Производное жесткости клинка и его сопротивляемости стиранию -
сохранение остроты.Наточенный клинок, который используется для резания, рано или поздно утратит свои режущие качества. Естественно, чем позднее, тем лучше. О клинке, который после заточки режет долго, говорят, что он хорошо держит остроту. На практике держание остроты в огромной степени зависит также и от свойств материала, который режут. Нож, который долго не тупится, скажем, при строгании дерева, может проиграть соревнование другому ножу при разрезании картона, и наоборот. Даже форма рукоятки и то, как человек действует ножом (делает ли он резкие движения или плавные), могут в ту или иную сторону повлиять на сохранение ножом остроты.
Какая это сталь?Вот именно, из какой же стали надо делать клинок хорошего ножа? Из очень хорошей? А почему из этой, а не из той? В какой мере от материала клинка зависит качество ножа? Какова оптимальная жесткость клинка?
Я не специалист по технологии металла, но постараюсь в самых общих чертах познакомить читателя с миром стали, из которой делают клинки ножей. Выше я поместил таблицу состава сталей, которые производители фирменных ножей используют чаще всего. Солидные производители - такие как Benchmade, Bцker, CRKT, Gerber, Fдllkniven, Kershaw, SOG, Spyderco и подобные им, считают для себя делом чести давать подробное описание материалов, из которых они выпускают свои ножи.
В основе своей сталь - это сплав
железаи
угля,содержание которого не должно превышать 2 %. Большая доля угля нарушает кристаллическую структуру стали и превращает ее в чугун. Но не всегда. Существуют новейшие технологии спекания (агломерации) смеси мелко размолотых составных частей, позволяющие эту долю увеличивать, сохраняя основные свойства стали. Но чтобы сталь была достаточно жесткой, упругой и выносливой, словом, такой, из которой можно сделать клинок ножа, в ней не должно быть меньше 0,5 % угля. Другие составные части в той или иной мере способны улучшать определенные свойства стали, однако за счет ухудшения других.
Угольповышает жесткость стали, ее выносливость, упругость и сопротивляемость стиранию, но прежде всего он позволяет изменять ее качества в процессе термической обработки. Большее содержание угля, как правило, приводит к понижению коррозиестойкости. Лишнее количество угля в сплаве или неудовлетворительное его размещение в результате неправильной термической обработки может придать чрезмерную хрупкость материалу, иными словами, снизит его ударостойкость и механическую выносливость. По определению, в выплавленной стали не должно быть свыше 2 % угля. При агломерации его может быть несколько больше,
Хромповышает сопротивляемость коррозии. Если же его больше 14 %, сталь относят к категории нержавеющих. Дело в том, что, окисляясь, хром образует на поверхности стали тоненький, но очень плотный защитный слой, который и предотвращает коррозию. Хром увеличивает жесткость стали и ее сопротивляемость стиранию, но также снижает ее упругость, делает ее более хрупкой, чем сталь той же жесткости, но с меньшим содержанием хрома. Высокое содержание хрома затрудняет кузнечную обработку стали; клинки, выкованные из нержавеющей стали, большая редкость.
Кобальтувеличивает жесткость стали, активизирует свойства различных составных элементов сталей с более сложной структурой.
Марганец- в небольших количествах закрепляет изменения, происходящие в процессе термической обработки, повышает упругость стали и ее сопротивляемость стиранию, обескисливает сталь, предотвращая образование окисей в процессе плавки и дальнейшей обработки. В больших количествах марганец вызывает резкое увеличение жесткости и хрупкости стали.
Медь- в небольших количествах добавка меди способна привести к повышению коррозиестойкости стали. Большее содержание меди затрудняет закаливание стали, а вследствие этого снижает ее жесткость и механическую выносливость.
Молибденповышает жесткость стали, ее сопротивляемость стиранию, ударостойкость и коррозиестойкость. Серьезно влияет на процессы термической обработки. Несколько большее содержание молибдена (свыше 1 %), - и сталь становится как бы самозакаливающейся, иначе говоря, не теряет качеств, приобретенных в процессе термической обработки, нагреваясь или охлаждаясь в естественных условиях на воздухе. Это существенно для сталей, работающих при высоких температурах, к примеру так называемых быстрорежущих. Но для клинков ножей это не имеет никакого значения: может, такие ножи только чуть лучше защищены от потери закаливания во время заточки на быстро крутящемся диске.
