Современная электронная библиотека ModernLib.Net

Планеты и жизнь

ModernLib.Net / Мухин Лев / Планеты и жизнь - Чтение (стр. 8)
Автор: Мухин Лев
Жанр:

 

 


      Здесь мы подходим к наиболее трудному и принципиальному вопросу проблеме эволюции кода.
      Ясно, что механизм такой сложности не мог возникнуть скачком. Мы можем, конечно, привлечь к решению проблемы происхождения жизни и религиозные аргументы. Но, если отбросить наиболее легкий путь "решения" задачи, связанный с витализмом, то видно, какая громадная экспериментальная работа предстоит, чтобы найти подходы к решению этой задачи.
      Я хочу подчеркнуть, что здесь нужны именно эксперименты. Гипотез об эволюции кода предостаточно, и, как говорил Крик, следовало бы установить ежегодную премию за самую плохую статью по поводу эволюции генетического аппарата. Здесь тот самый случай, когда фактических экспериментальных данных явно не хватает, а идей более чем достаточно. "Поэтому я надеюсь,продолжает Крик, - что всякий, кто выдвинет детально разработанную теорию происхождения генетического кода, постарается сделать это так, чтобы теория в той или иной форме поддавалась экспериментальной проверке.
      Идеи сами по себе ничего нам не дадут, если мы не сумеем получить новые фактические данные либо путем изучения механизмов, имеющихся у современных живых форм, либо путем прямого эксперимента".
      Сейчас уже очевидно, что абиогенно синтезировать можно очень многие молекулы клетки, кроме белков и днк.
      А вот, когда удастся получить в лаборатории информацию из хаоса на уровне ДНК или РНК, тогда и начнется новый этап в биологии. Решение именно этого этапа даст нам ключ к тайне проблемы возникновения жизни.
      И здесь тем более интересно ознакомиться с глубоким анализом проблемы возникновения и эволюции кода, предпринятым Ф. Криком и Л. Оргелом еще в 1968 году.
      Два слова о блистательном специалисте в области как предбиологической химии, так и биохимии Л. Оргеле. Во время Бюраканской конференции зашел разговор о модном тогда "индексе интеллектуальности". При этом Оргел смутился, а остальные участники беседы дружно рассмеялись. Я не мог понять, в чем дело, пока мне не объяснили, что у Оргела один из самых низких индексов во всей Америке. Я спросил Оргела, не ошибка ли это?
      Он с грустью сказал, что нет. Тогда мы все вместе дружно возмутились несовершенством метода оценки творческого потенциала ученого.
      Работы Крика и Оргела особенно отчетливо демонстрируют неразрывную связь проблемы кода и проблемы возникновения жизни.
      Рассматривая структуру кода, Крик в первую очередь подчеркивает основное свойство кода, не зависящее ни от каких второстепенных деталей: его практическую универсальность.
      Для объяснения универсальности кода Крик рассмотрел две гипотезы, хотя возможны различные промежуточные случаи.
      На первый взгляд наиболее естественной выглядит так называемая теория стереохимического соответствия.
      Согласно этой теории аминокислота имеет химическое "сродство" к соответствующему кодону молекулы матричной РНК. Были проделаны работы с использованием пространственных моделей молекул для подтверждения этой гипотезы. Однако Крик считает эти попытки малоубедительными, так как в построении моделей были допущены ошибки.
      Более привлекательной выглядит идея о стереохимическом соответствии между аминокислотой и антикодоном на молекуле транспортной РНК- Следует отметить, что экспериментальные данные здесь очень и очень противоречивы, и на основании этого Крик делает вывод, что стереохимическое соответствие не является общим механизмом в процессе трансляции, а наблюдается в нескольких особых случаях. По крайней мере, в сегодняшнем механизме матричного синтеза стереохимическое соответствие между аминокислотой и антикодоном тРНК не играет заметной роли, хотя для некоторых аминокислот оно могло иметь определенное значение в прошлом.
      При обсуждении возможных примитивных механизмов синтеза белка прежде всего возникает вопрос о роли неинформационных, транспортной и рибосомальной, РНК и актиЁизирующих ферментов.
      Какова же их роль?
