Современная электронная библиотека ModernLib.Net

Историко-критическое введение в философию естествознания

ModernLib.Net / Философия / Лукьянов Аркадий / Историко-критическое введение в философию естествознания - Чтение (стр. 6)
Автор: Лукьянов Аркадий
Жанр: Философия

 

 


      Конечно, пересекутся, но на обычной (привычной нам) плоскости. Однако, выдвинув свой постулат, Лобачевский сразу же расстался с абсолютным, всюду однородным эвклидовым пространством, поскольку в нём такое допущение было бы невозможно и бессмысленно. Отвергнув истинность V постулата, он тем самым открыл существование пространства с другими свойствами. "Плоскость" в этом новом, неевклидовом пространстве вовсе не плоская. У неё имеется кривизна. Само пространство Лобачевского обладает кривизной. В частном - предельном случае, когда радиус кривизны становится равным бесконечности, пространство Лобачевского переходит в "плоское" (нулевой кривизны) пространство Евклида. Следовательно, геометрия последнего есть только частный случай геометрии Лобачевского. Поэтому начерченные на листке бумаги параллельные Лобачевского имеют чисто условный вид и, конечно, они пересекутся. Но если мы растянем мысленно этот листок-плоскость на миллионы и миллиарды световых лет, можно ли поручиться, что она не приобретёт кривизны? Если приобретёт, то наши прямые ("прямые Лобачевского") не встретятся. Так, предполагая возможность применения своей геометрии "за пределами видимого мира" Лобачевский смог заглянуть в беспредельные дали.
      Данную мысль можно геометрически проинтерпретировать следующим образом: пусть мы имеем прямую а и через точку с, лежащую вне её, проходит на плоскости прямая b, параллельная а. Теперь, пусть прямая b отклонится, проходя через с, на сколь угодно малую долю градуса (См. рис. 2).
      b'
      b a
      a
      Рис. 2.
      Встретится ли b' с прямой а в этом, "видимом мире"? Ведь после работ А.А. Фридмана и после того, как было установлено, что величина радиуса кривизны космического пространства оказывается переменной, принимающей различные значения в зависимости от структуры поля тяготения тех или иных его участков, выдвинутый нами вопрос является вполне оправданным. Но раз это так, то можно построить совершенно непротиворечивую геометрию, в которой оказывается изменённым только пятый постулат, а все остальные аксиомы Евклида сохраняют свой прежний вид.
      Только спустя почти полтора столетия после открытия неевклидовой геометрии, на основе общей теории относительности Эйнштейна, астрономия установила, что реальное пространство Вселенной действительно обладает кривизной, и его геометрия отлична от евклидовой. Лобачевский предположил даже, что его "геометрии, может быть, следуют молекулярные силы" (по современной терминологии - ядерные силы).
      Отметим, что независимо от Лобачевского, к аналогичным идеям пришли К.Ф. Гаусс (он так и не решился опубликовать свой вариант неевклидовой геометрии, так как "боялся криков беотийцев") и Янош Бойяи, сын известного венгерского математика Фаркаша Бойяи. Бойяи-сын послал Гауссу текст своего сочинения, которое было им поименовано как "аппендикс" (вероятнее всего, это был намёк на некое инородное "тело", которое содержала в себе геометрия Евклида). Однако Гаусс заявил в своём ответном послании, что пришёл к этим идеям уже в юные годы.
      Развитие неевклидовых геометрий в XIX веке всё же до конца не устранило, как нам думается, вопрос о том - что может дать познанию чистое мышление независимо от чувственного восприятия? В те времена, когда философия находилась в процессе своего становления, было широко распространено мнение, что можно познать всё, что угодно, отталкиваясь от одного лишь чистого мышления. Эта аристократическая иллюзия о неограниченной проницательности мышления "имеет своего двойника - значительно более плебейскую иллюзию наивного реализма, согласно которому все вещи "существуют" в том виде, в каком их воспринимают наши чувства. В обыденной жизни человека и животных господствует именно эта иллюзия. Она же служит отправным пунктом всех наук, в особенности естественных" (См.: Эйнштейн А. Собр. науч. трудов в 4-х т.: Т. IV. - М.: Наука, 1967. - С. 249).
