самая мощная в мире. Она рассчитана на нагрузку 18 миллионов тонн от водохранилища.
Самая высокая плотина в Африке построена в 1971 году в Египте у города Асуан. Эта плотина (Садд-эль-Али) позволила установить контроль над ежегодным половодьем Нила. За счет строительства плотины стало возможным возделывать больше земли. Хотя тут же возникли другие проблемы. Так, например, изменился состав почвы вокруг дельты Нила за счет повышенного содержания соли в воде и перемены климата в этом регионе.
Асуан – город на восточном берегу Нила. Он расположен в 966 километрах к югу от Каира. Плотина находится в 13 километраж вверх по течению, к югу от Асуана. Примерно в шести километрах вниз по течению находится старая Асуанская плотина, которая была закончена в 1902 году. В те времена это была самая большая плотина мира, и арабы называли ее Эль-Садд.
Высота новой Асуанской плотины составила 111 метров, длина – 3,8 километра. В основании она по ширине равна 975 метрам и сужается к верхнему краю до 40 метров.
На строительство плотины пошло такое количество камней, песка, глины и бетона, что из этого материала можно было бы соорудить целых семнадцать пирамид Хеопса.
Поверх плотины пустили четырехполосную дорогу. Канал на восточной стороне плотины приводит в движение турбины гидроэлектростанции. Образовавшийся гигантский водный резервуар получил имя президента Египта Насера. Это одно из самых больших искусственных озер мира. Оно занимает площадь 5244 квадратных километра и простирается на 510 километров к югу, через Нубию к Судану.
Плотину спроектировали в Германии, а построили с помощью Советского Союза. Сооружение ее стоило жизни 451 человеку. Из-за ее строительства потеряли жилище 60000 нубийцев и жителей Судана. Они вынуждены были переселиться в другие места. Воды искусственного озера поглотили многочисленные древние памятники. Лишь самые важные из них были спасены благодаря беспримерной акции ЮНЕСКО. Так, скальные храмы Абу-Симбела близ границы Египта и Судана были вырублены и перенесены в безопасное место.
Самая мощная в мире гидроэлектростанция находится в Южной Америке. 13 октября 1982 года в Бразилии было завершено сооружение плотины Итайпу, которая сумела обуздать бурные воды реки Парана, или, как ее еще называют, – «Матери моря». Впервые в мире на столь могучей реке удалось реализовать уникальную гидротехническую операцию. На дно реки опустили двенадцать огромных ворот, закрывающихся с помощью гидравлики. На всю операцию ушло ровно восемь минут. Затем в течение двух недель воды реки поднимались, остановленные гигантской бетонной стеной, до запланированной отметки 100 метров. С этой высоты начался сброс воды по специальному каналу, достигнув вскоре планового уровня – 60000 кубометров в час.
В настоящее время в Бразилии разработан грандиозный план сооружения на реке Паране и ее притоках целой системы гидроэлектростанций. Всего он насчитывает более тридцати проектов, из которых часть находится еще в стадии подготовки, а часть – уже в стадии строительства. Реализация плана позволит производить 25 миллионов киловатт электроэнергии, не считая того, что вырабатывает уже Итайпу. Генераторы энергоблока гидроэлектростанции самые мощные в мире, каждый из них производит 700000 киловатт. Общая мощность гидроэлектростанции оценивается в 12,6 миллиона киловатт.
Проект Итайпу зародился еще до нефтяного кризиса 1973 года. Последний лишь укрепил намерения бразильского правительства полнее использовать необъятные энергоресурсы страны. Эксплуатацию гидроэлектростанции ведет компания «Итайпу-Бинасионал», созданная в 1973 году. Она принадлежит Бразилии и Парагваю, странам, делящим между собой произведенную электроэнергию. Название «Итайпу» означает буквально «Поющий камень» и поэтически передает шум воды, перекатывающейся через каменистые пороги.