      Крик предполагает, что транспортные РНК и рибосомальная РНК играли центральную роль в примитивном механизме синтеза белка. Прарибосомы согласно этой гипотезе состояли полностью из РНК- Синтез белка мог вначале идти не столь точно, как сейчас.
      Однако эта схема также не решает вопроса с происхождением активизующих ферментов (синтетаз и репликаз), хотя можно предположить, что именно на этой стадии стереохимическое соответствие имело существенное значение. Можно также предположить, что примитивные транспортные РНК являлись собственными активирующими ферментами, и первичная-машина синтеза работала только на основе нуклеиновых кислот.
      Однако стоит отметить, что вопрос о происхождении еамих нуклеиновых кислот с нужной для синтеза белка последовательностью оснований и судьбе образовавшихся белков в схеме Крика остается открытым, хотя ученый считает возможным случайное образование таких последовательностей.
      Что же касается самого кода, то трудно предположить, что код с самого начала не был триплетным. Ведь в этом случае любые изменения в размере кодона делают всю предыдущую информацию бессмысленной. Более правдоподобна идея о том, что в примитивном коде читались лишь два первых основания из триплета и понастоящему кодировались только несколько аминокислот, по-видимому, глицин, аланин, серии и аспарагиновая кислота. Можно предположить также, что кодоны работали на группы аминокислот.
      В плане этой проблемы исключительно важен вопрос р числе оснований в примитивных нуклеиновых кислотах.
      Кряк, так же как и Оргел, рассматривает примитивную прануклеиновую кислоту, состоящую лишь из двух оснований.
      Центральная идея заключается в том, что кодируется лишь несколько аминокислот, один кодон используется для кодирования группы аминокислот. Кодон для аланина, например, мог кодировать также глицин и так далее.
      На этой стадии мог быть создан не очень хороший белок, поскольку в белке использовались не все 20 аминокислот. В этой схеме эволюция состояла в увеличении точности и включении в белок все новых и новых аминокислот.
      Разбирая вопрос о развити генетического аппарата, Оргел также предполагает существование некоторой эволюционной схемы в условиях примитивной Земли. Это соображение само по себе могло показаться тривиальным, если бы не существовало так называемой теории направленной панспермии, о которой мы уже упоминали в начале книги.
      Оргел рассматривает два направления в эволюции живого: жизнь без нуклеиновых кислот и жизнь без белка.
      Следуя Оргелу, попытаемся рассмотреть обе возможности, хотя с эволюционной точки зрения такое разделение выглядит маловероятным.
      Образование полипептидов в предбиологических условиях - процесс более "выгодный", нежели синтез полинуклеотидов. Это подтверждено многими лабораторными экспериментами и обусловлено, в частности, тем, что сахара, входящие в нуклеиновые кислоты, менее стабильны в водном растворе, чем аминокислоты, что затрудняет их концентрирование.
      Таким образом, небиологическая полимеризация аминокислот, по-видимому, предшествовала появлению нуклеиновых кислот.
      Именно на основании этого предположения Оргел строит модель жизни без нуклеиновых кислот, хотя, в общем-то, совершенно ясно, что в первичном бульоне было "все" и анализ таких крайних случаев, на мой взгляд, представляет только чисто умозрительный интерес.
      Абиотически синтезированные полимеры аминокислот, по мнению Оргела, не могли достичь высокой степени специализации и организации и проявить свойства ферментативной активности. Репликация с помощью белков не могла быть точной, и для построения каждого "сорта" цепи аминокислот требовался новый фермент.
      Это не совсем верное предположение, потому что вполне было возможно возникновение неспецифического катализа, что снимает основные возражения Оргела против чисто белковой жизни. Во всяком случае, мысль Оргела о неспособности чисто полипептидной системы к направленной эволюции следует считать справедливой, поскольку нет структурной основы для точной репликации.
      В качестве второй возможности Оргел предлагает модель жизни, основанной на нуклеиновых кислотах без "белкового кода". При этом он указывает на необходимость анализа двух ключевых процессов: репликации без белков (ферментов) и эволюции без белков.