      Та ошибка, что в фундаменте евклидовой геометрии и связанного с ней понятия пространства лежат потребности чистого мышления, обусловлена во многом тем, что эмпирический базис, на котором основывается аксиоматическое строение евклидовой системы, был предан забвению. Ведь в той мере, в которой можно вести речь о существовании в природе твёрдых тел, евклидова геометрия должна считаться физической наукой, польза которой должна быть показана её применением к чувственному восприятию. С точки зрения физической науки единственное значение евклидовой геометрии заключается в том, что законы последней не зависят от специфической природы тел, относительные положения которых она изучает. "Такое использование понятий, когда они рассматриваются независимо от эмпирической основы, которой они обязаны своим существованием, не всегда является вредным в науке. Но если думать, что эти понятия, происхождение которых забыто, являются необходимыми и незыблемыми спутниками нашего мышления, то это будет ошибкой, которая может стать серьёзной опасностью для прогресса науки" (Там же. - С. 207).
      Д. Юм впервые отчётливо осознал ту мысль, что понятия, которые мы считаем существенными (например, понятие причинной связи), невозможно получить из материала, доставляемого нашими чувствами. Это вызвало у него скептическое отношение ко всякого рода знаниям.
      Однако исследователь всегда стремится к достоверному знанию. Именно поэтому миссия Д. Юма обречена на неудачу. И тут на сцену выходит И. Кант, который пытается обосновать то положение, что достоверное знание должно быть основано на чистом мышлении (например, так обстоит дело с геометрическими теоремами и с принципом причинности). В настоящее время известно, что упомянутые понятия не обладают абсолютной достоверностью. Однако И. Кант прав был в том, что в процессе мышления мы действительно, с некоторым "основанием", пользуемся понятиями, не связанными с ощущениями (См.: Там же. - С. 251). Мы приобрели "привычку так тесно связывать определённые понятия и суждения с некоторыми ощущениями, что не отдаём себе отчёта в том, что мир чувственного восприятия отделён от мира понятий и суждений непроницаемой стеной, если подходить к этому вопросу чисто логически" (Там же.). Но отсюда вовсе не следует, что мы должны постоянно бояться метафизики и обращаться лишь к одному эмпирическому опыту. Для развития механики было счастливой случайностью, что философы прошлого в процессе "эмпирической интерпретации понятия объективного времени не вскрыли отсутствия в нём точности" (См.: Там же. - С. 207-208).
      Известно, что введение "объективного времени" заключает в себе два независимых друг от друга утверждения.
      "1. Введение местного объективного времени, связывающего последовательность опытов во времени с показаниями "часов", т.е. с замкнутой системой периодических событий.
      2. Введение понятия объективного времени для событий во всём пространстве; только благодаря этому понятию идея местного времени расширяется, становясь идеей о времени в физике" (Там же. - С. 207).
      При этом нам следует учитывать то обстоятельство, что "понятие периодического процесса предшествует понятию времени" (если, конечно, заняться исследованием происхождения понятия времени). Кроме того, до Эйнштейна физики пренебрегали существующим различием между "одновременно увиденным" и "одновременно наступившим", так что стиралась всякая разница между местным временем и временем. Господствовавшая иллюзия, что с позиций опыта "смысл одновременности пространственно разделённых событий ... ясен, априори, происходила от того, что в нашем повседневном опыте мы могли пренебрегать временем распространения света" (Там же).
      Известно, что уже в статье "К электродинамике движущихся тел" (1905) Эйнштейн сформулировал следующие принципы:
      "1. Законы, по которым изменяются состояния физических систем, не зависят от того, к которой из двух координатных систем, движущихся относительно друг друга равномерно и прямолинейно, эти изменения состояния относятся.
      2. Каждый луч света движется в "покоящейся" системе координат с определённой скоростью V, независимо от того, испускается ли этот луч света покоящимся или движущимся телом" (Там же. - Т. 1. - М.: Наука, 1965. - С. 10).
      Правильное понимание этих постулатов, из которых нельзя вырвать не только ни одного слова, но и ни одного знака, приводит нас к тому выводу, что понятие одновременности утратило своё абсолютное значение в том плане, что два события, "одновременные при наблюдении из одной координатной системы, уже не воспринимаются как одновременные при рассмотрении из системы, движущейся относительно данной системы" (Там же. - С. 13).
