Современная электронная библиотека ModernLib.Net

Занимательная анатомия роботов

ModernLib.Net / Технические науки / Мацкевич Вадим Викторович / Занимательная анатомия роботов - Чтение (стр. 4)
Автор: Мацкевич Вадим Викторович
Жанр: Технические науки

 

 


Тайна пляшущих человечков.

Мы познакомили читателя с различными электронными устройствами, с помощью которых моделируют системы слуха. С этим багажом можно уверенно двигаться вперёд — использовать модели в создании роботов, принцип работы которых основан на сложных процессах управления. Можно создать увлекательные модели, понимающие различные сигналы и даже умеющие танцевать под музыку. Представьте себе куклу и даже робота, отплясывающих весёлый танец под музыку. Такие чудесные модели ещё не созданы, но они вполне осуществимы.


Музыкальные звуки отличаются громкостью, ритмом, тембром и рядом других параметров. Для различных сочетаний этих признаков можно найти общие танцевальные движения, составить матричные таблицы и установить с их помощью закономерные связи звучаний музыки и движений в танце. Затем с помощью электронных устройств и RC — фильтров создать анализаторы, различающие не только тембр звучания, но и отдельные музыкальные ноты, и с помощью логических устройств научиться управлять движениями модели.


Рис. 44. Запись работы каменщика: а — пример записи некоторых движений, б — мотография записи работы каменщика


Возможно, что вам и матрицу составлять не придётся — это уже сделано в Советском Союзе энтузиастом, мурманским врачом А. П. Волышевым, который уже давно разработал систему для записи движений человека — мотографию. Элементы мотографической системы состоят из пяти ведущих знаков, трёх пар линеек и нескольких десятков дополнительных знаков, не превышающих числа нотных знаков в музыке. Пример записи некоторых движений показан на рис. 44, а.

В качестве иллюстрации использования мотогра — фии приводим пример записи работы каменщика (рис. 44, б). Следует отметить, что в записи работы каменщика учтено расположение кирпича слева от каменщика, а строительного раствора — справа. Каменщик держит мастерок в правой руке. На рисунке приведена запись переноса каменщиком раствора и кирпича к месту кладки.

Если вас заинтересует проблема автоматических танцев под музыку, то вначале придётся выполнить мотографическую запись выбранного танца, затем установить логические связи музыки и движений, после чего приступить к составлению логических схем танцев под музыку. Создание механической системы с электромагнитами или другими приводными устройствами будет самой лёгкой частью задачи.

ВАС СЛУШАЕТ РОБОТ

Представьте, что вы звоните по телефону приятелю и вслед за первым гудком в трубке слышите лёгкий щелчок и его голос: «Меня нет дома. Вернусь к восьми. Что вы мне хотите сказать?». Не пытайтесь уличить приятеля во лжи. Он не разыгрывает вас. И хотя слышен его голос, приятеля действительно нет дома. Вам ответил телефонный «секретарь». Когда его хозяин вернётся домой, магнитофон расскажет ему о вашем звонке и о том, что вы передали.

Как построен робот — автоответчик, поясняет рис. 45. Звук вызова (звонок) телефонного аппарата воспринимает микрофон ВМ1, преобразует в электрический сигнал, который приводит в действие сначала акустическое реле, а затем реле времени. Реле К2, Срабатывая, замыкает контакты К2.1 и подаёт питание на магнитофон, усилитель блока ответа и электромагнит ЭМ, приводящий в действие механизм подъёма телефонной трубки.

Блок ответа состоит из магнитной головки BS1 (воспроизводящей), установленной на магнитофоне, и транзисторного усилителя. Громкоговоритель ВА1 воспроизводит информационную запись, предварительно выполненную на одной из дорожек магнитной ленты. Индукционный датчик ИД с телефонного аппарата снимает сигнал сообщения и записывает его на другую дорожку магнитной ленты. По истечении времени выдержки реле К2 размыкает контакты и автоответчик переходит в исходное состояние.