      Комплементарная репликация постулируется Оргелом как свойство внутреннее, присущее молекулам нуклеиновых кислот и зависящее только от их структуры. Доказательство этого положения можно найти в физико-химических свойствах оснований нуклеиновых кислот и их производных - правиле Чаргаффа. Сравнительно недавно биохимики продемонстрировали, что полинуклеотидная цепочка работает как матрица для ориентации мононуклеотидов.
      Было показано также, что направленный матричный синтез нуклеотидов идет в водном растворе с использованием конденсирующего агента (карбодиимид).
      Но здесь очень важно отметить, что во всех опытах по матричному синтезу образуются не только природные изомеры полинуклеотидов. В значительных количествах присутствуют изомеры с неприродными химическими связями, которые никогда не встречаются в живых клетках.
      Постулируя нуклеиновую схему, легко получить реплицирующиеся системы, используя, например, полиматрицу аденин-цитозин, которая будет направлять синтез полинуклеотида урацил-гуанин в соответствии с правилом Чаргаффа, и наоборот.
      Очень интересен вопрос о том, какого уровня организации может достичь система без синтеза белка и соответственно репликации нуклеиновых кислот.
      Здесь Оргел выдвигает ряд интересных идей. Он подчеркивает, что одноцепочечные нуклеиновые кислоты, имея определенную пространственную структуру, могли бы обладать каталитическими функциями. С другой стороны, кажется весьма вероятным, что полинуклеотидные цепи могли осуществлять некоторый отбор среди аминокислот, образуя с ними стереоспецифические комплексы. Но это тоже своего рода тупик, потому что без белков все-таки жить нельзя.
      Таким образом, возможность протеиновой жизни ограничена невозможностью достижения уровня генетического механизма, а нуклеиновая жизнь ограничена собственной химической инертностью.
      Центральная проблема - возникновение кода, в котором тесно связаны генетический нуклеиновый и функциональный белковый аппараты клетки.
      Оргел указывает па очень интересную возможность пути возникновения эволюционирующей системы. Если гипотетический полипептид, состоящий из аминокислот.. глицин, аланин, глицин, аланин... и так далее, ускоряет матричную репликацию полимеров, содержащих, например, аденин и урацил, то система, содержащая полиматрицу аденин-урацил, аминокислоты и транспортные РНК, способна развиваться, могут образовываться новые полипептиды.
      Можно, по-видимому, разработать немало модификаций такой схемы, но прежде всего хочется сделать небольшое резюме. Основная ценность работ Крика и Оргела состоит в том, что ни тот, ни другой не оставляют места необоснованному оптимизму в решении проблемы происхождения жизни. Грандиозная трудность проблемы возникновения кода и его эволюции исключительно наглядно и убедительно продемонстрирована в этих работах.
      Именно удивительное свойство универсальности кода и приводит нас к выводу, что современный механизм наследственности сформировался за поразительно короткий промежуток времени (по сравнению с "возрастом" живых систем) - менее одного миллиарда лет. Этот факт сильно затрудняет решение проблемы происхождения жизни.
      Где механизмы-предшественники? Их, к сожалению, нет.
      Вот если бы удалось показать возможность прямого синтеза белка на ДНК-матрице, это было бы огромным достижением. Мы смогли бы тогда получить сведения об эволюционном развитии современного матричного синтеза белка. Но сегодня существуют, к сожалению, лишь косвенные данные о возможности прямого синтеза белка на органических матрицах.
      Как бы то ни было, сейчас уже видно несколько направлений для работ в области молекулярной эволюции.
      Можно было бы, скажем, посмотреть, как ведут себя и как взаимодействуют короткие полипептидные и полинуклеотидные цепочки.
      Возьмем, к примеру, декапептид - пептид, состоящий из 10 аминокислотных остатков. Предположим дополнительно, что сначала при построении пептидов использовалось не двадцать, а всего лишь семь аминокислот.
      Можно с полной уверенностью сказать, что в смеси, содержащей семь аминокислот, будет образовываться не 7^10 декапептидов с равной вероятностью каждый, а гораздо меньше. Хотя бы потому, например, что одной аминокислоты окажется больше, чем другой. В таком случае синтез декапептида пойдет уже не только по вероятностным законам, но будет определяться и такими факторами, как концентрация аминокислот в реакционной смеси, кислотность среды и так далее. И может случиться, в этой смеси будут синтезироваться не миллиарды, а только десятки разных типов декапептидов, что уже вполне поддается экспериментальной проверке.