      Из закона постоянства скорости света для всех инерциальных систем отсчёта вытекает, что "пространственные координаты х1, х2, х3 и время х4 должны преобразовываться согласно "преобразованиям Лоренца", которые характеризуются инвариантностью выражения:
      ds2 = dx12 + dx22 + dx32 - dx42 ,
      если единица времени выбрана так, что скорость света с = 1.
      Благодаря такому приёму время утратило свой абсолютный характер и стало рассматриваться как алгебраически подобное (почти) пространственным координатам. Абсолютный характер времени, и в частности, одновременности, был опровергнут, и четырёхмерное описание было ведено как единственно разумное" (Там же. - Т. IV. - С. 214). Величину ds мы называем "расстоянием" между двумя событиями или точками четырёхмерного пространственно-временного континуума.
      К этому хотелось бы добавить следующее. Скорость света с - одна из величин, входящих в физические уравнения в качестве "универсальной постоянной". Но если взять за единицу времени вместо секунды то время, за которое свет проходит 1 см, то с больше не будет входить в уравнения. В этом смысле можно сказать, что постоянная с является лишь кажущейся универсальной постоянной. Однако "таких произвольных постоянных не существует. Иначе говоря, природа устроена так, что её законы в большей мере определяются уже чисто логическими требованиями настолько, что в выражения этих законов входят только постоянные, допускающие теоретическое определение (т.е. такие постоянные, что их численных значений нельзя менять, не разрушая теории)" (Там же. - С. 281).
      Из специальной теории относительности (СТО) следуют новые пространственно-временные представления, такие, например, как относительность длин и промежутков времени, относительность одновременности событий.
      Тот факт, что СТО представляет собой лишь первый шаг в необходимом развитии, стал ясен Эйнштейну после того, как он попытался представить в рамках этой теории и тяготение. Однако в дальнейшем он убедился в том, что в рамках СТО нет места для удовлетворительной теории тяготения.
      И вот однажды, когда он ехал в лифте и задался вопросом, а что произойдёт, если лифт вдруг оборвётся, ему пришла в голову следующая мысль: "факт равенства инертной и весомой массы или, иначе, тот факт, что ускорение свободного падения не зависит от природы падающего вещества, допускает и иное выражение. Его можно выразить так: в поле тяготения (малой пространственной протяжённости) всё происходит так, как в пространстве без тяготения, если в нём вместо "инерциальной" системы отсчёта ввести систему ускоренную относительно неё" (См.: Там же.
      С. 282).
      Итак, физику в определённом смысле можно заменить геометрией, т.к. геометрия зависит от свойств окружающего нас пространства. Эйнштейн пришёл к тому выводу, что "скорость света всегда должна зависеть от координат, если присутствует гравитационное поле" (См.: Там же. - Т. 1. - С. 577).
      Из общей теории относительности вытекало, что свойства пространства-времени в данной области определяются действующими в ней полями тяготения. При переходе к космическим масштабам геометрия пространства-времени может изменяться от одной области к другой в зависимости от концентрации масс в этих областях и их движения. И ещё: справедливости ради мы должны обратить внимание на тот существенный момент, что природа пространства в общей теории относительности является псевдо-римановой (Бернгард Риман был одним из тех выдающихся математиков, кто шёл вслед за Лобачевским. Он изменил пятый постулат таким образом, что через точку, лежащую вне прямой в одной с ней плоскости, нельзя провести ни одной прямой, параллельной данной. Это была неевклидовая геометрия так называемой положительной кривизны). Отметим также, что идея взаимосвязи геометрии и физики не была абсолютно новой, она высказывалась ещё в ранних сочинениях И. Канта и содержала своё слабое предвосхищение в трудах И.Г. Фихте, а также в книгах Аристотеля (См. об этом мои труды: Лукьянов А.В. Философия. Предвидение. Духовность. - Уфа, 1993; Проблема духовного "Я" в философии И.Г. Фихте. - Уфа: Изд-е Башкирск. ун-та, 1993; Философия Иоганна Готлиба Фихте (1762-1814). - Оренбург: Издат. центр ОГАО, 1997).