Никельповышает коррозиестойкость стали, но зато несколько снижает ее механическую выносливость и упругость.
Ванадий- в небольших количествах повышает жесткость стали и ее сопротивляемость стиранию. Большая его концентрация может лишить сталь ударостойкости и механической выносливости.
Вольфрам- добавка малого количества вольфрама повышает жесткость, сопротивляемость стиранию и механическую выносливость стали, а также способствует сохранению ее качеств при высоких температурах.
Кремний, сераи
фосфор- их содержание нежелательно, они лишь ухудшают качества сплава. Производители стремятся избавить сталь от этих веществ, насколько это возможно, но ничтожное их количество может остаться в сплаве (некоторые сталелитейщики указывают, сколько именно).
Разумеется, о роли добавок к стали здесь рассказано крайне кратко и схематично. На самом деле их воздействие куда как многограннее; к тому же оно зависит от присутствия иных элементов, а также от способов термической обработки выплавленной стали.
Попытаюсь теперь коротко охарактеризовать стали, с которыми сам я имел дело. Но подчеркну еще раз, что качество тех или иных клинков - например сохранение остроты, прочность, сопротивляемость крошению, даже коррозиестойкость - в равной мере зависит как от термической обработки, так и от состава стали.
Нержавеющие стали из семейства
420содержат менее 0,5 % угля, и потому их не удается закалить до жесткости, позволяющей хорошо сохранять остроту. Они дешевы и легко поддаются обработке, поэтому их охотно использует большинство производителей дешевых ножей
по-пате.Когда на клинке выбито
Stainless Steel
или вообще не указывается, из какого материала он выкован, стало быть, речь идет о стали из семейства 420. Одно из их достоинств - высокая коррозиестойкость; в этом отношении с ними не могут сравниться другие нержавеющие стали, используемые для производства ножей. Порой даже фабриканты фирменных ножей применяют сталь из семейства 420 для своих более дешевых изделий, но тут уж, как правило, речь идет об улучшенных их сортах, с боґльшим содержанием угля.
Нержавеющая сталь
440Аотличается очень высокой коррозиестойкостью, она легко затачивается. Если фирма указывает на клинке ножа или в каталоге «сталь 440», обычно речь идет о 440А, самой дешевой из этого семейства. Сохранение остроты удовлетворительное, а не очень высокая жесткость приводит к тому, что под большим давлением тонкое лезвие может искривиться. Закаливание до высшей степени жесткости резко увеличивает хрупкость и снижает механическую выносливость; относительно хорошо режет материалы достаточно твердые, но не обладающие абразивными качествами (например дерево); довольно быстро тупится при резании материалов, содержащих мелкозернистые элементы (например картона). Не очень жесткое лезвие при сильном боковом давлении либо натолкнувшись на твердую преграду, гнется, но практически никогда не крошится.
Нержавеющая сталь
AUS-6обладает свойствами, очень сходными с качествами стали
400А,при работе с ножом разницу заметить трудно. Главное достоинство этих сталей - их дешевизна; это относится и к исходному материалу, и к последующей его обработке, что позволяет снизить цену готового ножа. Розничная цена ножей, для производства которых используются стали
440Аи
AUS-6, ниже 50 долларов. На мой взгляд, при небольших производственных расходах на выплавку этих сталей качество их удовлетворительно.
Нержавеющая сталь
ATS-34сначала была разработана для производства из нее лопаток газовых турбин. Она отличается большой жесткостью и сопротивляемостью к стиранию, поэтому клинки из такой стали превосходно сохраняют остроту, даже при резке материалов очень твердых - скажем, картона, вывалянного в песке, сильно загрязненного облицовочного покрытия или шкуры дикого зверя. Она сохраняет свои качества при высокой температуре, что для ножей не так уж и важно. У нее довольно низкая для нержавеющих сталей коррозиестойкость: на клинке ножа Jet Edge 2 (SOG Specialty Knives) после первого же купания в Балтийском море появились пятнышки ржавчины, впрочем, довольно легко устранимые. Эта сталь достаточно хрупка, лезвие быстро крошится при боковом давлении или при встрече с твердым предметом, - но в этих случаях лезвие практически никогда не гнется. Однако же чрезмерная хрупкость на микроуровне приводит к тому, что лезвие постоянно крошится, превращаясь в своего рода пилочку с крохотными зубчиками. По этой причине клинок из ATS-34 режет заметно агрессивнее, чем заточенные таким же образом лезвия из других сортов стали.