Рис. 45 Схема робота-автоответчика

6. МОДЕЛИРОВАНИЕ ЗРЕНИЯ

Специалисты в области бионики ведут работы по моделированию некоторых функций человеческого глаза. Создана электронная модель сетчатки, воспроизводящая работу фоторецепторов в центральной ямке и на периферии, предложено устройство, аналогичное механизму управления движением глазного яблока. Уже есть попытки построить электронную модель цветового восприятия. Первые «видящие» роботы — это различные опознающие устройства, применяемые в медицине и криминалистике.

Принципиально то, что робот может «видеть» гораздо лучше человека. Ведь человеческому глазу доступна лишь оптическая часть спектра электромагнитных волн. А электронное устройство свободно от биологических ограничений. Его можно, например, сделать чувствительным к инфракрасным и ультрафиолетовым лучам. К электронному глазу можно подключить радар. Он способен видеть в темноте и при сверхярком свете, работать в комплексе с телескопом или микроскопом, фиксировать сверхбыстрые и сверхмедленные процессы.

Современные фотореле реагируют на невидимые глазом участки спектра (инфракрасное и ультрафиолетовое излучение), способны регистрировать изменения параметров света, происходящие с частотой до миллиона колебаний в секунду (предельная частота, воспринимаемая человеческим глазом, 20 Гц).

Как уже говорилось, электронными элементами зрения в технике являются фотоэлементы — устройства, которые при освещении меняют свои электрические характеристики (одни из них под действием света начинают пропускать электрический ток, другие сами становятся источниками тока). Основное различие между человеческим глазом и фотоэлементом состоит в том, что глаз в сочетании с мозгом создаёт детальное изображение увиденного, фотоэлемент же всего лишь различным образом реагирует на факт наличия света.

На рис. 46 показана увеличенная структура сетчатки глаза, состоящей из палочек и колбочек. Любая чувствительная к свету клетка сетчатки соединена непосредственно со зрительным нервом, а также с другими клетками, которые, в свою очередь, соединены между собой. Таким образом, световой сигнал уже на этом этапе «продумывается». Сам глаз человека выполняет часть функций осмысливания, свойственных головному мозгу.

Подобно сетчатке глаза устроен экран электроннолучевых передающих трубок, состоящий из множества микроскопических элементов диаметром около 1 мкм (рис. 47). Ток каждого микрофотоэлемента трубки коммутируется электронным лучом, построчно пробегающим по всем микрофотоэлементам экрана.

Чтобы научить робота видеть, нет нужды приделывать ему голову с глазами. Как ни странно, у роботов — манипуляторов глаза, как правило, находятся в руке… Вот вам пример. Представьте себе, что вместо рабочего у печи стоит робот — механическая рука. В управляющей вычислительной машине заложена программа его действий. Нужно только отдать команду приступить к работе (рис. 48).


Рис. 46 Структура сетчатки г газа


Рис. 47 Экран передающей те ревизионной трубки


Рис. 48. Манипулятор за работой


Робот зашевелился, протянул клешню в печь, нащупал раскалённую деталь, взял её точно посередине, осторожно вынул, перенёс, минуя окружающие предметы, к ванне и опустил в масло. Вернулся за второй деталью, взял её точно так же, потом за третьей, четвёртой… И так без устали, без передышки.

Для этого у него есть все возможности. В его клешне расположены фотоглаза, которыми робот «видит» деталь и на расстоянии, и в непосредственной близости.

На рис. 49 показана структурная схема электронного блока робота, занимающегося построением «домиков» из кубиков под зрительным контролем. Телевизионная камера наблюдает за работой руки (глаз системы). Электронно — вычислительное устройство управляет механической рукой на основе анализа телевизионных сигналов и информации о положении руки. Эта, казалось бы, очень простая задача требует создания сложнейших программ для ЭВМ. Следует сказать, что на пути к созданию машин, способных приспосабливаться к окружающей обстановке, самое трудное препятствие — проблема искусственного зрения. Это огромное поле деятельности для любого человека, интересующегося системами электронного зрения и их практическим воплощением. А вот как всё начиналось.