      И вот тут-то можно наткнуться на очень интересные вещи: декапептид вполне может обладать каталитической активностью.
      Предположим, что он способствует полимеризации нуклеотидов, то есть работает как синтетаза. Тогда нам удастся запустить механизм репликации. Эта пока спекулятивная идея, конечно же, нуждается в проверке. Отметим, что подобные опыты уже ведутся.
      Особенно внушительные экспериментальные подходы были разработаны в лаборатории того же Фокса. Не будем сейчас обращать внимания на то, в какой мере эти опыты соответствуют условиям примитивной Земли, отметим, что они имеют исключительное значение для изучения проблемы происхождения жизни.
      Фоксу удалось установить, что уже на стадии термического синтеза аминокислот возникает исключительно важное свойство органических молекул: свойство самоупорядоченности или самоорганизации, которое в данном конкретном случае (синтез протеноида) проявляется в том, что соотношение аминокислот в исходной реакционной смеси сильно отличается от аминокислотного состава синтезированного полимера. Это свидетельствует, что включение аминокислот в полимер происходит не статистически и существует некоторая избирательность, являющаяся прямым следствием химических свойств самих аминокислот.
      Еще раз напомним, что полученные полимеры обладают рядом свойств, которые указывают на их известную общность с природными белками. Это в первую очередь качественный и количественный аминокислотный состав протеиноида, в общем-то идентичный среднему аминокислотному составу белка; молекулярные веса, соответствующие молекулярным весам небольших белковых молекул; растворимость, схожая с растворимостью белков, и ряд других свойств, среди которых, конечно же, одно из основных - каталитическая активность.
      Правда, каталитическая активность протеиноидов весьма слаба, однако это свойство могло бы закрепляться в процессах молекулярного отбора. Наиболее важным свойством протеиноидов является их способность образовывать в растворе морфологические единицы, протеиноидные микросферы. Нужно только отдавать себе полный отчет в том, что в протеиноидных микросферах отсутствует направленный синтез биополимеров и кодирующая система. Поэтому их, бесспорно, нельзя считать живыми системами.
      Исключительную важность представляют эксперименты, в которых делаются попытки моделировать начальные пути биосинтеза белка.
      Фокс исследовал взаимодействие полиаминокислот и мононуклеотидов. В процессе этих опытов удалось установить, что полиаргинин по-разному взаимодействует с аденином и урацилом. Точно так же и полилизин поразному реагировал на различные типы нуклеиновых оснований.
      Ну чем не начало кодирования? Конечно, на самом примитивном уровне.
      В лаборатории Фокса изучалось и взаимодействие термически синтезированных протеиноидов, образующих морфологические структуры с различными полинуклеотидами. В результате этих исследований было установлено, что протеиноид определенного типа имеет различное химическое сродство к разным полинуклеотидам.
      Они объединились, и вновь образованные структуры можно было бы рассматривать как предшественники рибосом, прарибосомы.
      Данные некоторых опытов, проведенных в лаборатории Фокса, свидетельствуют о возможном дорибосомальном механизме трансляции.
      Конечно, эти эксперименты нужно расценивать как первые шаги в новой области добиологического синтеза - моделировании динамических процессов. Основная трудность здесь в том, что в лабораторных экспериментах концентрации реагентов могут очень сильно отличаться от реальных природных концентраций, соответствующих геологическим и геохимическим условиям, которые существовали на примитивной Земле около 4 миллиардов лет назад. Пока именно это обстоятельство кажется наиболее уязвимым местом в изложенных выше результатах.
      Тем не менее мне думается, что именно теоретическое и экспериментальное моделирование динамических клеточных процессов - самое важное направление в работах по проблеме происхождения жизни.
      Вряд ли кто-нибудь, даже самый большой оптимист, считает, что в ближайшее время удастся синтезировать живой организм, однако мне кажется, что именно усилия в изучении эволюции механизгов репликации и синтеза уже в ближайшее время, несомненно, принесут большие открытия.
