Современная электронная библиотека ModernLib.Net

Самоучитель - Самоучитель UML

ModernLib.Net / Программирование / Леоненков Александр / Самоучитель UML - Чтение (Ознакомительный отрывок) (стр. 2)
Автор: Леоненков Александр
Жанр: Программирование
Серия: Самоучитель

 

 


      Вторая причина имеет более сложную природу, поскольку связана с графической нотацией, реализованной в том или ином CASE-средстве. Если языки программирования имеют строгий синтаксис, то попытки предложить подходящий синтаксис для визуального представления концептуальных схем БД были восприняты далеко неоднозначно. Появилось несколько подходов, которые более подробно будут рассмотрены в главе 2. На этом фоне появление унифицированного языка моделирования (Unified Modeling Language, UML), который ориентирован на решение задач первых двух этапов ЖЦ программ, было воспринято с большим оптимизмом всем сообществом корпоративных программистов.
      
      Последнее, на что следует обратить внимание, это осознание необходимости построения предварительной модели программной системы, которую, согласно современным концепциям ООАП, следует считать результатом первых этапов ЖЦ программы. Поскольку язык UML даже в своем названии имеет отношение к моделированию, следует дополнительно остановиться на целом ряде достаточно важных вопросов. Таким образом, мы переходим к теме, которая традиционно не рассматривается в изданиях по ООАП, но имеющая самое прямое отношение к процессу построения моделей и, собственно, моделированию. Речь идет о методологии системного анализа и системного моделирования.

1.4. Методология системного анализа и системного моделирования

      Системный анализ как научное направление имеет более давнюю историю, чем ООП и ООАП, и собственный предмет исследования. Центральным понятием системного анализа является понятие системы, под которой понимается совокупность объектов, компонентов или элементов произвольной природы, образующих некоторую целостность. Определяющей предпосылкой выделения некоторой совокупности как системы является возникновение у нее новых свойств, которых не имеют составляющие ее элементы. Примеров систем можно привести достаточно много – это персональный компьютер, автомобиль, человек, биосфера, программа и др. Более ортодоксальная точка зрения предполагает, что все окружающие нас предметы являются системами.
      Важнейшими характеристиками любой системы являются ее структура и процесс функционирования. Под структурой системы понимают устойчивую во времени совокупность взаимосвязей между ее элементами или компонентами. Именно структура связывает воедино все элементы и препятствует распаду системы на отдельные компоненты. Структура системы может отражать самые различные взаимосвязи, в том числе и вложенность элементов одной системы в другую. В этом случае принято называть более мелкую или вложенную систему подсистемой, а более крупную – метасистемой.
      Процесс функционирования системы тесно связан с изменением ее свойств или поведения во времени. При этом важной характеристикой системы является ее состояние, под которым понимается совокупность свойств или признаков, которые в каждый момент времени отражают наиболее существенные особенности поведения системы.
      Рассмотрим следующий пример. В качестве системы представим себе «Автомобиль». Для этого случая система охлаждения двигателя будет являться подсистемой «Автомобиля». С одной стороны, двигатель является элементом системы «Автомобиль». С другой стороны, двигатель сам является системой, состоящей из отдельных компонентов, таких как цилиндры, свечи зажигания и др. Поэтому система «Двигатель» также будет являться подсистемой системы «Автомобиль».
      Структура системы «Автомобиль» может быть описана с разных точек зрения. Наиболее общее представление о структуре этой системы дает механическая схема устройства того или иного автомобиля. Взаимодействие элементов в этом случае носит механический характер. Состояние автомобиля можно рассматривать также с различных точек зрения, наиболее общей из которых является характеристика автомобиля как исправного или неисправного. Очевидно, что каждое из этих состояний в отдельных ситуациях может быть детализировано. Например, состояние «неисправный» может быть конкретизировано в состояния «неисправность двигателя», «неисправность аккумулятора», «отсутствие подачи топлива» и пр. Важно иметь четкое представление, что подобная детализация должна быть адекватна решаемой задаче.
      Процесс функционирования системы отражает поведение системы во времени и может быть представлен как последовательное изменение ее состояний: Если система изменяет одно свое состояние на другое, то принято говорить, что система переходит из одного состояния в другое. Совокупность признаков или условий изменения состояний системы в этом случае называется переходом. Для системы с дискретными состояниями процесс функционирования может быть представлен в виде последовательности состояний с соответствующими переходами. Более точное графическое описание процесса функционирования систем будет дано в главе 2.
      Методология системного анализа служит концептуальной основой системно-ориентированной декомпозиции предметной области. В этом случае исходными компонентами концептуализации являются системы и взаимосвязи между ними. При этом понятие системы является более общим, чем понятия классов и объектов в ООАП. Результатом системного анализа является построение некоторой модели системы или предметной области.
      Понятие модели столь широко используется в повседневной жизни, что приобрело очень много смысловых оттенков. Это и «Дом моделей» известного кутюрье, и модель престижной марки автомобиля, и модель политического руководства, и математическая модель колебаний маятника. Применительно к программным системам нас будет интересовать только то понятие модели, которое используется в системном анализе. А именно, под моделью будем понимать некоторое представление о системе, отражающее наиболее существенные закономерности ее структуры и процесса функционирования и зафиксированное на некотором языке или в другой форме.
      Примеров моделей можно привести достаточно много. Например, аэродинамическая модель гоночного автомобиля или проектируемого самолета, модель ракетного двигателя, модель колебательной .системы, модель системы электроснабжения региона, модель избирательной компании и др.
      Общим свойством всех моделей является их подобие оригинальной системе или системе-оригиналу. Важность построения моделей заключается в возможности их использования для получения информации о свойствах или поведении системы-оригинала. При этом процесс построения и последующего применения моделей для получения информации о системе-оригинале получил название моделирование.
      