Рис. 49 Схема интегрального робота


Рис. 50 Селеновый фотоэлемент


В 1917 году шведский химик Йене Берцелиус открыл новый химический элемент — селен. Было замечено, что в обычных условиях он проводит электрический ток очень плохо. Если включить в цепь (рис. 50) батареи и миллиамперметра пластину селена, то, пока свет не попадёт на неё, ток в цепи будет очень слабым, так как удельное сопротивление селена велико. Но стоит лишь осветить селеновую пластину, как сопротивление её резко уменьшается, а ток возрастает. Чем больше будет освещённость пластины, тем меньше её сопротивление и тем сильнее ток в цепи.

Научное объяснение фотосопротивления было дано много лет спустя после его открытия. Сделал это наш выдающийся соотечественник Александр Григорьевич Столетов.

В наше время любой юный техник без особого труда может сделать фототранзистор. Принцип действия фототранзистора основан на чувствительности к свету полупроводникового р — и перехода. Кванты света, падая на переход, высвобождают в нём электроны. Чем больше световой энергии попадает на полупроводник, тем больше высвобождается электронов. В результате появляется дополнительный электрический ток через эмиттерный переход, управляющий сопротивлением транзистора. Для изготовления фоторезистора необходим исправный транзистор МП40 или МП42 со статическим коэффициентом передачи тока h 2 i3 = 40… 100 и начальным током коллектора не более 20 мкА. Лобзиком осторожно спиливают крышку транзистора и тщательно удаляют с кристалла попавшие на него металлические опилки. Если эти операции выполнены аккуратно, транзистор не изменит параметров. Убедившись в этом, вы можете считать, что справились с изготовлением фоторезистора.

Окончательно проверяют работоспособность самодельного фоторезистора авометром (рис. 51). Эмит — терный вывод фототранзистора присоедините к тому зажиму прибора, который соединён с плюсовым полюсом внутренней батареи. Базовый вывод оставьте свободным.

Когда на фототранзистор не попадает свет (прикройте его плотной бумагой), авометр должен показывать сопротивление более 50 кОм.

Теперь поднесите к фототранзистору включённую настольную лампу так, чтобы ещё лучи падали на кристалл под прямым углом со стороны эмиттерного вывода. Стрелка омметра должна тут же отметить резкое уменьшение проходного сопротивления. На расстоянии 5… 10 см от лампы проходное сопротивление коллектор — эмиттер фототранзистора должно упасть до 100…200 Ом.

Поверните фототранзистор на 90° по отношению к его оси. Сопротивление увеличится в 5… 10 раз. О причине можно легко догадаться — лучи света стали теперь попадать только на часть кристалла. Уменьшилась поверхность облучения — уменьшилась и чувствительность фотоэлемента. Отсюда вывод: совершенно небезразлично, как устанавливать фототранзистор по отношению к лучу света. Если этого не учитывать, изготовленные вами фотореле будут работать ненадёжно. Конечно, самодельные фотоприёмники менее чувствительны и надёжны по сравнению с выпускаемыми промышленностью.


Рис. 51 Самодельный фототранзистор


Моделирование светочувствительных устройств из радиокубиков. Из радиокубиков можно собрать несколько таких устройств и проанализировать их работу. Перечислим самые простые из них: фоторезистор в цепи постоянного тока: фотореле с усилителем на транзисторе: автомат включения освещения: автомат ночной сш нализации.

Фоторезистор в цепи постоянного тока — устройство, составленное из последовательно включённых фоторезистора ФСК — 1, измерительного прибора — миллиамперметра и источника питания, даёт возможность продемонстрировать свойство полупроводников (фоторезисторов) изменять сопротивление электрическому току под воздействием на них света.

При освещении фоторезистора светом сопротивление ею уменьшается, ток в цепи увеличивается, что отмечает миллиамперметр.

Фотореле с усилителем на одном транзисторе (рис. 52, а). Простая схема фотореле может быть применена при построении системы, управляемой светом. Фотореле выполнено на транзисторе VT1, который играет роль усилителя постоянного тока. Нагрузкой служит обмотка электромагнитного реле К1. При нажатии на кнопку SB1 реле не срабатывает, если фоторезистор затемнён. Если на фоторезистор направить свет, то его сопротивление уменьшится, транзистор откроется и реле сработает. Сопротивление токоограничительного резистора R1 зависит от параметров выбранной лампы.