Нержавеющая сталь
154СМпо составу и по своим свойствам мало чем отличается от ATS-34. Она варится в США, a ATS-34 - в Японии. Из сталей ATS-34 и 154СМ, как правило, выпускают наиболее дорогие серийные фирменные ножи, а потому в дальнейшем я буду ссылаться на них как на своего рода точку отсчета при рассказе о свойствах других сталей.
Характерная черта агломерата
СРМ 440V- высокая сопротивляемость стиранию, и это даже при относительно небольшой жесткости. Вполне естественно, что в сравнении с ATS-34 эта сталь очень хорошо сохраняет остроту при чистом, без явного бокового давления, резании. При закаливании клинка из СРМ 440V до более низкой жесткости его лезвие становится менее выносливым, чем из стали ATS-34, и легче гнется. При более высокой жесткости закаливания его сопротивляемость стиранию увеличивается, но оно делается довольно хрупким. Коррозиестойкость, хотя она и заметно выше, чем у сталей ATS-34 или 154СМ, все же не так высока, как у сталей с более низким содержанием угля. Крохотные точечки ржавчины появились на клинке моего Spyderco Military из стали СРМ 440V всего через несколько дней, в течение которых я бегал, заткнув нож за пояс моих спортивных шортов, - в тех местах, где сталь соприкасалась с вспотевшим телом. У моего приятеля, который провел отпуск в палатке на Мазурских озерах, клинок ножа Kershaw Avalanche (из той же стали) оказался весь усыпан точечками ржавчины. Идеально однородная, мелкокристаллическая структура агломерата служит причиной того, что хорошо заточенный клинок режет вроде бы менее агрессивно, чем клинок из стали ATS-34 или 154СМ, однако при чистом резании значительно дольше сохраняет остроту.
Нержавеющая сталь
BG-42была поначалу разработана для подшипников скольжения. Тоненькое, предназначенное для чистого резания лезвие клинка из BG-42 способно вызвать восхищение тем, насколько хорошо оно держит остроту - так же, а может, даже и лучше, чем клинок из ATS-34. Зато оставляют желать лучшего механическая выносливость лезвия, его сопротивляемость давлению с боков, да и вообще выносливость всего клинка, особенно если сталь закаливается до степени высшей жесткости. Когда клинок из стали BG-42, закаленной до 60–62 HRC, положили на бетон плоской поверхностью наверх и легонько стукнули по нему молотком средней величины, он, будто кусок стекла, разлетелся вдребезги. Я видел снимок, запечатлевший результаты этого «эксперимента». Подобное отношение к ножу, естественно, никоим образом нельзя признать нормой, однако оно позволило продемонстрировать ненормальную хрупкость этой стали высшей жесткости для ножа, предназначенного много работать. Если же закалить ее до более низкой степени жесткости, клинок потеряет свои исключительные режущие качества и ничем - кроме, правда, высокой цены - не будет отличаться от клинков весьма среднего качества. Эта сталь была разработана таким образом, чтобы обеспечить максимально возможную сопротивляемость стиранию при достаточно высокой жесткости закаливания. Ударостойкости, особенно тонких пластин, придавали второстепенное или даже третьестепенное значение.
Высокая цена исходного материала и еще более высокая стоимость последующей его обработки объясняет, почему стали ATS-34, 154CM, BG-42, как и СРМ 440V, используются для производства самых дорогих ножей (от 100 долларов и выше). С ними обычно работают мастера-ремесленники, которые делают представляющие художественную ценность ножи штучно, в одном экземпляре. Из-за своей хрупкости и низкой ударостойкости это по преимуществу либо складные ножи, либо небольшие ножи с неподвижным клинком, чаще всего охотничьи. Стали эти не годятся для больших ножей, размеры которых искушают использовать их для рубки. Исключительная сопротивляемость стиранию может доставить определенные трудности при заточке, особенно если вы не очень опытны в этом деле или у вас нет нужных инструментов; а уж в полевых условиях вы намучаетесь на славу. Упомянутые сорта стали я рискнул бы назвать экстремальными, поскольку при их разработке ставку сделали на наилучшее держание остроты, не обращая особого внимания на другие свойства. Использование таких сталей для производства клинков ножей не всегда оправданно, особенно если речь идет о ножах, предназначенных для тяжелой работы в самых разнообразных условиях.