      Наиболее общей моделью системы является так называемая модель «черного ящика». В этом случае система представляется в виде прямоугольника, внутреннее устройство которого скрыто от аналитика или неизвестно. Однако система не является полностью изолированной от внешней среды, поскольку последняя оказывает на систему некоторые информационные или материальные воздействия. Такие воздействия получили название входных воздействий. В свою очередь, система также оказывает на среду или другие системы определенные информационные или материальные воздействия, которые получили название выходных воздействий. Графически данная модель может быть изображена следующим образом (рис. 1.7).
       Рис. 1.7.Графическое изображение модели системы в виде «черного ящика»
      Ценность моделей, подобных модели «черного ящика», весьма условна. Невольно может возникнуть ассоциация с «Черным квадратом». Однако если оценка изобразительных особенностей последнего не входит в задачи системного анализа, то общая модель системы содержит некоторую важную инфомацию о функциональных особенностях данной системы, которые дают представление о ее поведении. Действительно, кроме самой общей информации о том, на какие воздействия реагирует система, и как проявляется эта реакция на окружающие объекты и системы, другой информации мы получить не можем. В рамках системного анализа разработаны определенные методологические средства, позволяющие выполнить дальнейшую конкретизацию общей модели системы. Некоторые из графических средств представления моделей систем будут рассмотрены в главе 2.
      Процесс разработки адекватных моделей и их последующего конструктивного применения требует не только знания общей методологии системного анализа, но и наличия соответствующих изобразительных средств или языков для фиксации результатов моделирования и их документирования. Очевидно, что естественный язык не вполне подходит для этой цели, поскольку обладает неоднозначностью и неопределенностью. Для построения моделей были разработаны достаточно серьезные теоретические методы, основанные на развитии математических и логических средств моделирования, а также предложены различные формальные и графические нотации, отражающие специфику решаемых задач. Важно представлять, что унификация любого языка моделирования тесно связана с методологией системного моделирования, т. е. с системой воззрений и принципов рассмотрения сложных явлений и объектов как моделей сложных систем.
      Сложность системы и, соответственно, ее модели может быть рассмотрена с различных точек зрения. Прежде всего, можно выделить сложность структуры системы, которая характеризуется количеством элементов системы и различными типами взаимосвязей между этими элементами. Если количество элементов превышает некоторое пороговое значение, которое не является строго фиксированным, то такая система может быть названа сложной. Например, если программная СУБД насчитывает более 100 отдельных форм ввода и вывода информации, то многие программисты сочтут ее сложной. Транспортная система современных мегаполисов также может служить примером сложной системы.
      Вторым аспектом сложности является сложность процесса функционирования системы. Это может быть связано как с непредсказуемым характером поведения системы, так и невозможностью формального представления правил преобразования входных воздействий в выходные. В качестве примеров сложных программных систем можно привести современные операционные системы, которым присущи черты сложности как структуры, так и поведения.