Фотореле с усилителем на двух транзисторах (рис. 52, б) содержит двухступенный усилитель постоянного тока. Нагрузкой транзистора VT2 является обмотка реле. Это фотореле более чувствительно к малым световым потокам.

Чувствительное фоторел e с усилителем на транзисторах (рис. 52. в) собрано на двух транзисторах, которые работают в усилителе постоянного тока. Фотореле чувствительно к малым световым сигналам.


Рис. 52. Фотореле с усилителями на транзисторах


Автомат включения освещения (рис. 53) позволяет автоматически включать освещение при наступлении темноты. Исполнительное устройство подключают к контактам реле.

Автомат ночной сигнализации (рис. 54) представляет собой генератор световых сигнальных импульсов. Он начинает работать только при наступлении темноты или при затемнении фоторезистора. Длительность сигналов можно изменять подборкой конденсатора в пределах 5… 100 мкФ.


Рис. 53. Автомат включения освещения


Рис. 54. Автомат ночной сигнализации


Некоторые из рассмотренных устройств можно использовать в роботе, в его светочувствительном блоке.

ЗДРАВСТВУЙ, МИКРОЭЛЕКТРОНИКА!

Современная микроэлектронная техника позволяет создать малогабаритные и высокочувствительные системы зрения самого различного назначения.

На рис. 55 приведена принципиальная схема фотореле с цифровым логическим элементом. Датчиком служит фотодиод BD1, который подключён непосредственно к входам элемента DD1.1 (К155ЛБЗ).

Когда фотодиод освещён, его сопротивление мало и напряжение на выходе инвертора DD1.1 близко к нулю. На выходе элемента — высокий уровень, который закрывает транзистор VT1. Реле К1 отключается.

Стоит прервать световой поток, как сопротивление фотодиода увеличится, транзистор откроется, реле включится.

Порядок работы фотореле можно изменить — заставить реле срабатывать при освещении. Для этого вместо одного следует включить последовательно два инвертора.


Рис. 55. Микроэлектронное реле


Микроэлектронная система обнаружения пламени. В условиях современных роботизированных цехов особое значение имеют системы предупреждения о пожарной опасности. Ими можно оснастить самих роботов. Применение для обнаружения пламени темпера — турно — световых датчиков в ряде случаев оказывается нецелесообразным, так как они срабатывают не только при возникновении или исчезновении пламени, но и по разным другим причинам, например при случайном увеличении освещённости, повышении температуры. Поэтому при использовании таких датчиков необходимо принимать зачастую очень сложные меры, чтобы исключить ложные срабатывания. Очевидно, что для чёткого обнаружения пламени необходимы датчики, действие которых основано на изменении факторов, непосредственно характеризующих пламя.

Для открытого пламени, как показывает практика, наиболее характерна пульсация его инфракрасного и ультрафиолетового излучения — интенсивность различных видов излучения пламени не остаётся постоянной, а изменяется во времени. Явление пульсации, обусювленное физическими процессами, происходящими при горении, можно наблюдать, в частности, на примере обычной газовой юрелки.

Как показали опыты, пульсация характеристик пламени многих горючих материалов, в том числе при искусственном распылении топлива (например, в топках котлов и других теплоустановок), происходит с частотой, лежащей в пределах 15…30 Гц.

7. ОСЯЗАНИЕ РОБОТОВ

Создание по — настоящему разумного робота невозможно без датчиков, подобных органам чувств человека. О состоянии собственного тела мы можем судить и с закрытыми глазами — от нервных центров в мозт передаётся вся нужная информация. Системой «очувствления» должны обладать и самоуправляемые роботы. Англизируя информацию о состоянии внешней среды и своём собственном, ЭВМ принимает решение о составе и последовательности действий.

Первым чувством, которому «научили» роботов, было осязание. Датчики давления, температуры, влажности, встроенные в пальцы руки, позволяют роботу определять, есть ли рядом нужный предмет, каковы его размеры, форма, температура поверхности. Осязательными (тактильными) датчиками оснащены роботы третьего поколения. Движущиеся, ходячие роботы оповещаются о приближении к препятствию специальными антеннами.

