Современная электронная библиотека ModernLib.Net

Поиски истины

ModernLib.Net / Физика и астрономия / Мигдал А. / Поиски истины - Чтение (стр. 9)
Автор: Мигдал А.
Жанр: Физика и астрономия

 

 


      Самый простой способ найти спин - это определить число его проекций. Число проекций у частиц со спином 1 равно 21+1. Кроме того, спин частицы влияет на зависимость сечения рассеяния от угла отклонения.
      Таким образом, волновая функция изменяет знак при перестановке, скажем, двух электронов (спин электрона равен 1/2) и не изменяется при перестановке двух пи-мезонов (спин пи-мезона равен нулю). Теперь уже нетрудно понять принцип «запрета Паули», относящийся к частицам с полуцелым спином: если две частицы с полуцелым спином находятся в одинаковом состоянии, то их перестановка не может изменить волновую функцию. Между тем, по теореме Паули, волновая функция должна была бы изменить знак. Следовательно, такая волновая функция равна нулю. Но волновая функция определяет вероятность нахождения частицы в данном состоянии: если она равна нулю, значит, такое состояние невозможно - две частицы с полуцелым спином не могут находиться в одинаковом состоянии.

Изотопическая симметрия

      Один из простых примеров внутренней симметрии - «изотопическая инвариантность сильных взаимодействий» - подтвердился многочисленными экспериментами и оказался очень важным для построения теории ядра. Бросается в глаза необыкновенное сходство некоторых частиц, например, нейтрона и протона, или положительного, отрицательного и нейтрального пи-мезонов. Нейтрон и протон практически отличаются только зарядом, их масса совпадает с точностью до 0,1 процента, и они одинаково взаимодействуют с другими частицами. Спин протона и нейтрона одинаков и равен 1/2. То же самое относится и к трем пи-мезонам: у них не только близкие массы, не только одинаковый, равный нулю, спин, но и одинаковое взаимодействие с нуклонами.
      Это сходство навело на мысль, что нейтрон и протон есть как бы два состояния одной и той же частицы. Три пи-мезона - это тоже одна частица, которая может находиться уже не в двух, а в трех изотопических состояниях.
      Введем новое понятие - изотопический спин (изо-спин), и пусть его свойства напоминают обычный спин, тогда изоспин 1 будет иметь три проекции, а изоспин - 1/2 - две. У нуклона два изотопических состояния, следовательно, его изоспин равен 1/2, а протон и нейтрон соответствуют двум проекциям 1/2 и -1/2. У пи-мезона изотопический спин 1. Положительный, отрицательный и нейтральный пи-мезоны соответствуют трем проекциям изоспина 1. Таким образом, сильные взаимодействия обладают свойством изотопической инвариантности, они не зависят от того, в каком изотопическом состоянии находятся взаимодействующие частицы.
      Изотопическая симметрия неточна: частицы разных зарядов имеют хоть и близкие, но неравные массы.
      Странность
      Создание мощных ускорителей и чувствительных методов обнаружения привело к открытию огромного количества новых частиц. Они рождаются при столкновениях нуклонов или обнаруживаются по их влиянию на рассеяние. Прежде всего обнаружились «странные» частицы. Их странность в том, что они рождаются не поодиночке, как пи-мезоны, а только парами - частица с античастицей. Чтобы объяснить это свойство, пришлось приписать частицам, помимо спина и изоспина, еще одно число - «странность». Так, лямбда-частица имеет странность -1, а антилямбда +1. У пары частица-античастица странность равна нулю. Теперь легко понять, почему лямбды рождаются только парами. Достаточно предположить, что странность сохраняется и что у нуклона и пи-мезона странность равна нулю, чтобы рождение одиночной лямбда-частицы стало невозможным в реакциях с участием нуклонов и пи-мезонов. В остальном лямбда очень похожа на нуклон.
      Все сильновзаимодействующие частицы (адроны) обладают еще одним свойством: число барионов не изменяется при их (адронных) столкновениях, барионы могут только переходить друг в друга: точнее, не изменяется разность барионов и антибарионов. Это свойство можно сформулировать как закон сохранения барионного заряда, достаточно лишь приписать каждому бариону барионный заряд 1, а антибариону -1. Барионный заряд пи-мезонов, которые могут рождаться в любом количестве, следует считать равным нулю.
      Вскоре обнаружились и другие странные частицы. Для включения их в одно семейство с нуклоном или с пионом (в случае барионного заряда, равного нулю) понадобилось усложнение изотопической симметрии. Нужно было предположить более широкую симметрию, включающую странные частицы. Обнаружились два больших семейства сильновзаимодействующих частиц: барионы и мезоны. Барионы имеют полуцелый спин (1/2,3/2…) и барионный заряд 1, мезоны - целый спин (0, 1, 2…) и не имеют барионного заряда. Семейство барионов разбилось на две группы с близкими свойствами. Барионы одной из них (их восемь) имеют спин 1/2; в другой группе десять частиц, и спин их 3/2. Аналогично мезоны с нулевым спином образуют восьмерку схожих часгиц.
      Изобилие частиц, обнаруженных в результате успехов теоретической и экспериментальной физики, не радовало, а только озадачивало теоретиков. Начались попытки найти праматерию или прачастицы, с тем чтобы все обилие наблюдаемых частиц получалось бы из комбинаций нескольких элементарных, или, говоря осторожнее, более элементарных частиц.