      Философское значение теории относительности (как специальной, так и общей) состояло в том, что она существенным образом поколебала понятия абсолютного пространства и абсолютного времени, обнаружив тем самым несостоятельность субстанциальной трактовки пространства и времени как самостоятельных, независимых от материи форм бытия. Далее, сам Эйнштейн, отвечая на заданный ему вопрос о сути теории относительности, сказал: "Суть такова: раньше считали, что если каким-нибудь чудом все материальные вещи исчезли бы вдруг, то пространство и время остались бы. Согласно же теории относительности вместе с вещами исчезли бы пространство и время". Наконец, теория относительности "нанесла удар субъективистским, априористским трактовкам сущности пространства и времени, которые противоречили её выводам" (См.: Алексеев П.В., Панин А.В. Философия: Учебник для вузов. - М.: ТЕИС, 1996. - С. 335-336).
      Отстаивая ту мысль, что теория относительности подтвердила понимание пространства и времени как коренных форм существования материи, нельзя думать, что она положила тем самым конец философским спорам об истолковании природы пространства и времени. Решив одни проблемы, теория относительности поставила другие. "Богатое разнообразие фактов в области атомных явлений, писали А. Эйнштейн и Л. Инфельд, - опять вынуждает нас изобретать новые физические понятия" (Эйнштейн А., Инфельд Л. Эволюция физики //Собр. науч. трудов в 4-х т.: Т. IV. - М.: Наука, 1967. - С. 543). К обсуждению всех этих проблем мы теперь и переходим.
      Глава шестая.
      Представление о поле. Поле и вещество. Нильс Бор
      и световые кванты. Принципы неопределённости и
      дополнительности. Принцип соответствия. Проблема
      интерпретации квантовой механики
      Наука - это не обуза, не какое-то тяжкое бремя, которое можно взвалить на человеческий дух. Её ноша должна быть лёгкой, а бремя приятным (Ср.: Матф. 11, 30). Эйнштейн не распинал себя, как иной современный учёный; о нём можно было бы сказать, что его любили грации.
      Но он не был декоратором в науке, не застревал на дальних подступах к ней, а напротив, преодолевая эти подступы, властвовал на умами миллионов с помощью именно того свободного научного искусства, дух которого жил во многих его произведениях. Сочинение "Эволюция физики", выполненное совместно с Л. Инфельдом, - не исключение. Эйнштейн стремится в этом произведении раскрыть те активные силы, которые вынуждают науку производить идеи, соответствующие реальности нашего мира.
      Известно, что во второй половине XIX века в физику были введены новые и революционные идеи, которые открыли путь к новому философскому взгляду, отличному от механистического. Правда, тут следует заметить, что ещё раньше, в конце XVIII - начале XIX вв. философы высказали идеи, намного обогнавшие свою эпоху. Но их построения подчас носили сложный спекулятивный характер, были настолько запутанными, что никакое искусство читать лекции не могло их сделать понятными.
      Однако необходимо учитывать и тот момент, что всякая популяризация знания, разумеется, имеет свои границы. Вместе с тем речь у нас идёт о том вдохновении, которое не в силах уничтожить никакая спекуляция. Вспомним слова Шиллера, обращённые к несчастному Дону Карлосу:
      "Скажите принцу, чтоб и зрелым мужем
      Былым мечтам он оставался верен,
      Чтоб остерёгся гнилостного червя
      Не допустил хвалёный высший разум
      Проникнуть в сердце Божьего цветка.
      Чтоб оставался твёрд, когда хулою
      Обрушится ветшающая мудрость
      На вдохновенье - дар высокий неба" (Цит. по: Шиллер Ф. Избранные произведения. В 2-х т.: Т. 1 /Пер. В. Левик. - М., 1959. - С. 523).
      Именно это вдохновение руководило Фарадеем, Максвеллом и Герцем, которые выработали новые понятия, образовавшие новую картину мира. "Потребовалось большое научное воображение, чтобы уяснить себе, что не заряды и не частицы, а поле в пространстве между зарядами и частицами существенно для описания физических явлений" (См.: Эйнштейн А. Собр. науч. трудов. В 4-х т.: Т. IV. - С. 512). Понятие поля оказалось весьма удачным и привело к формулированию уравнений Максвелла, описывающих структуру электромагнитного поля.
