Чтобы приступать к работе с собственным дыханием, надо иметь общие представления о нем. Вначале опишем то, что давно известно современной науке и не вызывает никаких сомнений. Для удобства изложения процесс дыхания разделим на три ступени: внешнее дыхание, транспортировка газов кровью и клеточное дыхание.
Внешнее дыханиеосуществляется через следующие самостоятельные органы: нос, носоглотку, трахею, бронхи, легкие и легочные альвеолы, а также 1—2% газообмена осуществляются через кожу и пищеварительный тракт.
Прежде всего поток входящего внутрь организма воздуха встречает носовая полость. Анатомически нос рассматривают (рис. 1) как наружный и внутренний (носовая полость).
Наружный нос – это то, что мы видим на лице. Он состоит из хрящей, покрытых кожей. В области ноздрей кожа заворачивается внутрь носа и постепенно переходит в слизистую оболочку.
Внутренний нос (носовая полость) разделен на две примерно равные половины. В каждой половине расположены три носовые раковины: нижняя, средняя и верхняя. Эти раковины дополнительно в каждой половине носовой полости образуют отдельные носовые ходы: нижний, средний и верхний. Причем каждый носовой ход, помимо пропускания воздуха, выполняет еще и дополнительные функции.
Рис. 1. Внутренний нос с тремя носовыми ходами: а – вид спереди; б – вид сбоку (видны три носовых хода; стрелками обозначен путь воздуха по ним)
Так, в высшей точке нижнего носового хода находится отверстие слезно-носового канала; в средний носовой ход открываются почти все придаточные пазухи носа; в верхний носовой ход – задние ячейки решетчатого лабиринта. Через отверстия в решетчатой кости в эту область спускаются обонятельные нервы из полости черепа. Таким образом, обонятельная часть ограничена поверхностью верхней раковины и частью средней. Вся остальная часть полости носа относится к дыхательной области.
Воздушная струя, поднимаясь кверху через носовые отверстия, проходит главной своей массой по среднему носовому ходу, после чего, дугообразно опускаясь сзади вниз, направляется в носоглоточную полость. Этим достигается более продолжительное соприкосновение воздуха со слизистой оболочкой. Проходя через носовую полость, воздух согревается, увлажняется и очищается. Увлажняется воздух почти до полного насыщения за счет носовой слизи, которую выделяет слизистая оболочка носа (около 500 г влаги за сутки).
Далее воздух идет через носоглотку, гортань и попадает в трахею, которая имеет вид цилиндрической трубки длиной 11—13 см и диаметром от 1,5 до 2,5 см. Она состоит из хрящевых полуколец, соединенных между собой волокнистой соединительной тканью. Трахея выстлана изнутри слизистой оболочкой, покрытой мерцательным эпителием. Движения ворсинок мерцательного эпителия позволяют выводить наружу попавшую в трахею пыль и другие чужеродные вещества, либо благодаря высокой всасывающей способности эпителия они всасываются внутрь и затем выводятся внутренними путями.
Далее трахея разветвляется на бронхи, а те в свою очередь на бронхиолы – более мелкие воздухоносные пути. В отличие от трахеи, бронхи имеют в составе стенки мышечные волокна, причем с уменьшением диаметра путей мышечный слой становится сильнее развитым, а волокна идут в несколько косом направлении. Сокращение этих мышц вызывает не только сужение просвета бронхов, но и некоторое укорочение их, благодаря чему они участвуют в выдохе. В стенках бронхов располагаются слизистые железы, и покрыты они мерцательным эпителием. Совместная деятельность слизистых желез, бронхов, мерцательного эпителия и мускулатуры способствует увлажнению поверхности слизистой оболочки, разжижению и выведению наружу вязкой мокроты при патологических процессах, а также выведению частиц пыли и микробов, попавших в бронхи с потоком воздуха.
Рис. 2. Строение альвеол и газообмен в них
Воздух, пройдя путь по вышеописанным воздухоносным путям, очищенный и нагретый до температуры тела, попадает в альвеолы (рис. 2), смешивается с имеющимся там воздухом и приобретает 100%-ную относительную влажность. Газообмен между внешним воздухом и кровью в легких происходит в основном в альвеолах, которых насчитывается свыше 700 миллионов; они покрыты густой сетью кровеносных капилляров. Каждая альвеола имеет диаметр 0,2 мм и толщину стенки 0,04 мм. Общая поверхность, через которую происходит газообмен, в среднем равна 90 м2.