ИСТОРИЯ ОДНОЙ СИММЕТРИИ

      Три кварка для мастера Марка!..
      Д. Джойс
      Необыкновенно поучительна и драматична история работ по нахождению субчастиц, из которых состоят адроны. Из разрозненных фактов постепенно возникала все более отчетливая картина устройства адронов. Мы перечислим главные события этой драмы, за которыми стоят огромные усилия физиков всех стран, временные удачи и провалы, судьбы людей, потерявших годы в попытках найти истину на неправильном пути. И вместе с тем мы увидим, что неудавшиеся попытки каждый раз приближали к цели и подготовили правильное решение.
      Пока были известны только два адрона - нуклон и пи-мезок, была надежда, что элементарными частицами являются нейтрон и протон, а пи-мезон есть связанное состояние нуклона и антинуклона. Так, отрицательный пи-мезон строился из антипротона и нейтрона с противоположными спинами. Эту идею не удалось превратить в убедительную количественную теорию, и к лучшему, так как сразу после открытия лямбда-частицы стало ясно, что первичные частицы следует снабдить странностью. Тогда возникла идея, что есть не два, а три строительных элемента, которые обозначались аналогично нейтрону, протону и лямбде: n, р, \lambda. Развитие этой идеи привело к созданию модели Окуня - Сакаты, по именам советского теоретика Льва Окуня и японского - Сёити Сакаты. Субчастицы имели те же свойства, что и их тезки - нейтрон, протон, лямбда.
      Мезоны составлялись из субчастицы и ее античастицы, а барионы - из двух частиц и античастицы. Таким образом, из субчастиц n, р, К и их античастиц были составлены все известные тогда адроны и предсказано су
      Начало истории
      шествование некоторых новых адронов, которые были открыты позднее.
      Так, из трех частиц, n, р, \lambda и трех античастиц можно составить девять мезонов со спином ноль, а известны были лишь семь: три пи-мезона и четыре К-мезона. Два недостающих электрически нейтральных мезона \eta и \eta' были открыты через несколько лет.
      Составная модель естественным образом объяснила разбиение девяти мезонов на семейство из восьми (октет) и одиночного мезона (синглет), но объяснить наблюдавшиеся семейства барионов, в частности семейство восьми барионов со спином 1/2, на основе этой модели не удавалось.
      Кварки
      Все многочисленные попытки получить наблюдаемые семейства барионов и мезонов из частиц с целым электрическим и барионным зарядом потерпели неудачу. Неожиданный выход из тупика был найден американскими теоретиками Марри Гелл-Маном и независимо Джорджем Цвейгом.
      Они предположили, что все адроны составлены из частиц с барионным зарядом, равным 1/3 нуклонного, и с электрическим зарядом, равным 2/3 или -1/3 заряда протона. Спин у этих частиц такой же, как у нуклона, равный 1/2. Частицы с дробным электрическим зарядом никогда не появлялись на опыте, и физики были так прочно убеждены в том, что все заряды кратны электронному или протонному, что идея частиц с дробным зарядом казалась дикой. Американский журнал «Physical Rewiew Letters» отказался печатать статью Гелл-Мана, и ему пришлось отправить ее в Европу в «Physics Letters». Гелл-Ман назвал эти дикие частицы «кварками» - так в романе Д. Джойса «Поминки по Финнега-ну» кричат чайки.
      Все адроны, как по мановению волшебной палочки, улеглись в те группы с одинаковыми свойствами, которые были ранее установлены экспериментально.
      Барионы состоят из троек кварков, чтобы барионный заряд был равен единице. Из трех кварков можно составить две комбинации со спином 1/2 и 3/2, поэтому и возникают два семейства барионов. Пришлось ввести три типа кварков: верхний, нижний и странный. Они обозначаются начальными буквами английских слов up, down, strange. Кварк u имеет электрический заряд 2/3; d- и s-кварки - 1/3; странный кварк имеет странность 1 (он входит только в странные адроны), а и- и d-кварки имеют странность 0. Кварки u, d есть две изоспино-вые проекции одной частицы с изоспином 1/2 (верхняя и нижняя проекции - отсюда и название этих кварков). Нейтрон и протон устроены так: n = (udd); р = (duu). Или, иначе, нейтрон состоит из двух d-кварков и одного u-кварка, а протон получается заменой u +1 d. Легко увидеть, что при этом заряд нейтрона равен нулю, а протона 1, как и полагается. Почти так же легко составить все возможные комбинации троек из трех кварков с суммарным спином 1/2 и 3/2. Получаются все барионы, входящие в два семейства - восьмерку и десятку. Мезоны состоят из кварка и антикварка. Так, заряженные пи-мезоны изображаются как л+ = (ud); \pi^- = (du); а нейтральные как комбинация (uu) (dd). Чертой обозначаются антикварки; их электрический заряд отличается знаком от заряда соответствующего кварка. В пи-мезон странный кварк не входит, пи-мезоны, как мы уже говорили, - частицы со странностью и спином, равными нулю. У К°-мезона странность - 1 . К°= (ds). Это нейтральный мезон. Аналогично составляются и заряженные: К+ =(us); К-= (us).