Для клинков, которые будут использоваться для рубки, или рассчитанных на другие динамические нагрузки (удары), лучше всего использовать среднеуглеродистую упругую сталь (не нержавеющую). Вероятнее всего, из-за того, чтобы избежать столь чудно звучащего определения, как «не нержавеющая», а в английской версии -
non-stainless,в популярной литературе обычно пользуются терминами
углеродистая сталь(
carbon steel) и
нержавеющая сталь (
stainless steel)
.Конечно, подобное деление весьма условно, ведь нержавеющая сталь одновременно и углеродистая. Тем не менее я буду придерживаться такого деления, чтобы хоть как-нибудь отличать одну сталь от другой.
Упругая сталь
5160(в Польше ей соответствует
50HS) идеально подходит для изготовления клинков, способных выдерживать сильные динамические нагрузки (удары). По упругости и ударостойкости она далеко опережает наилучшие в этом отношении нержавеющие стали. Она вполне прилично держит остроту, когда закалена до жесткости 52–55 HRC, а при закалке до степени более высокой жесткости заметно менее хрупка, чем стали нержавеющие. Она очень хороша для клинков больших, предназначенных для рубки ножей. Клинок из упругой стали способен выдержать и куда более страшные злоупотребления, скажем, попытки подцепить и приподнять тяжелый предмет. Если же закалить такую сталь до более низкой жесткости, то из нее можно делать даже мечи и сабли. Заточка клинков из углеродистых сталей, как правило, доставляет значительно меньше забот, чем из нержавеющих. К этому нужно приплюсовать и отнюдь не заоблачные цены на исходные материалы, и простоту, а стало быть, и меньшие расходы на последующую обработку. Самый же существенный минус упругой стали - податливость коррозии, особенно в условиях повышенной влажности воздуха или в агрессивной, способствующей ускоренной коррозии среде, например, в морской воде. Разумеется, можно покрыть клинок антикоррозийной защитной пленкой, но никакая пленка не защитит от коррозии лезвие. В тропических джунглях, когда влажность воздуха чрезмерно высока, когда в тени 35 °C, когда по соседству соленый океан, когда пот льет с вас ручьями, - нож из упругой стали, даже если и не вынимать его из ножен, за какие-нибудь несколько часов потеряет остроту. Правильная консервация способна только ненадолго отодвинуть беду, да и не всегда у вас найдутся на это время, желание и силы. Поэтому в тяжелых климатических условиях нержавеющая сталь, несмотря ни на что, на мой взгляд, - наилучший выбор.
В последние годы в моду входят инструментальные быстрорежущие стали - например,
М-2или
D-2. Их свойства полностью соответствуют тем целям, ради достижения которых создаются выпускаемые из них инструменты: хорошая ударостойкость, большая жесткость, сопротивляемость стиранию и - для ножей это не так уж важно - сохранение режущих качеств при высоких температурах.