Стоимость электростанции – одиннадцать миллиардов долларов. На ее строительстве работало 28000 рабочих. Гигантская бетонная плотина, которая в пять раз больше Асуанской, установлена в двадцати километрах к северу от города Фос-ду-Игуасу. Ее длина – почти 8 километров, высота – 196 метров, ширина – 400 метров. Для возведения этого грандиозного сооружения понадобилось отвести реку по двухкилометровому каналу шириной 150 метров, пробитому в скалах. После того как реку отвели, потребовалось время на высыхание русла, так что строительство плотины было начато только в 1979 году.
Преградив течение реки, плотина образовала искусственное озеро площадью 1340 квадратных километров. Перед затоплением этого района отсюда были вывезены все сколько-нибудь значительные археологические памятники – всего около трехсот. Уже после затопления в районе водохранилища была проведена реадаптация многих видов животных, обитавших здесь до затопления. Кроме того, по берегам искусственного озера было высажено 20 миллионов деревьев.
Судоходные каналы
В местах многих древних волоков проложены каналы – искусственные реки, которые намного сокращают длину водных путей, позволяя судам быстро переходить из одной реки в другую (например, Волго-Донской канал, соединивший Волгу с Доном). Обводные каналы позволяют кораблям миновать, обойти при помощи шлюзов плотины гидроэлектростанций.
Шлюз – это лифт для судов. Если река перегорожена плотиной, то уровень воды перед ней, в водохранилище, гораздо выше, чем в реке ниже по течению. Чтобы подняться до уровня водохранилища, судно, идущее с низовьев, заходит в шлюз – часть канала, отгороженную двумя водонепроницаемыми воротами – верхними и нижними. Как только судно вошло в шлюз, нижние ворота закрываются. Затем открываются верхние ворота. Начинается заполнение шлюза, и судно поднимается до необходимого уровня. Через открывшиеся верхние ворота судно выходит в водохранилище и продолжает путь. Спуск судов, идущих вниз по реке, осуществляется в обратном порядке.
С недавних пор вместо шлюзов на некоторых реках стали использовать судоподъемники. Судно попадает в камеру такого подъемника точно так же, как в шлюз, и вместе с камерой поднимается или опускается. А потом вся камера передвигается по рельсовым путям на другую сторону плотины, где судно выпускают в реку.
Самой большой морской шлюз «Берендрехт» находится в Бельгии. Он соединяет реку Шельду с доками Антверпена. Шлюз открыт в апреле 1989 года, длина его камеры – 500 метров, ширина – 68 метров, глубина на пороге шлюза – 13,5 метра, вес каждых из четырех раздвижных ворот (затворов) – 1500 тонн. Строительство шлюза обошлось примерно в 12 миллиардов бельгийских франков. В Бельгии находится и шлюз с самым большим подъемом с одного уровня реки на другой – 68,58 метров. Это шлюзовой подъемник у Ронкьера на канале Шарлеруа, в Брюсселе. Два 236-колесных кессона грузоподъемностью 1370 тонн каждый по наклонной плоскости преодолевают расстояние в 1432 метра в течение 22 минут. Самые глубокий шлюз – «Запорожье» на Днепровско-Бугском канале, в Белоруссии. Он может поднимать и опускать баржи на высоту 39,2 метра.
Остатки самых древних каналов в мире были обнаружены недалеко от Мандали в Ираке. Они датированы археологами IV тысячелетием до нашей эры.
Сегодня самая длинная система каналов в мире – Волго-Балтийский водный путь (бывшая Мариинская водная система). Она построена в начале XIX века и соединяет Волгу с Балтийским морем, а через Беломорско-Балтийский канал – с Белым морем. В 1964 году после коренной реконструкции эта система стала доступна для судов водоизмещением 5 тысяч тонн. Длина пути – 1100 километров, а глубина – не менее четырех метров.
Самым оживленным является Кильский канал, соединяющий Северное и Балтийское моря в Западной Германии. В 1987 году по нему было пропущено 45000 судов. Второе место занимает Суэцкий канал – более 20000 судов в год; третье – Панамский канал – более 10000 судов в год. По грузоподъемности судов на первом месте стоит Суэцкий канал, по нему проходят суда общим водоизмещением почти 440 миллионов тонн.