ГЛАВА 2 Исторический обзор развития методологии объектно-ориентированного анализа и проектирования сложных систем

2.1. Предыстория. Математические основы

      Представление различных понятий окружающего нас мира при помощи графической символики уходит своими истоками в глубокую древность. В качестве примеров можно привести условные обозначения знаков Зодиака, магические символы различных оккультных доктрин, графические изображения геометрических фигур на плоскости и в пространстве. Важным достоинством той или иной графической нотации является возможность образного закрепления содержательного смысла или семантики отдельных понятий, что существенно упрощает процесс общения между посвященными в соответствующие теории и идеологии.

Теория множеств

      Как одну из наиболее известных систем графических символов, оказавших непосредственное влияние на развитие научного мышления, следует отметить язык диаграмм английского логика Джона Венна (1834-1923). В настоящее время диаграммы Венна применяются для иллюстрации основных теоретико-множественных операций, которые являются предметом специального раздела математики – теории множеств. Поскольку многие общие идеи моделирования систем имеют адекватное описание в терминологии теории множеств, рассмотрим основные понятия данной теории, имеющие отношение к современным концепциям и технологиям исследования сложных систем.
      Исходным понятием теории множеств является само понятие множество, под которым принято понимать некоторую совокупность объектов, хорошо различимых нашей мыслью или интуицией. При этом не делается никаких предположений ни о природе этих объектов, ни о способе их включения в данную совокупность. Отдельные объекты, составляющие то или иное множество, называют элементами данного множества. Вопрос «Почему мы рассматриваем ту или иную совокупность элементов как множество?» не требует ответа, поскольку в общее определение множества не входят никакие дополнительные условия на включение отдельных элементов в множество. Если нам хочется, например, рассмотреть множество, состоящее из трех элементов: «солнце, море, апельсин», то никто не сможет запретить это сделать.
      Примеров конкретных множеств можно привести достаточно много. Это и множество квартир жилого дома, и множество натуральных чисел, с которого начинается знакомство каждого ребенка с великим таинством счета. Совокупность компьютеров в офисе тоже представляет собой множество, хотя, возможно, они и соединены между собою в сеть. Множество живущих на планете людей, как и множество звезд на небосводе, тоже могут служить примерами множеств, хотя природа их существенно различна.
      
      В теории множеств используется специальное соглашение, по которому множества обозначаются прописными буквами латинского алфавита, и традиция эта настолько общепризнана, что не возникает никакого сомнения в ее целесообразности. При этом отдельные элементы обозначаются строчными буквами, иногда с индексами, которые вносят некоторую упорядоченность в последовательность рассмотрения этих элементов. Важно понимать, что какой бы то ни было порядок, вообще говоря, не входит в исходное определение множества. Таким образом, множество, например, квартир 100-квартирного жилого дома с использованием специальных обозначений можно записать следующим образом: A={aj, 02, а3, ..., а{00}. Здесь фигурные скобки служат обозначением совокупности элементов, каждый из которых имеет свой уникальный числовой индекс. Важно понимать, что для данного конкретного множества элемент ato обозначает отдельную квартиру в рассматриваемом жилом доме. При этом вовсе необязательно, чтобы номер этой квартиры был равен 10, хотя с точки зрения удобства это было бы желательно.
      Принято называть элементы отдельного множества принадлежащими данному множеству. Данный факт записывается при помощи специального символа "е", который так и называется – символ принадлежности. Например, запись а10ьА означает тот простой факт, что отдельная квартира (возможно, с номером 10) принадлежит рассматриваемому множеству квартир некоторого жилого дома.
      Следующим важным понятием, которое служит прототипом многих более конкретных терминов при моделировании сложных систем, является понятие подмножества. Казалось бы, интуитивно и здесь нет ничего неясного. Если есть некоторая совокупность, рассматриваемая как множество, то любая ее часть и будет являться подмножеством. Так, например, совокупность квартир на первом этаже жилого дома есть ничто иное, как подмножество рассматриваемого нами примера. Ситуация становится не столь тривиальной, если рассматривать множество абстрактных понятий, таких как сущность или класс.
      Для обозначения подмножества используется специальный символ. Если утверждается, что множество А является подмножеством множества В, то это записывается как Аа В. Запоминать подобные значки не всегда удобно, поэтому со временем была предложена специальная система графических обозначений.
      Как же используются диаграммы Венна в теории множеств? Оказывается, тот факт, что некоторая совокупность элементов образует множество, можно обозначить графически в виде круга. В этом случае окружность имеет содержательный смысл или, выражаясь более точным языком, семантику границы данного множества. Очевидно, что рассмотрение отношения включения элементов одного множества в другое можно изобразить графически следующим образом (рис. 2.1). На этом рисунке большему множеству В соответствует внешний круг, а меньшему множеству (подмножеству) А – внутренний.
       Рис. 2.1.Диаграмма Венна для отношения включения двух множеств
      Подобным образом можно изобразить и основные теоретико-множественные операции. Так, пересечением двух множеств А и В называется некоторое третье множество С, которое состоит из тех и только тех элементов двух исходных множеств, которые одновременно принадлежат и множеству А, и множеству В. Для этой операции также имеется специальное обозначение: С= А о В. Например, если в качестве множества А для операции пересечения рассмотреть множество сотрудников некоторой фирмы, а в качестве множества В – множество всех мужчин, то нетрудно догадаться, что множество С будет состоять из элементов -± всех сотрудников мужского пола данной фирмы. Операция пересечения множеств также может быть проиллюстрирована с помощью диаграмм Венна (рис. 2.2). На этом рисунке условно изображены два множества А и В, затененной области как раз и соответствует множество С, являющееся пересечением множеств А и В.
       Рис. 2.2Диаграмма Венна для пересечения двух множеств
      Следующей операцией, которая также допускает наглядную интерпретацию, является операция объединения множеств. Под объединением двух множеств А и В понимается некоторое третье множество, пусть это будет D, которое состоит из тех и только тех элементов, которые принадлежат или А, или В, или им обоим одновременно. Конечно, специальное обозначение есть и для этой операции: D= AuB. Так, если в качестве множества А рассмотреть множество, состоящее из клавиатуры и мыши, а в качестве множества В – множество, состоящее из системного блока и монитора, то нетрудно догадаться, что их объединение, т. е. множество D, образует основные составляющие персонального компьютера. И для этой операции имеется условное графическое представление (рис. 2.3). На этом рисунке объединению двух исходных множеств также соответствует затемненная область, только размеры и форма ее отличаются от случая пересечения двух множеств на предыдущем рисунке.
       Рис. 2.3.Диаграмма Венна для объединения двух множеств
      