Я сравнил возможности ножей с клинками из разной стали, но одинаковой длины и сходной формы, и убедился, что клинки из инструментальной стали М-2 или D-2 держат остроту не лучше, чем, например, из стали ATS-34. Причина, по всей видимости, в том, что быстрорежущие стали предназначены для производства инструментов, обладающих значительно более толстым, чем у ножей, лезвием, например сверл или токарных резцов. Тонкий, с малым углом заточки лезвия нож не способен выявить всех возможностей таких сталей. Бесспорное достоинство инструментальных сталей - их меньшая хрупкость и большая ударостойкость; там, где лезвие из ATS-34 или из 154СМ выкрошилось бы, лезвие из М-2 или D-2 только погнется, да и то в значительно меньшей степени, чем, скажем, лезвие клинка из AUS-6. Недостатки же инструментальных сталей - их более высокая цена и более низкая коррозиестойкость. М-2 ржавеет так же, как и упругие стали; D-2 чуть менее подвержена коррозии, но и она в этом отношении уступает лучшим сортам нержавеющих сталей. Ножи из инструментальных сталей обычно довольно дороги. Хотя знатоки и коллекционеры восхищаются ими - порой, правда, без больших на то оснований, - каждодневная, рутинная работа такими ножами особых восторгов вызвать, пожалуй, не может. Дело в том, что подобными и даже еще лучшими качествами обладает клинок из закаленной по всем правилам упругой стали, например 5160 или 1095, а стбит он куда дешевле. Потому-то эти ножи, изготовленные из стали чересчур уж экзотичной для подобного рода изделий, хотя они по большей части и хорошо справляются со своими задачами, не привлекают к себе соотношением
качество - цена,которую за них приходится платить. Использование этих сталей для производства ножей диктуется скорее стремлением завоевать новые рынки сбыта и желанием сделать нож, «какого еще не было».
Гораздо большей в сравнении с ATS-34 коррозиестойкостью отличаются нержавеющие стали
AUS-8и
440C.Из первой делают американские, а вернее, выпускаемые в Японии ножи ценой в 50-100 долларов; из второй - европейские или на самом деле американские ножи, стоят они примерно столько же или немного дороже. Они держат остроту чуть хуже, чем ножи из ATS-34, но гораздо лучше держат удар и менее хрупки. Несомненное достоинство этих сталей в том, что расходы на первичную обработку сделанных из них клинков относительно невелики - их штампуют из листовой стали, тогда как для изготовления клинков из ATS-34, CPM440V и подобных им материалов приходится применять лазерное резание. Собственно говоря, AUS-8 и 440C - самые высококачественные стали, которые можно обрабатывать штамповкой. На выпускающей ножи немецкой фирме Bцker мне довелось наблюдать за процессом штамповки клинков ножей из листовой стали 440C. Разница в расходах на обработку в значительно большей степени сказывается на конечной цене продукции, чем разница в расходах на исходный материал. Так что можно, не опасаясь впасть в ошибку, утверждать, что стали AUS-8 и 440C - вполне разумный выбор для производства самых разнообразных ножей, начиная со складных, которые мы носим с собою каждый день, и кончая ножами с неподвижным клинком, способными выполнять самые сложные работы. Среди всех сталей, по своим качествам пригодным для изготовления клинков ножей, стали AUS-8 и 440C занимают достойное место. Они позволяют сохранить необходимое соотношение между ценой материала и расходами на его обработку, с одной стороны, и качеством - с другой. И свойства этих сталей тоже хорошо уравновешены - вполне приемлемые держание остроты, коррозиестойкость и механическая выносливость. Как сказали бы американцы, нож с клинком из AUS-8 или 440C -
the most bang for the buck,что можно было бы перевести примерно так: за такие деньги лучше не купишь.
Редко используемая японская сталь
ХТ-80(ее применяет только американская фирма Katz Knives) держит остроту практически так же, как и сталь ATS-34, но она чуть более коррозиестойка и не так хрупка. Хотя различия в качестве между ними ничтожны, и, подозреваю, причина тут в способах термической обработки, а не в химическом составе стали, который, несмотря на все усилия, мне так и не удалось узнать. Фирма хранит в тайне и химический состав, и даже имя производителя этой «стали-призрака». В кругах любителей и знатоков ножей ходят слухи, будто нельзя исключать, что это та же самая сталь ATS-34 (или очень близкая ей по составу, это в сталеварении случается очень часто!), только несколько иначе закаленная: за счет некоторого ухудшения держания остроты улучшены другие ее свойства, например, механическая выносливость, ударо- и коррозиестойкость.
Более упрощенная и дешевая ее версия -
ХТ-70(вероятно, с меньшим содержанием угля) - мало чем по своим свойствам отличается от AUS-8 или 440C.