Роботы, которые предназначены для сборки, должны уметь распознавать отдельные детали. В последнее время появилась возможность создания искусственных органов осязания, заменяющих пальцы рук человека. В качестве искусственных, ощупывающих окружающие предметы органов осязания используются ёмкостные, индукционные, температурные, радиоактивные и ультразвуковые щупы — датчики, которые способны превращать воздействия, получаемые ими от ощупываемого предмета, в определённые электрические сигналы.

Среди наиболее простых и наиболее распространённых датчиков внешней информации можно отметить так называемые контактные датчики. На концах схвата — руки робота устанавливают специальные выключатели, которые фиксируют факт прикосновения к детали или станку и посылают импульс в мозг робота. Десяток таких выключателей, расположенных не только внутри пальцев схвата, но и на наружной его поверхности (сверху, снизу, справа и слева), помогают роботу «на ощупь» определить положение детали или возникшего препятствия.

Однако человек, манипулируя предметом, фиксирует не только факт соприкосновения, но и ощущает давление руки на предмет через кожу и таким образом может регулировать усилие сжатия соответственно массе и прочности предмета. Такой датчик представляет собой, например, слой электропроводящего вспененного полиуретана, заключённого между тонкими металлическими пластинками. В зависимости от давления расстояние между пластинами меняется. Соответственно изменяется электрическое сопротивление цепи. Эти свойства искусственной чувствительной кожи уже используют при протезировании.

В качестве весьма грубого примера конструкции схвата манипулятора, ощущающего предметы, рассмотрим устройство манипулятора Эрнста (рис. 56), собранного им в конце 1961 года. Манипулятор оснащён двумя группами датчиков. Одну образуют датчики, установленные во всех подвижных сочленениях. Они посылают информацию о том, как механизм выполняет сигналы, управляющие движением всех сочленений руки. Это датчики внутренней обратной связи. Система непрерывно сравнивает те положения руки, которые задаёт управляющая машина, с положениями, которые рука занимает в действительности, и в соответствии с результатами этого сравнения ЭЦВМ непрерывно генерирует сигналы управления, устраняющие рассогласование, заставляя механическую руку занимать нужные положения и нужным образом менять их.

Вторая группа датчиков установлена на схвате. Именно эти датчики связывают руку с внешним миром. Схват, как обычно состоит из двух пальцев. Верхняя, нижняя и передняя плоскости каждого пальца оснащены контактными датчиками, работающими в двоичном коде: включён — выключен. Эти датчики сигнализируют о том, что рука наткнулась на объект нерабочим участком. На внутренней и рабочей передней плоскостях каждого пальца расположено ещё по восемь датчиков. Они работают уже не в двоичном коде, а генерируют сигналы, уровень которых пропорционален силе нажатия на датчик. Шесть из них расположены на рабочих плоскостях схвата и информируют о том, какие части плоскостей участвуют в схвате и с какой силой пальцы сжимают объект.


Рис. 56. Манипулятор Эрнста:

1 — датчик, определяющий положение объекта между пальцами схвата; 2 — датчик сигнализации соприкосновения с нерабочими участками пальцев; 3 — датчик, сигнализирующий о расположении схватываемого объекта; 4 — фотодиод, реагирующий на тень объекта; 5 — датчики, сигнализирующие о соприкосновении с объектом; 6 — датчик, включающийся при соприкосновении руки со столом


Два датчика, расположенные на передних плоскостях пальцев, регистрируют силу сопротивления движению схвата со стороны объекта. В случае, если рука с ним сталкивается в процессе движения, эти датчики позволяют получить информацию о протяжённости и размерах этого объекта.

Таким образом, схват — его рабочие и нерабочие поверхности — снабжён подобием осязания и очувствлен по силе сжатия. Кроме того, на передних поверхностях пальцев между датчиками осязания помещено по глазу — фотодиоду, реагирующему на затенение: когда рука приближается к какому — либо объекту, но ещё не коснулась его, в машину поступает сигнал о приближении и о необходимости снизить скорость перемещения. ЭЦВМ принимает, обрабатывает и использует принятую информацию при реализации заданной программы.