      Поиграйте в эту игру, постройте и другие адроны. Это напоминает складывание кубиков.
      Однако, как мы сейчас увидим, нашего набора кубиков все еще недостаточно для полной картины.
      Кварки нужно раскрасить!
      Среди барионов, составляющих десятку со спином 3/2, есть дельта-резонанс (или дельта-барион). Он обозначается знаком Л (греческая заглавная буква «дельта»). Эта частица живет недолго, ее трудно увидеть в свободном состоянии. Однако она проявляется в рассеянии пи-мезонов на нуклонах. Дельта-барион представляет собой связанное состояние нуклона и пи-мезона. В процессе рассеяния пи-мезон и нуклон на время объединяются в дельта-барион. Поэтому сечение рассеяния пи-мезона на покоящемся нуклоне имеет максимум (резонанс) при энергии пи-мезона, соответствующей этому связанному состоянию.
      Воспользуемся известной везде, где есть телевизор или радио, формулой Е=mс2, энергия равна массе, помноженной на квадрат скорости света. Разделив энергию пи-мезона в максимуме сечения на с2 и прибавив к массе нуклона, получим массу дельта-резонанса. Поскольку нуклон и пи-мезон не странные частицы, странность дельты равна нулю. А это означает, что она состоит из и- и d-кварков.
      По зависимости сечения от угла отклонения рассеянных частиц было установлено, что спин дельты равен 3/2. Были обнаружены четыре изотопические разновидности дельта-бариона, отличающиеся только электрическим зарядом.
      Нетрудно их все построить нз троек и- и d-кварков: (ddd)=\del^-, (ddu)=\del^0, (duu)=\del^+; (uuu)=\del^{++}. Это дельта-барионы с зарядами - 1, 0, 1, 2. Мы перебрали все возможности, следовательно, других дельта-барионов нет. Например, \del^{-} не существует. Частицу с двойным отрицательным зарядом можно построить только из антикварков: (uuu)= \del^{-}.
      Обратим особое внимание на дельта плюс-плюс ба-рион, который, как мы только что видели, состоит из тройки u-кварков. (Только тогда полный заряд будет 2(3 x 2/3 = 2).)
      Но для того чтобы спин дельта равнялся 3/2, нужно, чтобы проекции спинов всех трех и были одинаковы и равны 1/2.
      Возникает противоречие с принципом Паули! Ведь согласно этому принципу частицы с полуцелым спином не могут находиться в одном и том же состоянии. Чтобы избежать противоречия, можно было бы попытаться по-разному распределить эти три кварка в пространстве внутри дельта-бариона. Но при таком неравномерном распределении возрастает энергия, а следовательно, и масса дельта-бариона. Вместо наблюдаемой массы (примерно полторы нуклонных) мы получили бы значительно большую. Было много теоретических попыток обойти принцип Паули, но все они потерпели неудачу. Оказалось, что единственная возможность - предположить, что каждый кварк, помимо спина и заряда, имеет еще одну характеристику, которая была условно названа «цвет». Каждый кварк может иметь один из трех цветов, скажем красный, желтый, синий. Противоречие с принципом Паули снимается: u-кварки в дельта-барио-не разноцветные, а разным частицам не запрещается находиться в одном состоянии.
      Только не надо понимать цвета кварков буквально, это лишь красивое условное обозначение, можно было бы просто пронумеровать их: u_1,u_2,u_3.
      Кварки не могут жить друг без друга
      Многочисленные экспериментальные и теоретические исследования подтвердили дробные заряды и трехцвет-ность кварков. Кварки стали таким же достоверным объектом физики, как протон или электрон. И вместе с тем, несмотря на многие попытки, не удалось найти экспериментально свободные частицы с дробным зарядом. Кварки не вылетают из адронов даже при энергичных столкновениях. Хочешь не хочешь, невылетание кварков приходится возвести в ранг закона природы. В изолированном состоянии могут находиться только «белые» частицы, адроны и лептоны (электрон, мюон, нейтрино); цветные же частицы - кварки - можно наблюдать только внутри адронов. Их нельзя удалить далеко друг от друга. При попытке их раздвижения они превращаются в белые частицы. Если при столкновении, скажем, электронов с позитронами при больших энергиях (например, в ускорителе на встречных пучках) рождается пара кварк - антнкварк, то она немедленно рождает другие цветные пары, и все они группируются в белые комбинации - барионы и мезоны. Чуть позже мы определим слова «белая частица» более точно.