Упрощенной же версией, можно сказать, младшим братом ATS-34, является нержавеющая сталь
ATS-55. Изменение ее состава привело к тому, что она не сохраняет своих свойств при высоких температурах (это для ножей большого значения не имеет), зато существенно снизило цену стали. Таковы, по крайней мере, были намерения разработчиков. На практике же ATS-55 явно проигрывает ATS-34 - хуже держит остроту и не отличается лучшей сопротивляемостью коррозии, к тому же, в сущности, так же хрупка. По правде сказать, она не произвела на меня большого впечатления, когда я решил провести сравнительные испытания. Быть может, усовершенствование процесса термической обработки когда-нибудь и позволит выявить ее достоинства. В конце концов, не все же разработанные в свое время сорта стали оказались удачными, многие после испытаний были просто забракованы. Фирма Spyderco, которая первой выпустила на рынок ножи с клинками из стали ATS-55, уже пообещала заменить клинки большинства выпускаемых из нее моделей клинками из нержавеющей стали VG-10.
Зато эта, тоже новая, японская сталь
VG-10, которая разработана, кажется, специально для ножей, произвела на меня очень хорошее впечатление. Правда, она держит остроту чуть хуже, чем ATS-34 (хотя при некоторых видах резания это не так), но вот в том, что касается упругости и ударостойкости, она решительно превосходит нержавеющие стали. И цена ее не превышает разумных пределов, и обработке она поддается довольно легко. Соответствующим образом закаленные клинки из VG-10 нередко оказываются менее ломкими, чем подобные им по размерам клинки из упругих сталей, чего с теоретической точки зрения и быть не может! Однако практика порой подправляет теорию. Во время проводившихся в Техническом университете в Лулео (Швеция) лабораторных испытаний изготовленные из VG-10 клинки ножей фирмы Fдllkniven выдержали большее боковое давление, чем таких же размеров модели из некоторых сортов упругих сталей. Если еще принять во внимание достаточно высокую сопротивляемость коррозии, относительную легкость заточки, приемлемые цены (ножи стбят 80-120 долларов), выходит… это что же, какая-то суперсталь, что ли? Да нет, пожалуй, поскольку никакой суперстали в природе нет и быть не может, как не бывает суперавтомобиля, супероружия или суперкомпьютера. За улучшение одних качеств непременно приходится расплачиваться ухудшением других. Тем не менее, несколько ножей из VG-10, выпущенных фирмами Spyderco и Fдllkniven, входят в число моих самых любимых.
Чтобы лучше разобраться в этой теме, приведу данные нескольких
сравнительных тестов,в ходе которых различные стали испытывались на держание остроты.
В свое время я решил убедиться, насколько обоснованно мнение, будто клинки из быстрорежущей стали М-2 держат остроту лучше, чем клинки из стали ATS-34. У ножей Benchmade Pinnacle и Nimravus Cub клинки примерно одной длины и схожей формы (илл.
). Клинок Pinnacle изготовлен из стали ATS-34, а клинок Nimravus Cub - из М-2. Я заточил их под одним и тем же углом и принялся резать полудюймовую конопляную веревку, постоянно проверяя остроту лезвий на волосах своего предплечья. Клинок из ATS-34 потерял способность сбривать волос после 75 рассечений веревки, а клинок из М-2 - после 70. Я проверил на той же самой веревке другие, точно так же заточенные ножи, и получил следующие результаты:
Spyderco Tim Wegner, сталь ATS-34 -70 разрезов;
Spyderco Starmate, сталь CPM 440V- 80 разрезов;
Katz Knives Special Forces, сталь XT-80 - 70 разрезов.
Ну, вот и судите сами - два ножа с клинками из одной и той же стали, но изготовленные разными производителями и подвергнутые разной термической обработке, показали в ходе испытаний разные результаты.
Еще один сравнительный тест: на этот раз в ход пошли складные ножи чуть меньших размеров, с клинками длиною примерно в 3 дюйма. Испытывались: М-16 Carbon Fiber и S-2 производства Columbia River Knife& Tool (CRKT), D-2 Extreme Folder, выпускаемые фирмой Ка-Bar, Avalanche фирмы Kershaw, Calipso Junior Lightweight и Delica, которые делает фирма Spyderco.