      Последнее, на что следовало бы обратить внимание при столь кратком знакомстве с основами теории множеств – это на так называемые понятия мощности множества и отношения множеств. Хотя существуют и другие операции над множествами, а также целый ряд дополнительных понятий, их рассмотрение выходит за рамки настоящей книги. Что касается понятия мощности множества, то данный термин важен для анализа кратности связей, поскольку ассоциируется с количеством элементов отдельного множества. В случае конечного множества ситуация очень простая, поскольку мощность конечного множества равна количеству элементов этого множества. Таким образом, возвращаясь к примеру с множеством А квартир жилого дома, можно сказать, что его мощность равна 100.
      Ситуация усложняется, когда рассматриваются бесконечные множества, т. е. множества, не являющиеся конечными. Не вдаваясь в технические детали, которые послужили источником драматичного по своим последствиям кризиса основ математики, ограничим наше рассмотрение бесконечными множествами счетной мощности. Такими множествами принято считать множества, содержащие бесконечное число элементов, которые, однако, можно перенумеровать натуральными числами 1, 2, 3 и т. д. При этом важно иметь в виду, что достичь последнего элемента при такой нумерации принципиально невозможно, иначе множество окажется конечным. Например, есть все основания считать множество всех звезд бесконечным, хотя многие из них имеют свое уникальное название. С другой стороны, множество всех возможных комбинаций из 8 символов, которые могут служить для ввода некоторого пароля, конечное, хотя и достаточно большое. Или, говоря строгим языком, это множество имеет конечную мощность.
      
      Наконец, было упомянуто и следующее понятие, различные аспекты которого будут служить темой рассмотрения во всех последующих главах. Это фундаментальное понятие отношения множеств, которое часто заменяется терминами связь или соотношение. Данный термин ведет свое происхождение от теории множеств и служит для обозначения любого подмножества упорядоченных кортежей, построенных из элементов некоторых исходных множеств. При этом под кортежем понимается просто набор или список элементов, важно только, чтобы они были упорядочены. Другими словами, если рассматривать первый элемент кортежа, то он всегда будет первым в списке элементов, второй элемент кортежа будет вторым элементом в списке и т. д. Можно ли это записать с использованием специальных обозначений?
      Хотя и существует некоторая неоднозначность в принятых обозначениях, кортеж из двух элементов удобно обозначать как <a1, a2>, из трех элементов – <a1, a2, a3> и т. д. При этом отдельные элементы могут принадлежать как одному и тому же множеству, так и различным множествам. Важно иметь в виду, что порядок выбора элементов для построения кортежей строго фиксирован для конкретной задачи. Речь идет о том, что первый элемент всегда выбирается из первого множества, второй – из второго, и т. д:
      Отношение в этом случае будет характеризовать способ или семантику выбора отдельных элементов из одного или нескольких множеств для подобного упорядоченного списка. В этом смысле взаимосвязь является частным случаем отношения, о чем будет сказано в последующем. К сожалению, диаграммы Венна не предназначены для иллюстрации отношений в общем случае. Однако отношения послужили исходной идеей для развития другой теории, которая даже в своем названии несет отпечаток графической нотации, а именно – теории графов. В этой связи наиболее важным является тот факт, что теоретико-множественные отношения послужили также основой для разработки реляционной алгебры в теории реляционных баз данных. Развитие последней привело к тому, что в последние годы именно реляционные СУБД конкретных фирм доминируют на рынке соответствующего программного обеспечения.