      Поле оказалось весьма полезным понятием. Оно возникло как нечто, помещённое между источником и магнитной стрелкой, для того чтобы описать действующую силу. Первый успех описания с помощью поля показал, что оно может быть удобным для рассмотрения всех действий токов, магнитов и зарядов.
      Итак, поле можно рассматривать как нечто такое, что всегда связано с током. Оно существует, даже если отсутствует магнитный полюс, с помощью которого можно выявить его наличие.
      Прежде всего заметим, что поле заряженного проводника может быть введено почти таким же образом, как и поле тяготения или поле магнита. Чтобы изобразить поле положительно заряженной сферы, следует задать вопрос: какого рода силы действуют на маленькое положительно заряженное пробное тело, помещённое вблизи источника поля, т.е. вблизи заряженной сферы? Тот факт, что мы берём положительно, а не отрицательно заряженное пробное тело, является простым соглашением, которое определяет, в каком именно направлении должны быть нарисованы стрелки силовых линий. Данная модель (рис. 1) аналогична модели поля тяготения (рис. 2) в силу сходства законов Кулона и Ньютона. Единственное различие между обеими моделями состоит в том, что стрелки расположены в противоположных направлениях. В самом деле, два положительных заряда отталкиваются, а две массы притягиваются. Вместе с тем поле сферы с отрицательным зарядом (рис. 3) будет идентичным полю тяготения, поскольку маленький положительный пробный заряд будет притягиваться источником поля (См.: Эйнштейн А. Собр. науч. трудов. В 4-х т.: Т. IV. - С. 441).
      Рис. 1 Рис. 2 Рис. 3
      Если рассуждать дальше и предположить, что электрическая сфера, которая до сих пор была в покое, пришла в движение под воздействием некоторой внешней силы, то поле электрического заряда будет изменяться с течением времени. Но движение этой заряженной сферы эквивалентно току, который сопровождается магнитным полем. Итак, физики пришли к следующему выводу: изменение электрического поля, произведённое движением заряда, всегда сопровождается магнитным полем.
      Если колеблющийся заряд перестаёт двигаться, то его поле становится электростатическим. Но серия волн, созданных колебанием заряда, продолжает распространяться. Волны ведут независимое существование, так что история их изменений может быть прослежена так же, как и история любого другого материального объекта.
      С введением понятия поля в физике произошло нечто весьма важное. Постепенно, хотя и не без борьбы, это понятие завоевало прочное положение в науке. Но было бы неверным считать, что идея поля освободила физику от заблуждений старой теории электрических жидкостей или что эта новая идея разрушает старую (в теории Максвелла мы, например, ещё обнаруживаем понятие электрического заряда, хотя заряд понимается только как источник электрического тока).
      Сначала теоретики поле рассматривали как нечто, что в перспективе можно будет истолковать механистически с помощью эфира. Но со временем стало ясно, что эту программу осуществить невозможно. Единственный выход - это допустить, что пространство обладает физическим свойством передавать электромагнитные волны. Вместе с тем, по всей вероятности, слово "эфир" употреблять всё же можно, но исключительно для того, чтобы выразить вышеупомянутое физическое свойство пространства. "Слово эфир изменяло свой смысл много раз в процессе развития науки. В данный момент оно уже не употребляется для обозначения среды, построенной из частиц. Его история, никоим образом не законченная, продолжается теорией относительности" (Там же. - С. 452).
      Итак, мы имеем две реальности: поле и вещество. Мы должны принять оба понятия. Но возникает вопрос: а можно ли считать поле и вещество двумя различными, совершенно несходными реальностями? Что составляет физический критерий, с помощью которого можно различить вещество и поле?