Манипулятор Эрнста работает как робот с «завязанными глазами». Датчики, которыми он оснащён, собирают информацию вслепую — осязанием, «на ощупь». Он не может отделить процесс сбора информации от процесса движения, сначала получить представление о ситуации, сложившейся во внешнем мире, и только затем начать действовать. Именно поэтому он вынужден искать их один за другим. А настоящий робот должен иметь такие органы чувств, которые дали бы ему возможность предпослать движению сбор информации.

КОНСТРУИРОВАНИЕ СЕНСОРНЫХ УСТРОЙСТВ

Как мы уже говорили, неотъемлемой частью систем осязания роботов являются сенсорные устройства, вызывающие срабатывание механизмов ориентации и захвата предметов. Контактное управление все чаще находит сейчас применение в разных областях. В обыденной жизни можно встретиться с этим способом управления в лифте. В современных лифтах вместо обычных кнопок устанавливаются на панели сенсорные контакты — неподвижные металлические пластины, при прикосновении к которым приходит в действие механизм лифта.

Что это за система управления, как она работает и каковы её преимущества? Сенсорное управление имеет одно преимущество — в нём нет электрических контактов — одного из самых ненадёжных звеньев электронной аппаратуры. Именно благодаря этому бесконтактное управление нашло широкое распространение. В частности, сенсорными переключателями каналов оснащены многие современные телевизоры.

Как работает система сенсорного управления? Различают два способа воздействия: ёмкостное и резистивное.

Тело человека имеет определённую довольно большую ёмкость (рис. 57) относительно окружающих проводящих предметов. Поэтому, когда человек прикасается к металлической пластине — сенсорному контакту (или короче — сенсору), резко изменяется ёмкость, приведённая к входу аппарата. На этом основана работа ёмкостного сенсора.

В резистивном сенсоре использовано сопротивление покрова пальца (рис. 58). В этом случае сенсор состоит из двух изолированных металлических пластин, которые замыкают пальцем при прикосновении.

Самая простая система сенсорного управления подобного рода может выглядеть так, как представлено на рис. 59. В исходном состоянии, т. е. тогда, когда мы не касаемся сенсора Е1 пальцем, через транзистор VT1 течёт очень слабый ток, поэтому напряжение на его коллекторе равно напряжению питания (на резисторе R1 почти нет падения напряжения). Прикосновение пальца к обеим частям сенсора равнозначно включению резистора между источником питания и базой транзистора. Таким образом, появляется базовый ток, что вызовет увеличение тока через цепь коллектора и включённый там резистор. При этом напряжение на коллекторе немедленно уменьшится — на выходе сформируется так называемый перепад напряжения. Если убрать палец с сенсора, напряжение на выходе восстановится. Таким простым способом — прикосновением пальца к сенсору — мы вызываем образование импульсов напряжения на выходе устройства.


Рис. 57. Ёмкостный сенсор


Рис. 58. Резистивнъш сенсор


Рис. 59. Система контактного управления


Зная, как образуются управляющие электрические импульсы, можно сравнительно просто собирать различные устройства, выполняющие те или иные задачи. Так на рис. 60, а представлена структурная схема узла управления освещением. Мы видим здесь три основных составных элемента: сенсор Е1, усилитель сигнала, электронный переключатель — триггер, усилитель постоянного тока и его нагрузка — её роль играет лампа накаливания HL1. Принципиальная схема устройства показана на рис. 60,6. Электрические импульсы с выхода усилителя на транзисторе VT1 переключают триггер, собранный на транзисторах VT2, VT3. Триггер переходит из одного устойчивого состояния в другое, когда открыт то один из его транзисторов, то другой.

Когда открыт транзистор VT3, то закрыт транзистор VT4 усилителя тока и лампа не горит. Она загорается при закрывании транзистора. В устройстве использована лампа на напряжение 6 В и ток 0,1 А.

В устройстве можно применить любые германиевые транзисторы малой мощности. Германиевые диоды — тоже любые. Важно лишь, чтобы в триггере были однотипные транзисторы и однотипные диоды. Источник питания — две батареи 3336, соединённые последовательно.