Открытие Суэцкого канала состоялось в ноябре 1869 года. Впрочем, идея соединить Средиземное море с Красным была не нова. Уже в VI веке до нашей эры египетский царь Нехо лелеял подобный план. Но попытка осуществить его стоила жизни 120000 рабам. В итоге он отказался от намерения проложить этот водный путь. Около 500 года до нашей эры, после завоевания Египта персами, царь Дарий возобновил проект и засвидетельствовал в надписи на плите, что канал он завершил. Греческий историк Геродот в V веке до нашей эры сообщал, что этот канал соединял два моря не по прямой и, чтобы пройти его, кораблю требовалось четыре дня. Он был достаточно широк для того, чтобы две лодки с тремя веслами на каждой могли плыть рядом. Вероятно, канал Дария проходил восточнее Нила и, как и сегодняшний водный путь, пересекал озеро. При римлянах канал был усовершенствован, но потом снова обмелел. Последующие поколения не поднялись до деяний своих предков. Планы времен венецианского государства, Людовика XIV и Наполеона, так никогда и не осуществились.
Инженеры Наполеона заложили в проект многочисленные шлюзы, потому что, по их подсчетам, разница в уровне вод между Средиземным и Красным морями составляла 10 метров. Но и после того как выяснилось, что это неверно, потребовалось еще много времени для осуществления идеи.
Канал был спланирован французским дипломатом графом Фердинандом де Лессепсом. В 1854 году он с трудом добился согласия вице-президента Мохаммеда Саида-паши (Египет в то время был частью Османской империи) и получил право приступить к строительным работам. Канал, начинаясь севернее Суэца, должен был по прямой линии пересечь озеро Тимсах и Горькие озера и достичь Средиземного моря. Де Лессепс сумел заручиться поддержкой вице-президента. Ему же удалось привлечь ряд французских акционеров, которые инвестировали средства в строительство Суэцкого канала. Удивительно, но британцы, больше других выигрывавшие от сокращения пути в Индию (канал сокращал расстояние между Лондоном и Бомбеем на 7343 километра), не купили ни одной акции. Более того, британское правительство сделало все, чтобы воспрепятствовать этому проекту. Оно осуждало его как физически невыполнимый, слишком дорогой и нерентабельный.
Строительство канала началось 25 апреля 1859 года. С этого дня и вплоть до состоявшейся через десять лет церемонии открытия работами руководил сам де Лессепс. Пришлось преодолеть множество трудностей. Вначале на строительстве работали каторжники. Позднее процесс был механизирован, а условия труда улучшены настолько, что стали привлекательными и для европейской рабочей силы. На строительстве канала работали 8213 человек и 368 верблюдов.
Длина готового канала была равна 161,9 километров от маяка в Порт-Саиде до Суэц-Роудс, глубина – 8 метрам, а ширина – 60 метрам. Через каждые 10 километров была вырыта запасная бухта. Сегодня ширина канала составляет 200 метров, и нет ни одного места, где глубина была бы менее 15 метров. По нему может пройти полностью загруженный нефтяной танкер двенадцатиметровой осадки.
Де Лессепс был прекрасным журналистом и менеджером. Он организовал пышную церемонию открытия. Для 6000 гостей были приглашены 500 поваров и 1000 лакеев. Знаменитому композитору Джузеппе Верди заказали оперу для торжественного открытия канала и нового итальянского театра в Каире. Так была создана «Аида».
С именем Фердинанда де Лессепса связано строительство другого известнейшего канала – Панамского. Увы, первая попытка вырыть этот канал окончилась неудачей. Де Лессепс учредил новую компанию. Та в 1881 году обязалась взять на себя этот труд и выкопать от океана до океана русло глубиной 9,1 метра и шириной 22 метра на уровне моря. Увы, трудности оказались непреодолимыми. Главной причиной неудачи стал не твердый скальный грунт, а повальные заболевания желтухой и малярией. Стройка превратилась в гибельную ловушку и пользовалась дурной славой. Есть данные о том, что там погибло около 20000 человек. Компания обанкротилась в 1889 году.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37
|
|