      Когда не была известна теория относительности, ответ был простым: вещество имеет массу, а поле её не имеет. Такой ответ в сфере новых знаний совершенно недостаточен. Из общей теории относительности мы знаем, что вещество представляет собой огромные запасы энергии, и что энергия представляет вещество (См.: Там же. - С. 510). Таким образом, очень трудно провести качественное различие между полем и веществом, поскольку различие между массой и энергией, видимо, не качественное. Какой-либо резкой границы, разделяющей поле и вещество, невозможно себе представить. "Мы могли бы рассматривать вещество как такие области в пространстве, где поле чрезвычайно сильно. Таким путём можно было бы прийти к новым представлениям о природе. Их конечная цель состояла бы в объяснении всех событий в природе структурными законами, справедливыми всегда и всюду... В нашей новой физике не было бы места и для поля, и для вещества, поскольку единственной реальностью было бы поле. Этот новый взгляд внушён огромными достижениями физики поля, успехом в выражении законов электричества, магнетизма, тяготения в форме структурных законов и, наконец, эквивалентностью массы и энергии" (Там же. - С. 511).
      Однако, авторы сочинения "Эволюция физики" констатировали, что "до сих пор мы не имели успеха в последовательном и убедительном выполнении этой программы". Поэтому во всех построениях "мы всё ещё должны допускать две реальности - поле и вещество" (Там же).
      Развитие квантовой физики, начавшееся со знаменитой статьи М. Планка "О строении атомов и молекул" (1913), показало, что излучение носит двойственный корпускулярно-волновой характер. Нильс Бор не согласился с эйнштейновскими световыми квантами, предполагавшими дискретность пространственной структуры излучения. В вопросе о природе света Бор увидел гораздо более общую (не столько физическую), сколько методологическую проблему. Он писал, что "вопрос о существовании или отсутствии связи отдельных атомарных процессов нельзя просто рассматривать как различие между двумя чётко определёнными толкованиями распространения света в пустом пространстве, которые соответствовали бы корпускулярной или волновой теории света" (Бор Н. О действии атомов при соударениях //Бор Н. Избранные научные труды. Т. 1. - М., 1970. - С. 560). Речь, вероятнее всего, должна идти о том, насколько пространственно-временные представления, с помощью которых физики пытаются объяснить явления природы, применимы к описанию атомных процессов.
      Следует подчеркнуть, что в классической механике всякая частица движется по определённой траектории, так что в любой момент времени точно фиксированы её координата и импульс. Напротив, микрочастицы из-за наличия у них волновых свойств существенным образом отличаются от классических частиц. Это следует из корпускулярно-волновой природы микрочастиц. Так, понятие "длина волны в данной точке" лишено физического смысла, а поскольку импульс выражается через длину волны (
      [Image001]
      )**, то микрочастица с определённым импульсом имеет полностью неопределённую координату. И наоборот, если микрочастица находится в состоянии с точным значением координаты, то её импульс является полностью неопределённым.
      ______________ ** Р - импульс микрообъекта, h - постоянная Планка, л - длина волны.
      В. Гейзенберг, учитывая волновые свойства микрочастиц, пришёл в 1927 году к следующему выводу: объект микромира невозможно одновременно с любой наперёд заданной точностью характеризовать и координатой, и импульсом. Согласно соотношению неопределённостей Гейзенберга, микрочастица не может иметь одновременно координату х и определённый импульс р. Причём, неопределённости данных величин удовлетворяют условию
      [Image002]
      ,
      т.е. произведение неопределённостей координаты и импульса не может быть меньше постоянной Планка.
      Невозможность одновременно точного определения координаты и импульса является следствием специфики микрообъектов, отражающей особенности их объективных свойств, их двойственной корпускулярно-волновой природы.
      Принцип дополнительности. По свидетельству В. Гейзенберга, основы идеи дополнительности выкристаллизовались у Н. Бора в начале 1927 года, во время отдыха в Норвегии, после нескольких месяцев изнурительной работы. Первым публичным изложением концепции дополнительности была лекция Бора, прочитанная 16 сентября 1927 года на Международном физическом конгрессе в Комо (Италия), посвящённом памяти Вольта.
      Бор констатировал, что использование классических физических представлений в атомной физике является ограниченным. Данное обстоятельство породило стремление совершенно избавиться от классических понятий и образов. Однако Бор не сомневался в том, что "интерпретация эмпирического материала в существенном покоится именно на применении классических понятий" (Бор Н. Квантовый постулат и новейшее развитие атомной теории //Избр. науч. труды. Т. 2. - М., 1971. - С. 30). Таким образом, отказываться от классических понятий нельзя, и в то же время применяться они должны не во всей полноте.