Воздух попадает в альвеолы благодаря изменению объема легких из-за дыхательных движений грудной клетки. Так, при вдохе объем легких увеличивается, давление воздуха в них становится ниже атмосферного воздуха и последний засасывается в легкие. При выдохе объем легких уменьшается, давление воздуха в них становится выше атмосферного, и воздух из легких устремляется наружу. Во время вдоха давление в воздухоносных путях становится на 10—25 мм водного столба ниже атмосферного; во время выдоха оно на 20—40 мм водного столба выше атмосферного. Чем интенсивнее осуществляется вдох и выдох, тем интенсивнее падение давления воздуха в легких при вдохе и повышение его при выдохе.
Сам механизм дыхательных движений осуществляется диафрагмой и межреберными мышцами. Диафрагма – мышечно-сухожильная перегородка, отделяющая грудную полость от брюшной. Главная ее функция заключается в создании отрицательного давления в грудной полости и положительного в брюшной. Края ее соединены с краями ребер, а сухожильный центр диафрагмы сращен с основанием сумки перикарда. Ее можно сравнить с двумя куполами: правый расположен над печенью, левый – над селезенкой. Вершины этих куполов обращены к легким.
Рис. 3. Расположение печени и селезенки под диафрагмой и движения диафрагмы: а – при вдохе; б – при выдохе
Когда мышечные волокна диафрагмы сокращаются, оба ее купола опускаются (рис. 3
а), а боковая поверхность диафрагмы отходит от стенок грудной клетки. Центральная сухожильная часть диафрагмы опускается незначительно. Вследствие этого объем грудной полости увеличивается в направлении сверху вниз, создается разряжение и воздух входит в легкие. Сокращаясь, она давит на органы брюшной полости, которые выжимаются вниз и вперед – живот выпячивается.
Когда же мышечные волокна диафрагмы расслабляются, оба купола поднимаются вверх, вытесняемые органами брюшной полости, в которой давление всегда выше, чем в грудной (рис. 3
б). Сокращение мышц брюшного пресса еще больше усиливает это давление. Вследствие этого объем грудной полости уменьшается, создается высокое давление и воздух выходит из легких.
Межреберные мышцы за счет разворачивания ребер в стороны и некоторого поднятия их вверх увеличивают объем грудной полости, что и приводит к засасыванию в нее воздуха. При выдохе они расслабляются и в силу анатомических особенностей устройства ребер и грудной клетки и их тяжести грудная клетка принимает свое исходное положение. В результате этого в легких создается повышенное давление и воздух устремляется наружу. Внутренние межреберные мышцы и мышцы живота помогают сделать форсированный выдох.
В зависимости от того, какие мышцы задействованы во время дыхания, различают четыре типа дыхания: нижнее, среднее, верхнее и смешанное (рис. 4).
Рис. 4. Типы дыхания: а – нижнее; б – среднее; в – верхнее; г – смешанное
НИЖНЕЕ ДЫХАНИЕ, или «брюшное», «диафрагмальное» – это когда в дыхательных движениях участвует только диафрагма, а грудная клетка остается неподвижной. При этом в основном вентилируется нижняя часть легких и немного средняя.
СРЕДНЕЕ ДЫХАНИЕ, или «реберное», – когда в дыхательных движениях участвуют межреберные мышцы, грудная клетка расширяется в стороны и несколько поднимается вверх. Диафрагма при этом слегка поднимается.
ВЕРХНЕЕ ДЫХАНИЕ, или «ключичное», – когда дыхание осуществляется только за счет поднятия ключиц и плеч вверх, при неподвижной грудной клетке и некотором втягивании диафрагмы. При этом в основном вентилируются верхушки легких и немного средняя часть.
СМЕШАННОЕ ДЫХАНИЕ, или «полное дыхание», объединяет в себе все вышеуказанные типы дыхания, равномерно вентилируя все части легких.
При спокойном дыхании не все альвеолы участвуют в дыхании одновременно, часть альвеол находится в состоянии покоя. Они раскрываются при усиленном дыхании во время мышечной работы и при действии на организм разреженного воздуха (в горах). Таким образом, в легких, как и в капиллярах кровеносной системы, при небольшом уровне активности происходит попеременное включение в деятельность то одних, то других «функциональных единиц» (альвеол).