      Попробуем немного пофантазировать и представить себе гипотетическую последовательность событий, которые могли иметь место на примитивной Земле после того, как сформировалось достаточное количество предшественников белков.
      Исходная посылка состоит в том, что до возникновения нуклеотидов и полинуклеотидов шла продолжительная эволюция пептидов и полипептидов Бесспорно, что параллельно происходило образование других классов биологически важных соединений, в том числе предшественников нуклеиновых кислот. Однако в любой момент времени концентрация полипептидов была заметно больше концентрации полинуклеотидов.
      Здесь мне хотелось бы обратить внимание на хорошо известный биологам механизм, не требующий в принципе участия нуклеиновых кислот, - механизм самосборки. Вполне можно предположить, что на ранних этапах эволюции самосборка происходила автономно Характерным примером является самосборка низкомолекулярного белка грамицидина, не требующая генетического контроля.
      Сейчас есть все основания считать, что процесс самосборки был определяющим при образовании примитивных клеточных мембран, которые могли состоять из полипептидов и предшественников липидов. На этой ступени эволюции появились первые морфологические единицы, которые еще нельзя назвать клетками, - это были просто микросферы. Но с возникновением таких микросфер стала возможна дальнейшая эволюция биополимеров Обладая большой концентрационной способностью, микросферы резко ускорили ход химических реакций Нельзя исключить, что на примитивных мембранах начались процессы синтеза полинуклеотидов, которые катализировались полипептидами, входящими как составные части в примитивную мембрану.
      Таким образом, на этом этапе мог бы осуществляться процесс протобелок протонуклеиновая кислота.
      С появлением первых матриц мог начаться в том или ином виде прямой матричный синтез полипептидов. Достаточно было появления полипептида, который умел хотя бы немного "помогать" процессу репликации, и тогда сразу же мог возникнуть другой процесс процесс снятия копий - начало протожизни.
      Эти предклетки должны были обладать достаточной устойчивостью к воздействию внешних условий Они должны были иметь свое и весьма продолжительное "время жизни".
      Процесс репликации мог происходить и без участия ферментов, просто за счет изменения параметров среды, например, изменения температуры или кислотности раствора.
      Схемы эволюции можно представить следующим образом: сначала был первичный океан. Затем под воздействием источников энергии на атмосферу и переноса продуктов реакций образовался разбавленный раствор мономеров. Потом в результате медленной эволюции возникла жизнь. Это классическая схема зарождения жизни в океане.
      Возможен и другой вариант, связанный, например, с районами активной вулканической деятельности. В этом случае последовательность событий можно представить так. В некоторых локальных областях образуется концентрированный раствор мономеров (аминокислот и так далее). Мы уже видели, что вполне возможны реакции полимеризации этих мономеров. Следующим этапом является концентрирование полимеров на минералах. Это дает возможность для образования протоклеток и "включения" механизмов самосборки. Затем происходит дополнительное концентрирование органического материала в протоклетках.
      Именно на этой стадии возникает примитивный прямой матричный механизм. Природа слепа, она работает методом проб и ошибок. С того момента, как она "нашла" прямое матричное копирование, могли пройти еще многие миллионы лет, прежде чем возник современный вариант трансляционного механизма.
      В рамках этой схемы тоже очень трудно представить себе, как могли возникнуть трансляция и код и почему код оставался неизменным в течение 3,5 миллиарда лет.
      "Глядя" на генетический код, невольно думаешь о том, что в какой-то момент времени природа получила удовлетворение от своей работы и сочла этот этап своей деятельности завершенным.
      Стратегическое направление исследований - изучение возникновения динамической организации - сейчас на начальной стадии. Слишком много сегодня нерешенных вопросов в этой области. Полезно их перечислить.
      Как возникло кодовое соответствие между полинуклеотидами и полипептидами?
      Как возникла транскрипция и трансляционный аппарат?
      Как возник информационный поток между полимерами?
      Как возникло сопряжение механизмов транскрипции и трансляции?
      В биологии XX века произошла революция: родилась новая наука молекулярная биология.
      Бесспорно, начало этой революции следует приурочить к определению структуры ДНК. Крик назвал это событие "концом начала". Когда устанавливали структуру генетического кода, Крик сказал, что это - "начало конца". Он имел здесь в виду, что главное в молекулярной биологии уже сделано. С этим вряд ли можно согласиться.