      В ходе долгих размышлений Бор пришёл к необходимости расщепления единого классического описания микромира на два дополняющих и исключающих друг друга. Это обоснование опирается на два исходных пункта: во-первых, на так называемый квантовый постулат, а во-вторых, на подчинение квантовому постулату процессов наблюдения атомных явлений (См.: Алексеев И.С. Концепция дополнительности: историко-методологический анализ. - М.: Наука, 1978. - С. 17).
      Согласно квантовому постулату, "каждому атомному процессу свойственна существенная прерывность или, скорее, индивидуальность, совершенно чуждая классической теории и выраженная планковским квантом действия" (Бор Н. Квантовый постулат и новейшее развитие атомной теории //Там же. - С. 30). По мнению Бора, обычное (классическое) описание природы "покоится всецело на предпосылке, что рассматриваемое явление можно наблюдать, не оказывая на него заметного влияния" (Там же. - С. 31). Совсем другое дело, когда мы описываем квантовый мир. "Согласно квантовому постулату, всякое наблюдение атомных явлений включает такое взаимодействие последних со средствами наблюдения, которым нельзя пренебречь" (Там же). А поскольку взаимодействие наблюдаемых микрообъектов и средств наблюдения имеет неделимый характер, то ни явления, ни средства наблюдения не обладают статусом самостоятельной реальности.
      "Итак, классические понятия пространственных координат и времени... а также энергии и импульса... остаются применимыми, - пишет И.С. Алексеев, и в квантовой области. Меняется только способ их сочетания - в строгом, точном смысле они не могут применяться совместно. Поэтому дополнительный способ описания можно назвать неклассическим употреблением классических понятий" (Алексеев И.С. Указ. соч. - С. 19).
      Принцип дополнительности, который Н. Бор сформулировал в 1927 году, звучит следующим образом:
      получение экспериментальной информации об одних физических величинах, описывающих микрообъект (элементарную частицу, атом, молекулу), неизбежно связано с потерей информации о некоторых других величинах, дополнительных к первым" (См.: Карпенков С.Х. Концепции современного естествознания. - С. 161).
      Такими взаимно дополнительными величинами можно считать, например, координату частицы и её скорость (или импульс).
      Принципы причинности и соответствия. Некоторые исследователи из соотношения неопределённостей делают вывод о неприменимости принципа причинности к явлениям микромира. При этом они опираются на следующие соображения. В классической механике по известному состоянию системы в некоторый момент времени и силам, приложенным к ней, можно абсолютно точно описать её состояние в любой последующий момент. Микрообъекты, напротив, не могут иметь одновременно и определённую координату, и определённую соответствующую проекцию импульса. Отсюда делается тот вывод, что в начальный момент времени состояние системы точно не определяется. А если это так, то невозможно прогнозировать последующие состояния системы, т.е. происходит нарушение принципа причинности.
      Однако в действительности ничего подобного не происходит. Ведь само понятие состояние микрообъекта приобретает иной смысл, чем в классической физике. В квантовой механике состояние микрообъекта описывается волновой функцией. Её задание для данного момента времени определяет её значение в последующие моменты (См.: Там же. - С. 165).
      В становлении квантово-механических представлений выдающуюся роль сыграл выдвинутый Н. Бором в 1923 году принцип соответствия, согласно которому всякая новая более общая теория, являющаяся развитием классической, не отвергает её полностью, а включает в себя классическую теорию, указывая границы её применения, причём в определённых предельных случаях новая теория переходит в старую (См.: Там же).
      Но нам следует проявить бoльшую внимательность в обращении с принципом соответствия. Так, всё богатство отношений между старой классической механикой и механикой релятивистской А. Эйнштейн не сводил к категориям "предельного" и "частного", хотя довольно часто и там, где это было уместно сделать, он прибегал к их помощи (См.: Лукьянов А.В. Идея развития в основаниях специальной теории относительности //Теория развития и естествознание. - М., 1989. - С. 123-124). Нам думается, что представленная в литературе точка зрения, согласно которой "классическая механика как совокупность сужений (а не формул!) не является ни предельным, ни частным случаем релятивистской механики" (См.: Войшвилло Е.К., Купцов В.И. К вопросу о преемственной связи теорий //Принцип соответствия: историко-методологический анализ.

  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14