Рис. 60. Сенсорная система управления освещением: а) монтажная схема, б) структурная схема


После того как устройство будет смакетировано и проверено, его можно установить в корпус настольной лампы. На рис. 61 показано примерное размещение отдельных узлов и деталей в корпусе лампы. Сенсорный выключатель. Этим устройством можно заменить выключатели электроосветительных приборов, телевизора, радиоприёмника. Многие уже, наверное, сталкивались с таким явлением: если прикоснуться пальцем к тока. Вот этим, казалось бы, вредным эффектом можно воспользоваться, собрав сенсорное устройство, схема которого приведена на рис. 62. Если прикоснёмся пальцем к сенсорному контакту Е1, через конденсатор С1 к затвору полевого транзистора VT1 (в исходном состоянии он открыт) будет приложено небольшое переменное напряжение. Ступень на транзисторе VT1 представляет собой усилитель — ограничитель.


Рис. 61. Сенсорное устройство управления ночным освещением


Рис. 62. Транзисторное сенсорное устройство


Усилитель постоянного тока на транзисторах VT2 и VT3 необходим для усиления сигнала по мощности до уровня, достаточного для срабатывания реле К1. Контакты этого реле коммутируют исполнительные цепи. Конденсатор С2, которым зашунтировано реле, сглаживает пульсации, напряжения на обмотке. Стабилитрон в цепи эмиттера выходного транзистора обеспечивает помехоустойчивость устройства.


Рис. 63. Сенсорный выключатель


Рис. 64 Схема блока питания


На рис. 63 приведена схема ещё одного варианта сенсорного выключателя, способного включать и выключать бытовые приборы. Он состоит из двух ячеек, подобных описанной выше. В момент прикосновения к сенсору Е1 срабатывает реле К1. Контактами К1.2 (на схеме не показаны) оно включает исполнительную цепь и самоблокируется через контакты К 1.1 и К ГЛ. Для отключения прибора от сети достаточно прикоснуться пальцем к сенсору Е1. Срабатывает реле КГ, цепь самоблокировки разрывается, и реле К1 возвращается в исходное состояние. Для этих сенсорных устройств можно сделать простейший блок питания. Его схему вы видите на рис. 64.

Во всех устройствах могут быть применены следующие реле: РСМ2 (паспорт Ю.171.81.56), РЭС22 (РФ4.500.129), РЭС22 (РФ4.500.131). Помимо этого, везде, кроме первой ячейки переключателя, могут быть использованы реле: РЭС10 (РС4.524.303), РЭС15 (РС4.591.003), РЭС15 (РС4.591.004) с одной группой контактов.

В качестве сетевого трансформатора Т1 блока питания использован выходной трансформатор кадровой развёртки ТВК 110ЛМ от телевизора. Этот трансформатор имеет три обмотки (1 — 2400 витков провода ПЭВ — 1 0,14). Переделка трансформатора заключается в том, что к обмотке II следует добавить ещё 30 витков, намотанных тем же проводом. Обмотку III можно удалить. Если же вам удастся достать реле РЭС22 (паспорт РФ4.500.129), трансформатор можно не переделывать.

8. МОДЕЛИРОВАНИЕ НЕРВНОЙ СИСТЕМЫ (НЕЙРОНЫ И НЕЙРОННЫЕ СЕТИ)

КИБЕРНЕТИКА И НЕРВНАЯ СИСТЕМА

Многое в работе нервной системы человека до сих пор непонятно учёным. Тем не менее общие закономерности управления, установленные кибернетикой, справедливы и для неё. Кибернетика разрабатывает математические приёмы, позволяющие на основе внешних данных судить о поломке математической машины. Врач встречается с аналогичной задачей. На основе внешних признаков требуется установить характер заболевания. Основываясь на кибернетике, медицина использует разработанные ею методы для решения и этой задачи. Исследуя закономерности управления, общие для механизма и нервной системы, кибернетика должна оперировать понятиями, применимыми к тому и другому.

Как мозг, так и машина состоят из определённых элементов, которые в своей совокупности образуют единое целое — систему. Это можно сказать как о всём мире в целом, так и об отдельных его частях.

Искусственные управляющие устройства так же как мозг человека, относят к одному и тому же классу самоуправляющихся систем. Все такого рода самоуправляющиеся системы называют кибернетическими


  • Страницы:
    1, 2, 3, 4, 5, 6, 7