      На первый взгляд невылетание кварков не такое уж странное свойство. Нейтрон живет в ядрах неограниченно долго, а в свободном состоянии распадается за пятнадцать минут. Конечно, это громадное время для ядерной частицы, но, например, Д-резонанс распадается за такое малое время, что его невозможно увидеть в свободном состоянии и он может наблюдаться только по его влиянию на пион-нуклонное рассеяние. Кварки и антикварки при раздвижении так быстро превращаются в белые частицы, что далеко друг от друга их нельзя обнаружить.
      Необычность этого физического объекта в том, что кварки не живут друг без друга. До того как кварк и антикварк превратятся в белые частицы, они скреплены друг с другом силовыми взаимодействиями, на какое бы расстояние они ни раздвигались. В электродинамике два противоположных заряда тоже притягиваются друг к другу, но сила этого притяжения убывает как квадрат расстояния. Поэтому при рождении пары электрон - позитрон эти частицы можно считать свободными, как только они хотя бы немного раздвинутся так, чтобы потенциальная энергия стала меньше кинетической. В случае пары кварк - антикварк такой момент никогда не наступает - потенциальная энергия их взаимодействия растет с расстоянием!
      Это объясняется свойствами того поля, которое скрепляет кварки: оно не убывает с расстоянием, как электрическое.
      Когда рождается пара кварк - антикварк, они сначала разлетаются. Их кинетическая энергия превращается в потенциальную энергию их притяжения, как у двух разлетающихся шаров, соединенных пружиной. Но при большой потенциальной энергии система делается неустойчивой, пружина рвется, система превращается в два летящих в разные стороны снопа белых частиц.
      Были обнаружены и другие типы, или, как принято называть, «ароматы» кварков - «очарованный» и «красивый».
      Теория предсказывает еще один аромат - «высший». Этот кварк пока не подтвержден опытом. Как и u-, d-, s-кварки, эти кварки обозначаются с, b, t - по начальным буквам соответствующих английских слов (charm, beauty, top).
      Итак, есть кварки и антикварки шести ароматов - и, d, s, с, b, t, и каждый из кварков имеет три цвета. Общее число кварков 6x2x3 = 36 (вместе с антикварками).
      Будем надеяться, что этим исчерпывается изобретательность природы и больше кварков не обнаружится.
      Поле, склеивающее кварки
      Как ни важно знать симметрии, они не исчерпывают всех свойств физических объектов. Нужно еще знать, как взаимодействуют и движутся поля и частицы.
      Соображения симметрии позволили нам найти, из каких кварков составлены адроны. Но гораздо сложнее понять, что удерживает и как движутся кварки внутри адронов. Электрон в ядре атома водорода удерживается возле протона электрическими силами. Аналогично этому необходимо предположить, что есть особое поле, которое не дает кваркам разбегаться. Поле, склеивающее кварки, было названо «глюонным», от английского слова «glue» - клей. Так же как и для электромагнитного поля, применение квантовой механики к глюонному полю приводит к скачкообразному изменению энергии. Энергия поля изменяется скачками величины E=h \omega(/lambda), где \mu - есть частота поля с длиной волны X. Порция энергии глюонного поля называется «глюоном», аналогично тому, как порция энергии электромагнитного поля называется «квантом» или «фотоном».
      Квантовая электродинамика оказалась замечательной теорией: ее предсказания выполняются с колоссальной точностью. Кроме того, она обладает калибровочной симметрией. Физики-теоретики пришли к заключению, что калибровочная симметрия - почти неотъемлемое качество физической теории. Поэтому уравнения глюонного поля следует искать по образу и подобию уравнений электродинамики. Из калибровочной симметрии следует, в частности, что глюон, как и фотон, - безмассовая частица.
      Но есть одно важное отличие: кварки, взаимодействуя с глюонным полем, могут изменять свой цвет, тогда как электрон не изменяется при взаимодействии с электромагнитным полем. Это делает глюодинамику более сложной, чем электродинамика.