Теория графов

      Граф можно рассматривать как графическую нотацию для бинарного отношения двух множеств. Бинарное отношение состоит из таких кортежей или списков элементов, которые содержат только два элемента некоторого множества. Хотя основные понятия теории графов получили свое развитие задолго до появления теории множеств как самостоятельной научной дисциплины, формальное определение графа удобно представить в теоретико-множественных терминах.
      Графом называется совокупность двух множеств: множества точек или вершин и множества соединяющих их линий или ребер. Формально граф задается в виде двух множеств: G=(V, Е), где V={v1v2, ..., vn} – множество вершин графа, а Е={е1, е2, ..., еm} – множество ребер графа. Натуральное число n определяет общее количество вершин конкретного графа, а натуральное число m – общее количество ребер графа. Следует заметить, в общем случае не все вершины графа могут соединяться между собой, что ставит в соответствие каждому графу некоторое бинарное отношение PQ, состоящее из всех пар вида <vi, vj>, где vi, vj = V. При этом пара <vi, vj> и, соответственно, пара <vj, vi> принадлежат отношению PG в том и только в том случае, если вершины vi и vj соединяются в графе G некоторым ребром ek=Е. Вершины графа изображаются точками, а ребра – отрезками прямых линий. Рядом с вершинами и ребрами записываются соответствующие номера или идентификаторы, позволяющие их идентифицировать однозначным образом.
      