Легкие в зависимости от глубины вдоха и выдоха заполняются воздухом в разной степени. Воздух, содержащийся в легких после максимального выдоха, называется
остаточным
. Объем вдоха и выдоха при спокойном дыхании составляет 500 мл и называется
дыхательным воздухом
. Разница между дыхательным воздухом и остаточным, который выдыхается только при максимальном выдохе, называется
резервным воздухом
. И наконец, то количество воздуха, которое человек может вдохнуть сверх среднего вдоха при максимальном, называется
дополнительным
. Воздух, не участвующий в газообмене, но находящийся в воздухоносных путях, называется
вредным пространством
. Его объем примерно равен 150 мл. Сумма дыхательного, резервного и дополнительного воздуха называется
жизненной емкостью легких
.
Вдыхаемый воздух является смесью альвеолярного и атмосферного воздуха, имеющегося в воздухоносных путях. Если собирать выдыхаемый за один выдох воздух последовательными порциями, то получается следующее: вначале выходит воздух, состав которого такой же, как и атмосферного, далее процент углекислого газа растет, а кислорода снижается. В самом конце выдоха в воздухе содержится 5,5% углекислого газа, а кислорода только 14%. Разница в составе объясняется тем, что выдыхаемый воздух содержит не только воздух, заполнивший альвеолы и участвующий в газообмене с кровью, но и воздух вредного пространства.
Глубокое и быстрое дыхание вымывает из организма углекислый газ, дефицит которого в организме вызывает сужение бронхов и сосудов, приводит к кислородному голоданию клеток мозга, сердца, почек и других органов, поднимает артериальное давление, нарушает обмен веществ. Физиолог Д. Гендерсон многочисленными экспериментами на животных доказал пагубность такого дыхания. Эти эксперименты проводились им в начале нынешнего столетия.
После разбора первой ступени дыхательного процесса – внешнего дыхания, разберем вторую ступень –
транспортировку газов кровью.
Обмен газов между легкими и кровью происходит в силу разности их парциального давления. У человека в альвеолярном воздухе в норме углекислого газа содержится 5—6%, кислорода – 13,5—15%, азота – 80%. При таком процентном содержании кислорода и общем давлении в одну атмосферу его парциальное давление составляет 100—110 мм рт. ст. Парциальное давление этого газа в притекающей в легкие венозной крови всего 60—75 мм рт. ст. Образующейся разности в давлении вполне достаточно для обеспечения диффузии в кровь 6 л кислорода в минуту. Такого количества вполне достаточно для того, чтобы человек мог выполнять самую тяжелую работу. Во время покоя в кровь поступает около 300 мл кислорода.
В крови, оттекающей от легких, почти весь кислород находится в химически связанном с гемоглобином состоянии, а не растворен в плазме крови. Наличие дыхательного пигмента – гемоглобина в крови позволяет при небольшом собственном объеме жидкости переносить значительное количество газов.
Кислородная емкость крови определяется количеством кислорода, которое может связать гемоглобин. Реакция между кислородом и гемоглобином обратима. Когда гемоглобин связан с кислородом, он переходит в оксигемоглобин. На высотах до 2000 м над уровнем моря артериальная кровь насыщена кислородом на 96—98%. При мышечном покое содержание кислорода в венозной крови, притекающей к легким, составляет 65—75% того содержимого, которое имеется в артериальной крови. При напряженной мышечной работе эта разница увеличивается.
При превращении оксигемоглобина в гемоглобин цвет крови изменяется: из ало-красной она становится темно-лиловой и наоборот. Чем меньше оксигемоглобина, тем темнее кровь, а когда его совсем мало – слизистые оболочки приобретают серовато-синюшную окраску. (Используя это свойство, вы можете контролировать степень насыщения кислородом организма после дыхательной тренировки. Если конъюнктива глаза становится алой – все нормально, если нет – тренировка слаба или неправильно проводится.)
Насыщение организма кислородом можно выразить следующей формулой: О2 = К (Ра – Рк), где Ра – парциальное давление кислорода в альвеолярном воздухе; Рк – парциальное давление его в крови; К – индивидуальная константа.