      Для каждого изменения цвета кварка нужно вводить свое поле: красно-синее, сине-желтое и так далее. Всего девять вариантов (3x3). В действительности, как мы увидим, нужно ввести не девять, а восемь глюонных полей. Из трех полей - красно-красного, сине-синего, желто-желтого - можно составить одну бесцветную - белую - комбинацию, которую не следует включать в число цветных полей, обеспечивающих взаимодействие кварков. Для того чтобы в этом разобраться, нам придется сделать усилие, - ничего не поделаешь, симметрию не всегда легко увидеть.
      Вспомним, что говорилось в первом разделе этой главы о классификации величин, по-разному изменяющихся при операциях симметрии, например при поворотах в пространстве.
      По аналогии с пространственной симметрией нам нужно ввести трехмерное цветовое пространство и классифицировать все величины по тому, как они изменяются при поворотах в этом пространстве.
      Белые частицы не должны изменять свое состояние, точнее, свою волновую функцию при цветовых поворотах - они скаляры относительно цветовых преобразований. Волновая функция, описывающая состояние кварка, не остается неизменной, она определенным образом изменяется при поворотах в цветном пространстве.
      Для того чтобы сохранилась та классификация барионов и мезонов, которая была до введения цвета, необходимо, чтобы из 27 цветных состояний, которые есть у трех кварков (3x3x3 = 27), можно было составить одну комбинацию, не изменяющуюся при поворотах в цветном пространстве, то есть белое состояние, соответствующее бариону; а из девяти цветных состояний системы кварк - антикварк (3x3 = 9) - одну белую конструкцию - мезон. Перебирая все ароматы кварков, входящих в состав белых частиц, мы получим те же семейства барионов и мезонов, что и до введения цвета.
      Так как глюон может виртуально (на время) превращаться в пару кварк - антикварк, то его волновая функция преобразуется так же, как волновая функция пары, и, значит, из девяти глюонных полей можно тоже образовать одно белое поле. Симметрия требует, чтобы все восемь цветных глюонных полей одинаково взаимодействовали с кварками. Белое же глюонное поле может взаимодействовать совсем иначе - у него своя константа взаимодействия, ведь оно может превращаться только в белые кварковые комбинации. Это поле, по-видимому, никогда не возникает. Предположим, что нет никаких других полей, влияющих на глюоны. Тогда из-за калибровочной инвариантности масса глюона строго равна нулю, и нетрудно убедиться, что белое глюонное поле крайне мало.
      Действительно, если бы нейтроны и протоны, входящие в состав ядер вещества, создавали сколько-нибудь заметное белое глюонное поле, то между макроскопическими телами действовали бы огромные силы (ведь для безмассовых глюонов справедлив закон Кулона) и белое глюонное поле просто добавлялось бы к полю тяготения. Из того, что на поверхности Земли нет никаких других сил, кроме силы тяжести, следует, что константа взаимодействия нуклонов с белым глюонным полем в 1050 раз меньше, чем их взаимодействие, скажем, с пионами.
      Мы уже сталкивались с симметрией, напоминающей цветовую, когда обсуждали классификацию барионов и мезонов. Только там речь шла об изотопической симметрии, о симметрии в пространстве трех ароматов: u, d, s. Там мы умолчали о том, как получается из кварков, скажем, семейство из восьми мезонов. Сейчас это уже нетрудно.
      Всего из кварка и антикварка можно составить девять ароматических (или изотопических) комбинаций. Из них одна - скалярная (это семейство из одного мезона), а остальные восемь преобразуются в пространстве ароматов как кварк - антнкварк и образуют семейство из восьми мезонов.
      Обе эти симметрии: изотопическая (включающая только три аромата u, d, s) и цветовая (симметрия в пространстве трех цветов)-имеют одну и ту же математическую природу, хотя и реализуются в разных пространствах - вспомним слова Дж. Буля, их стоит повторить: «Действенность анализа зависит не от истолкования символов, а исключительно от законов их комбинаций». В обоих случаях действует одна симметрия. Математики обозначают ее символом SU(3) («эс-у-три»). Чтобы получить представление об этой и других возможных симметриях, нужно изучить важный для физики раздел математики - теорию групп.
      Но на этом теория сильных взаимодействий не заканчивается. Недостаточно найти свойства цветовых преобразований кварков и восьми глюонных полей. Главная задача - найти уравнения, которые описывают эти поля и их взаимодействия с кварками. И наконец, не менее важно решить эти уравнения, выразить массы всех адронов и их взаимодействия через свойства пока «элементарных» частиц - глюонов и кварков. Так поступали физики, определяя свойства атомов и молекул через свойства считавшихся элементарными ядер и электронов.