      Ниже представлены два примера конкретных графов (рис. 2.4). При этом первый из них (рис. 2.4, а) является неориентированным графом, а второй (рис. 2.4, б) – ориентированным графом. Как нетрудно заметить, для неориентированного графа ребро е1 соединяет вершины v1 и v2, ребро е2 – вершины v1 и v3, а ребро e3 – вершины v2 и v3 и т. д. Последнее ребро, e8, соединяет вершины v4 и v5, тем самым задается описание графа в целом. Других ребер данный граф не содержит, как не содержит других вершин, не изображенных на рисунке. Так, хотя ребра е6 и e7 визуально пересекаются, но точка их пересечения не является вершиной графа.
      Для ориентированного графа (рис. 2.4, б) ситуация несколько иная. А именно, вершины v1 и v2 соединены дугой е1, для которой вершина v2 является началом дуги, а вершина v1 – концом этой дуги. Далее дуга е2 соединяет вершины v1 и v4, при этом началом дуги e2 является вершина v1, а концом – вершина v4.
       Рис. 2.4.Примеры неориентированного (а) и ориентированного (б) графов
      Графы широко применяются для представления различной информации о структуре систем и процессов. Примерами подобных графических моделей могут служить: схемы автомобильных дорог, соединяющих отдельные населенные пункты; схемы телекоммуникаций, используемых для передачи информации между отдельными узлами; схемы программ, на которых указываются варианты ветвления вычислительного процесса. Общим для всех конкретных подобных моделей является возможность представления информации в графическом виде в форме соответствующего графа. При этом отдельные модели, как правило, обладают дополнительной семантикой и специальными обозначениями, характерными для той или иной предметной области.
      Важными понятиями теории графов являются понятия маршрута и пути, которые ассоциируются с последовательным перемещением от вершины к вершине по соединяющим их ребрам или дугам. Для неориентированного графа маршрут определяется как конечная или бесконечная упорядоченная последовательность ребер S=<, esl, es2, ..., esk>>, таких, что каждые два соседних ребра имеют общую вершину. Нас будут интересовать только конечные маршруты S=<es1, es2, ..., esk>, т. е. такие маршруты, которые состоят из конечного числа ребер. При этом ребро esl принято считать началом маршрута S, а ребро esk – концом маршрута S. Для ориентированного графа соответствующая последовательность дуг S=<es1, es2, ..., esk> называется ориентированным маршрутом, если две соседние дуги имеют общую вершину, которая является концом предыдущей и началом последующей дуги.
      Примерами маршрутов для неориентированного графа (рис. 2.4, а) являются последовательности ребер: S1=<e1, e2 e5, e8>, S2=<e1, e2, е3, e1>, S3=<e3, e5, e8>. Если в маршруте не повторяются ни ребра, ни вершины, как в случае S1 и S3, то такой неориентированный маршрут называется простой цепью.
      Примерами ориентированных маршрутов для графа (рис. 2.4, б) являются такие последовательности дуг: S1=<e2, e8, e5>, S2=<e3, e7, e6>, S3=<e8, e3, e7, e4, e8>. Если в ориентированном маршруте не повторяются ни ребра, ни вершины, как в случае S1 и S2, то такой ориентированный маршрут называется путем. Последнее понятие также иногда применяется для обозначения простой цепи в неориентированных графах и для определения специального класса графов, так называемых деревьев. В общем случае деревья служат для графического представления иерархических структур или иерархий, занимающих важное место в ООАП.
      Деревом в теории графов называется такой граф D=<V, E>, между любыми двумя вершинами которого существует единственная простая цепь, т. е. неориентированный маршрут, у которого вершины и ребра не повторяются. Применительно к ориентированным графам соответствующее определение является более сложным, поскольку основывается на выделении некоторой специальной вершины v0, которая получила специальное название корневой вершины или просто – корня. В этом случае ориентированный граф D=<V, Е> называется ориентированным деревом или сокращенно – деревом, если между корнем дерева v0 и любой другой вершиной существует единственный путь, берущий начало в v0. Ниже представлены два примера деревьев: неориентированного дерева (рис. 2.5, а) и ориентированного дерева (рис. 2.5, б).
      В случае неориентированного дерева (рис. 2.5, а) любая из вершин графа может быть выбрана в качестве корня. Подобный выбор определяется специфическими особенностями решаемой задачи. Так, вершина v1 может рассматриваться в качестве корня неориентированного дерева, поскольку между v1 и любой другой вершиной дерева всегда существует единственная простая цепь по определению (или, что менее строго, единственный неориентированный путь).
       Рис. 2.5.Примеры неориентированного (а) и ориентированного (б) деревьев
      Для случая ориентированного дерева (рис. 2.5, б) вершина v2 является единственным его корнем и имеет специальное обозначение v0. Единственность корня в ориентированном дереве следует из того факта, что ориентированный путь всегда имеет единственную вершину, которая является его началом. Поскольку в теории графов имеет значение только наличие или отсутствие связей между отдельными вершинами, деревья, как правило, изображаются специальным образом в виде иерархической структуры. При этом корень дерева изображается самой верхней вершиной в данной иерархии. Далее следуют вершины уровня 1, которые связаны с корнем одним ребром или одной дугой. Следующий уровень будет иметь номер 2, поскольку соответствующие вершины должны быть связаны с корнем двумя последовательными ребрами или дугами. Процесс построения иерархического дерева продолжается до тех пор, пока не будут рассмотрены вершины, которые не связаны с другими вершинами, кроме рассмотренных, или из которых не выходит ни одна дуга. В этом случае самые нижние вершины иногда называют листьями дерева. Важно иметь в виду, что в теории графов дерево «растет» вниз, а не вверх, как в реальной жизни.
      Изображенные выше деревья (рис. 2.5) можно преобразовать к виду иерархий. Например, неориентированное дерево (рис. 2.5, а) может быть представлено в виде иерархического дерева следующим образом (рис. 2.6, а). В этом случае корнем иерархии является вершина v1. Ориентированное дерево (рис. 2.5, б) также может быть изображено в форме иерархического дерева (рис. 2.6, б), однако такое представление является единственным.
      В первом случае (рис. 2.6, а) вершина v2 образует первый уровень иерархии, вершины v4 и v3 – второй уровень иерархии, вершина v5 – третий и последний уровень иерархии. При этом листьями данного неориентированного дерева являются вершины v3 и v5. Во втором случае (рис. 2.6, б) вершины v1 и v5 образуют первый уровень иерархии, вершины v4 и v6 – второй уровень иерархии, вершина v3 – третий и последний уровень иерархии. Листьями данного ориентированного дерева являются вершины v3 и v6.

  • Страницы:
    1, 2, 3, 4