Теперь подробно разберем каждый показатель этой формулы. Ра альвеолярного воздуха до высоты 2000 м почти не изменяется и практически мы на него мало чем можем повлиять. Зато на Рк – парциальное давление кислорода в крови – мы можем сильно влиять. Повышение температуры значительно увеличивает скорость отдачи оксигемоглобина кислорода, мало сказываясь на скорости реакции его соединения с кислородом в легких. Уменьшение Рк повышает насыщение крови кислородом. Этому же способствует и сдвиг кислотно-щелочной реакции крови в кислую сторону. Сдвиг же в щелочную, наоборот, приводит к повышению связывания кислорода с кровью, в результате чего оксигемоглобин хуже отдает кислород тканям. Наиболее важной причиной изменения реакции крови является содержание в ней углекислоты, которая в свою очередь зависит от наличия в крови углекислого газа.
Поэтому чем больше в крови углекислого газа, тем больше углекислоты, а следовательно, и сильнее сдвиг кислотно-щелочной реакции крови в кислую сторону, что способствует насыщению крови кислородом и облегчает отдачу его оксигемоглобином в ткани. При этом концентрация в крови углекислого газа наиболее сильно из всех вышеуказанных факторов влияет на насыщение кислородом крови и отдачи его тканям. Но особенно сильно на Рк влияет мышечная работа или повышенная активность органа, приводящая к повышению температуры, значительному образованию углекислого газа, естественно большему сдвигу в кислую сторону, понижению напряженности кислорода.
Именно в этих случаях происходит наибольшее насыщение кислородом крови и всего организма в целом. К – индивидуальная константа человека – зависит от многих факторов, главными из которых являются следующие: общая поверхность мембран альвеол, толщина и свойства самой мембраны, качество гемоглобина, психическое состояние человека. Раскроем эти понятия.
1. Общая поверхность мембран альвеол, через которую идет диффузия газов, меняется от 30 м2 при выдохе до 100 м2 при глубоком вдохе.
2. Толщина и свойства альвеолярной мембраны зависят от наличия на ней слизи, выделяемой из организма через легкие (рис. 5), а свойства самой мембраны – от ее эластичности, которая, увы, с возрастом ухудшается и определяется питанием человека.
3. Ввиду того что в стенках альвеол имеются нервные окончания, различные нервные импульсы, вызванные эмоциями и т. д., могут значительно влиять на проницаемость альвеолярных мембран. Например, когда человек в подавленном состоянии, ему и дышится тяжело, а когда в веселом – воздух сам вливается в легкие.
Рис. 5. Альвеолы: а – чистые; б – загрязненные слизью, ухудшающей качество газообмена
Поэтому величина К (индивидуальная константа диффузного коэффициента кислорода) у каждого человека своя и зависит от возраста, типа дыхания, чистоты организма и эмоциональной устойчивости человека. В зависимости от вышеуказанного даже у одного и того же человека она значительно колеблется, составляя 25—65 мм кислорода в одну минуту.
Обмен кислорода между кровью и тканями осуществляется подобно обмену между альвеолярным воздухом и кровью. Ввиду того что в тканях происходит непрерывное потребление кислорода, концентрация его падает. В результате кислород диффундирует (переходит) из тканевой жидкости в клетки, где и потребляется. При недостатке кислорода тканевая жидкость, соприкасаясь со стенкой содержащего кровь капилляра, способствует диффузии кислорода из крови в тканевую жидкость. Чем выше тканевый обмен, тем ниже концентрация кислорода в ткани. И чем больше эта разность (между кровью и тканью), тем большее количество кислорода может поступать из крови в ткани при одной и той же концентрации кислорода в капиллярной крови.
Процесс удаления углекислого газа напоминает обратный процесс поглощения кислорода. Образующийся в тканях при окислительных процессах углекислый газ диффундирует в межтканевую жидкость, где его концентрация меньше, а оттуда диффундирует через стенку капилляра в кровь, где его еще меньше, чем в межтканевой жидкости. Проходя через стенки тканевых капилляров, углекислый газ отчасти растворяется в плазме крови как хорошо растворимый в воде газ, а частично связывается различными основаниями с образованием бикарбонатов. Эти соли затем разлагаются в легочных капиллярах с выделением свободной углекислоты, которая в свою очередь быстро диссоциирует под влиянием фермента угольной ангидразы на воду и углекислый газ. Далее ввиду разности парциального давления углекислого газа между альвеолярным воздухом и содержанием его в крови он переходит в легкие, откуда и выводится наружу. Основное количество углекислоты переносится при участии гемоглобина, который, прореагировав с углекислотой, образует бикарбонаты, и лишь небольшая часть углекислоты переносится плазмой.