Забытый клад

      Как найти уравнение для глюонных полей и для кварков, которое бы обобщало уравнение Максвелла для электромагнитного поля, взаимодействующего с электронами?
      Тут придется рассказать о редком случае в науке, который можно назвать «новое - это хорошо забытое старое». Еще в 1954 году два теоретика - Чжень-нин Янг и Р. Миллс - играли в математическую игру. Они задались целью получить обобщение электродииамики на случай трех типов калибровочно-инвариантных полей, которые преобразуются друг через друга, подобно тому как три пнонных поля - положительное, отрицательное и нейтральное - преобразуются при поворотах в изотопическом пространстве. Это была игра, потому что тогда казалось, что нет и в помине никаких физических объектов, к которым можно было бы приложить такую теорию.
      Прежде всего выяснилось важное обстоятельство-; такие поля можно разумно ввести, только если предположить, что они взаимодействуют между собой. Электромагнитное поле в отсутствие зарядов само с собой не взаимодействует, без зарядов уравнения Максвелла - линейные. Уравнения же Янга - Миллса оказались обязательно нелинейными. Они однозначно определились из требования калибровочной инвариантности и симметрии в изотопическом пространстве. У Янга и Миллса три поля имели заряды +, -, 0. Они могли изменять свой заряд, взаимодействуя с нуклонами (переводя протон в нейтрон и обратно). И, что примечательно, поля взаимодействуют с нуклоном с тем же зарядом, что и между собой.
      Как только выяснилась многоцветность кварков и глюонов, возникла идея описать соответствующие поля с помощью уравнений, аналогичных уравнениям Янга - Миллса. Нужно было только обобщить эти уравнения на случай ие трех, а восьми полей, преобразующихся в цветовом пространстве, и приписать кварку, кроме электрического заряда, особый цветовой заряд, определяющий его взаимодействие с глюонным полем, подобно тому как заряд электрона определяет его взаимодействие с электромагнитным полем.
      Так у теоретиков появился математический аппарат, который позволил предсказывать новые явления.
      Это великолепный пример того, как красивое построение обязательно находит себе применение. Все дальнейшее развитие физики элементарных частиц подтвердило ожидания теоретиков. Обобщенные уравнения Янга - Миллса вместе с уравнениями для кварковых полей действительно описывают сильные взаимодействия элементарных частиц. По аналогии с электродинамикой эту теорию назвали «хромодинамика» (от греческого слова «xpo;j.oq» - цвет). Пока не удается решить эти уравнения во всех случаях. Взаимодействие глюонных полей и кварков на больших расстояниях не мало, как в случае электродинамики, а это всегда крайне затрудняет решение.
      Уравнения Янга - Миллса имеют много удивительных особенностей, но об одной из них нельзя не рассказать. Истинное взаимодействие глюонов и кварков крайне мало. Однако каждый кварк притягивает к себе глюонное поле и поэтому окружен глюонным облаком, которое увеличивает его взаимодействие с другим кварком или с глюонным полем. Такой эффективный заряд совпадает с истинным (как иногда говорят, с «голым» или с «затравочным»), когда расстояния между кварками или глюонными сгустками очень малы. По мере увеличения расстояния заряд растет, сначала медленно, а затем, на расстояниях порядка размеров адронов (10-14 сантиметра), резко возрастает. При больших энергиях, когда частицы сближаются на малые расстояния, заряд уменьшается, и взаимодействие между кварками убывает. Это явление называется «асимптотической свободой». Но при малом взаимодействии хромоди-намика не сложнее электродинамики. Поэтому решения уравнений хромодинамики хорошо исследованы при больших энергиях.