      Величайшая загадка молекулярной эволюции еще ждет своего решения. Сегодняшний день в проблеме происхождения жизни - начало начал.
      Глава IX
      ПРАВОЕ И ЛЕВОЕ
      В нашем рассказе о живых клетках до сих пор не говорилось ни слова еще об одном удивительном свойстве биоорганических молекул - об их оптической активности.
      Пропустим луч солнечного света через кристалл исландского шпата разновидность широко распространенного минерала кальцита. Луч расщепится на две части, два луча. В чем здесь дело?
      Обычный белый свет - это набор электромагнитных волн, имеющих разную длину и колеблющихся в различных плоскостях. Даже если с помощью фильтров или специальных источников получить свет определенной длины волны монохроматический свет, то и он будет состоять из волн, колебания которых происходят в различных плоскостях.
      Кристалл исландского шпата имеет такое строение, что при прохождении через него световой волны образуются два световых луча - "обыкновенный" и "необыкновенный"; колеблющееся электрическое поле одного луча находится в плоскости, перпендикулярной плоскости другого луча.
      Физики говорят, что эти лучи поляризованы в двух взаимно перпендикулярных плоскостях.
      Если определенным образом разрезать, а потом склеить два кристалла исландского шпата, мы получим поляризатор света, который называется призмой Николя.
      Она пропускает только "необыкновенный" луч плоскополяризованного света.
      Действие призмы Николя можно понять из следующей аналогии. Если попытаться вложить столовый нож в закрытую книгу, это удастся сделать лишь при условии, что нож повернут в определенной плоскости. Книга - призма, нож - "необыкновенный" луч.
      Явления, о которых мы сейчас говорили, были замечены учеными в самом начале XIX века.
      Началось интенсивное исследование свойств плоскополяризованного света. В 1811 году французский физик Л. Араго обнаружил интересное явление. Он пропускал поляризованный свет через кристаллы кварца. Оказалось, что кристалл кварца способен поворачивать плоскость поляризации направленного на него светового луча.
      Более того, Ж. Био, работавший вместе с Л. Араго, установил, что одни кристаллы вращают плоскость поляризации влево, а другие вправо. Такие кристаллы получили название энантиоморфных, то есть относящихся друг"к другу как правая и левая руки, зеркально.
      Но Био сделал еще одно важное открытие. В 1815 году он обнаружил оптическую активность (способность вращать плоскость поляризации света) у некоторых природных органических соединений. Он установил, что этим свойством обладают водный раствор тростникового сахара, скипидар, камфара.
      Био прекрасно понимал разницу между оптической активностью кварца и органических соединений. Он подчеркивал, что оптическая активность кварца исчезает при разрушении его кристаллической структуры.
      Для этого вполне достаточно переплавить кристалл.
      Оптическую же активность жидкостей Био связывал со свойствами самих молекул жидкости.
      В 1874 году молодые химики Я. Вант-Гофф и Ж- Ле-Бель установили основополагающее правило.
      Ни одна структура, ни одна молекула не может быть оптически активной, если ее атомы лежат в одной плоскости. Открытие этого правила положило начало стереохимии.
      Необходимо подчеркнуть, что за 13 лет до открытия Вант-Гоффа и Ле-Беля выдающийся русский химик А. Бутлеров, впервые предложивший термин "химическое строение", писал, что важно знать, каким образом каждый атом в молекуле пространственно связан с другими атомами.
      Нужно также сказать, что значительный вклад в изучение оптической активности внес великий Л. Пастер.
      В 1848 году ему впервые удалось разделить смесь двух оптически активных соединений. Естественно, что сама исходная смесь была оптически неактивной. Одна ее часть вращала плоскость поляризации света влево, а другая вправо. Это был раствор винной кислоты, состоящий из двух энантиомерных форм. Одна из них называется d-формой (от латинского слова dextro - правый), другая 1-формой (levo - левый). Такие вещества, абсолютно одинаковые по своим химическим свойствам и отличающиеся только направлением вращения плоскости поляризации света, называются оптическими изомерами, или энантиомерами.