Ранее уже указывалось, что главным фактором, регулирующим дыхание, является концентрация углекислого газа в крови.
Повышение содержания СО2 в крови, притекающей к головному мозгу, увеличивает возбудимость как дыхательного, так и пневмотоксического центра. Повышение активности первого из них ведет к усилению сокращений дыхательной мускулатуры, а второго – к учащению дыхания. Когда содержание СО2 вновь становится нормальным, стимуляция этих центров прекращается и частота и глубина дыхания возвращаются к обычному уровню. Этот механизм действует и в обратном направлении. Если человек произвольно сделает ряд глубоких вдохов и выдохов, содержание СО2 в альвеолярном воздухе и крови понизится настолько, что после того, как он перестанет глубоко дышать, дыхательные движения вовсе прекратятся до тех пор, пока уровень СО2 в крови снова не достигнет нормального. Поэтому организм, стремясь к равновесию, уже в альвеолярном воздухе поддерживает парциальное давление СО2 на постоянном уровне.
Если дыхание рассматривать с позиции Инь-Ян, то вдох (расширение, увеличение пространства, легкость, охлаждение) – это процесс Инь; выдох (сжатие, убыстрение времени, тяжесть, подъем внутреннего тепла) – это процесс Ян. Во время задержки вдоха активизируется процесс Инь – накапливание в крови кислорода, переход углекислого газа из крови в легкие (накопление, переход из внутреннего во внешнее). Во время задержки выдоха активизируется процесс Ян – поглощение кислорода тканями, распад веществ с выработкой энергии (переход из внешнего во внутреннее, рабочий цикл).
Начиная практиковать дыхательные упражнения, следует запомнить следующие рекомендации:
1. Никогда не задерживайте дыхание на максимальном вдохе, это может привести к растяжению легочной ткани, увеличению диаметра альвеол, что неблагоприятно отразится на здоровье. Если нужно сделать максимальный вдох, то выполняйте его без задержки. Задерживать дыхание на вдохе рекомендуется в пределах 70—80% от глубины максимального вдоха, при этом чем старше человек, тем меньше глубина вдоха за счет ребер. При вдохе больше работайте диафрагмой и умеренно – межреберными мышцами и плечами.
2. Никогда не задерживайте дыхание на максимальном выдохе – это верное средство разладить работу сердца. Если нужно сделать максимальный выдох, делайте его без задержки. Задерживать дыхание на выдохе рекомендуется в пределах 70—80% от максимального выдоха. Чем слабее сердце, тем меньше величина задержки на выдохе. Выполняя выдох, больше работайте диафрагмой – это массирует внутренние органы и сердце.
Клеточным дыханиемназывают совокупность протекающих в каждой клетке ферментативных процессов, в результате которых молекулы углеводов, жирных кислот и аминокислот расщепляются в конечном счете до углекислоты и воды, а освобожденная биологически полезная энергия используется на усиление жизнедеятельности клетки.
ПИТАТЕЛЬНЫЕ ВЕЩЕСТВА служат для построения структур нашего тела, а подвергшиеся деструктуризации дают нам энергию в виде электронов. Конечные продукты деструктуризации питательных веществ: ВОДА дает нам среду для протекания жизненных процессов; УГЛЕКИСЛЫЙ ГАЗ регулирует жизненные процессы (изменяет кислотно-щелочную реакцию, активизирует генетический аппарат клетки, влияет на усвоение кислорода организмом); КИСЛОРОД, потребляемый при дыхании, выводит из организма электроны с пониженным энергетическим потенциалом в виде продуктов конечного звена деструктуризации – углекислого газа и воды.
Уменьшение содержания углерода и его соединений в организме сразу же сказывается на всех жизненно важных процессах, вызывая массу заболеваний.
Наибольшее количество углекислого газа получается при приеме углеводистой пищи, а наименьшее – при потреблении жирной и белковой.