      Удивительное явление уменьшения заряда с ростом энергии подтвердилось экспериментально в количественном согласии с теорией. Объяснилось много интересных явлений в области больших энергий, например, множественное рождение частиц при столкновении электрона с позитроном.
      Но как раз в той области масштабов и энергий, которые определяют структуру адронов, а следовательно, и их массы, заряд велик, и решение пока не удается найти аналитически.
      Необходимо также объяснить, почему на опыте в свободном состоянии наблюдаются только белые частицы. Мы уже упоминали без доказательства, что глюонное поле кварка и вообще любого цветного объекта не убывает с расстоянием. В отличие от электрического поля вокруг точечного электрического заряда силовые линии глюонного поля не распределены равномерно по всем направлениям, а сосредоточены в узкой трубке, соединяющей кварк и антикварк, или, для изолированного кварка, идущей на бесконечность. Но если это так, то энергия цветового объекта будет бесконечно большой за счет энергии глюонного поля в трубке, идущей от цветного заряда к бесконечности. Тогда легко понять,
      почему кварки не могут жить друг без друга и почему в изолированном состоянии есть только белые объекты. У белых частиц нет растущего глюонного поля, они глюонно нейтральны.
      К сожалению, это очень правдоподобное свойство глюонного поля пока не удалось убедительно доказать.
      В последние годы теоретики получили неожиданную поддержку: часть их работы взяли на себя ЭВМ. С их помощью уравнения хромодинамики удается, правда пока довольно грубо, решать численно. Результаты убеждают в правильности хромодинамики не только для больших, но и для малых энергий. Массы и взаимодействия адронов получились близкими к экспериментальным.
      Так полузабытые уравнения Янга - Миллса получили новую жизнь и сделались основой одного из важнейших разделов теории элементарных частиц - теории сильных взаимодействий.

КАК РАБОТАЮТ ФИЗИКИ

      В этой главе мы посмотрим уже не с высоты птичьего полета, а с более близкого расстояния, как работают физики-теоретики. Естественно, я ограничиваюсь теоретической физикой - это моя профессия, говорить о ней мне легче и интереснее.
      Можно очень хорошо проследить особенности работы теоретиков, обсуждая главные события развития квантовой теории от ее зарождения, когда был совершенно неясен смысл сделанных предположений, до глубокого понимания, возникшего в спорах Нильса Бора с Эйнштейном. От общего анализа мы перейдем к более конкретному - к тому, как работают физики на первой стадии, делая оценки величин и их соотношений, прежде чем пытаться решить задачу точно. После этого покажем, как такой качественный анализ прилагается к задачам квантовой механики и к проблеме квантования полей.
      Но сначала поговорим о задачах и особенностях физики и о ее связи с математикой.

ЗАДАЧИ ФИЗИКИ

      Без участия воображения все наши сведения о природе ограничились бы классификацией фактов.
      Д. Тнндаль

  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15