      Пастер, тогда еще молодой человек, ему было всего 19 лет, представил свою работу во Французскую академию наук. Академия попросила Био дать рецензию на открытие Пастера. До этого Био исследовал образец виноградной кислоты и нашел его оптически неактивным.
      Био предоставил Пастеру все требуемые реагенты, и в одной из лабораторий Коллеж де Франс начался знаменитый опыт. Через некоторое время Пастер передал Био кристаллы и сказал, что они будут вращать свет влево. Так оно и произошло. Маститый Био был потрясен.
      Идеи Пастера и легли в основу теории Вант-Гоффа и Ле-Беля. За 14 лет до четкой формулировки основного положения стереохимии, в 1860 году Пастер писал: "Расположены ли атомы правой винной кислоты в направлении витков правой спирали... Или они образуют какую-то другую асимметричную группировку? Мы не можем ответить на эти вопросы. Однако нет никакого сомнения, что расположение атомов является асимметричным и не совместимым со своим зеркальным изображением.
      Не менее достоверно и то, что атомы 1-формы кислоты обладают точно противоположным расположением".
      Великий ученый замечательно ясно и точно объяснил загадку оптической активности.
      После работ Пастера, Вант-Гоффа и Ле-Беля биохимиками был установлен поразительный факт. Во всем мире живого, в органических молекулах любой клетки белки построены только из одного типа пространственных изомеров аминокислот, а именно из 1-аминокислот.
      Белки коровы, дерева, дрожжей и даже вирусов состоят из 1-аминокислот.
      Почему? Ведь правые и левые молекулы химически абсолютно одинаковы.
      Они одинаковы, лишь когда дело касается взаимодействия с оптически неактивными веществами. Если же они реагируют с другими правыми и левыми молекулами, проявляются их стереохимические особенности.
      Лауреат Нобелевской премии шведский физик X. Альвен развивает идею существования антимиров, где роль электрона выполняет позитрон, а вместо протона в ядре атома - антипротон. Такой мир, в терминах физики, являлся бы зеркальным отображением нашего мира.
      При соприкосновении они были бы уничтожены, аннигилировали. А в мире живого?
      Этот вопрос был поднят еще в XIX веке, но не физиками или биологами, а автором знаменитой "Алисы в Зазеркалье" Л. Кэрролом. Правда, он известен и как математик. "Может быть, зеркальное молоко не годится для питья", рассуждает Алиса в знаменитой книге.
      Кэррол прав. Если бы мы с вами были построены из белков, в состав которых входили бы не 1-, а d-аминокислоты, внешне ничего бы не переменилось. Возможно, большинство людей писало бы левой рукой, а сердце билось бы справа. И животные и микроорганизмы дышали бы так же, как и сейчас. Но если бы 1-человек стал бы есть d-белки, он очень скоро умер бы от голода, так как d-аминокислоты не сумели бы включиться в состав 1-белкового мира.
      Итак, почему у нас 1-, а не d-мир? Почему и как в результате эволюции произошел отбор только одной формы изомеров молекул?
      В живых системах всегда присутствует только один оптический изомер, в то время как в процессах небиологического синтеза при прочих равных условиях (без использования оптически активных матриц) образуется рацемическая смесь молекул, то есть смесь, состоящая поровну из 1- и d-форм и не вращающая плоскость поляризации, в процессах биосинтеза синтезируются оптически активные соединения. По этому поводу существует целый ряд предположений, и мы остановимся на обзоре лишь некоторых гипотез, представляющих, на наш взгляд, наибольший интерес.
      Лауреат Нобелевской премии известный химик Д. Уолд подчеркивает различие формы у энантиомеров как весьма важное качество для ряда биохимических реакций и обосновывает предположение, что оптическая активность возникла в результате естественного отбора молекул из начальной рацемической смеси.
      Целесообразно, однако, указать сначала на природные источники оптической асимметрии, которые могли бы играть определенную роль в отборе молекул. Так, еще в 1896 году было обнаружено, что оптические изомеры отличаются коэффициентами поглощения поляризованного света. Это явление могло бы в принципе служить механизмом отбора, так как на поверхность Земли попадает некоторое количество поляризованного излучения.

  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11