Испытывавшиеся ножи были заточены одинаково. Я резал ими три разных материала, засчитывая рассечения до того момента, когда лезвие теряло способность брить волосы на предплечье. Результаты я привожу в
. Признаюсь, результаты поразили даже меня. Естественно, на их основании нельзя делать никаких научных выводов. Для этого пришлось бы выковать из всех испытываемых сортов сталей совершено одинаковые клинки, а не только одинаково заточить их. Необходимо было бы соблюсти еще множество условий, чтобы добиться научной чистоты сравнения. Но я стремился не к этому. Мы ведь ежедневно работаем реальным ножом, а не каким-то «сделанным по всем правилам опытным клинком». Вот я и предлагаю рассматривать мой тест как своего рода «испытание на производительность» реальных ножей, памятуя, что степень его научности не очень-то высока. Просто мне захотелось удовлетворить свое любопытство (илл.
).
Таблица 2
Когда работаешь ножом, нелегко заметить принципиальное различие в поведении сталей, из которых сделаны ножи примерно одной цены. «Самые дешевые», естественно, для клинков ножей, стали, такие как 420М, 425М, AUS-6, 440A и подобные им, будут вести себя очень похоже. Столь же небольшие, трудно уловимые различия характерны для сталей подороже, «но подороже в разумных пределах», таких как AUS-8, 440C или VG-10. И так же одинаково будут работать стали «экстремальные», «экзотические», вроде ATS-34, CPM 440V, BG-42 и т. п. Рискуя показаться занудой, я осмеливаюсь, однако, в очередной раз подчеркнуть, что когда речь заходит о клинках примерно одной цены,
термическая обработкаклинка оказывает куда большее влияние на то, как вообще поведет себя в работе нож, чем
состав стали,из которой сделан клинок. Так что не надо впадать в крайность и отдавать предпочтение ножу только за то, что его сделали «из моей любимой стали». Выбирая нож, следует оценивать все его достоинства в совокупности, а не какие-то отдельные его качества; собственно, именно в этом я прежде всего и хочу убедить читателя в своей книге.
Тепловая (термическая) обработка клинка.Кому-нибудь это может показаться странным, но сталь - материал кристаллический. Механические свойства стали, а также ее способность противостоять коррозии в решающей степени зависят от состава, величины, ориентации и взаимного расположения различных кристаллов. Чтобы добиться нужного нам качества, готовое изделие из стали необходимо подвергнуть соответствующей тепловой обработке. Качества клинка в гораздо большей мере определяются тепловой обработкой стали, чем ее химическим составом, - конечно, речь тут идет о сталях, предназначенных именно для изготовления режущих инструментов, а не для чего-то совершенно иного. Тепловая обработка состоит из двух фаз:
• закалка, цель которой - придать стали большую жесткость. Процесс этот сводится к нагреванию стали до определенной температуры (те или иные конкретные качества стали зависят от ее вида и ожидаемых нами результатов), а затем к ее достаточно быстрому охлаждению. Для охлаждения используют различные жидкости: в простейших случаях - воду, а в иных - масла. Некоторые стали, отличающиеся более сложным составом, охлаждаются на воздухе естественным образом;
• отпускание - речь тут идет о повторном нагревании до температуры ниже, чем при закалке, а затем медленном охлаждении. В процессе отпускания несколько уменьшается жесткость стали, зато она приобретает иные свойства: упругость, механическую выносливость, сопротивляемость динамическим нагрузкам (ударам).
На практике термическая обработка гораздо сложнее, закалка и отпускание - процессы, раскладывающиеся на множество фаз, нагревание и охлаждение изделий может продолжаться безостановочно даже несколько часов кряду под присмотром компьютеров. Нередко после всего этого клинки, чтобы улучшить их механические свойства, подвергают еще и воздействию сверхнизких температур (погружают в жидкий азот). О том, как закаляется сталь, можно было бы написать целую книгу, и не одну. Но все равно книжные знания дадут представление лишь об основах процесса - о том, скажем, какие условия надо соблюсти, чтобы придать стали необходимые свойства. Одна и та же сталь в зависимости от способа ее тепловой обработки может приобретать принципиально иные механические свойства. Способы обработки выявляются опытным путем годами, они представляют собою предмет особой гордости каждого мастера своего дела, который хранит их в строжайшей тайне. Бывает, что и разные методы приводят к схожим результатам, но все равно у любого специалиста есть свои секреты, которыми он не захочет поделиться и за самые большие деньги.