Современная электронная библиотека ModernLib.Net

Источники энергии

ModernLib.Net / Лаврус В. / Источники энергии - Чтение (стр. 7)
Автор: Лаврус В.
Жанр:

 

 


      G60/48E230 -- инверторы, мощностью до 3 кВА;
      E230 -- синхронный коммутатор мощностью до 3 кВА;
      SVS -- многофункциональное контрольно-измерительное устройство (МКУ).
      Выпрямители, инверторы, синхронный коммутатор и многофункциональное контрольно-измерительное устройство позволяют создавать комплексные системы электропитания (рис. p051) для средств связи, автоматики железных дорог и электростанций, телекоммуникационных сетей и промышленности. Управление как отдельными модулями, так и всей системой может осуществляться дистанционно посредством телеметрической системы управления.
      Импульсные выпрямители Voigt & Haeffner, используются для заряда аккумуляторов (выходная характеристика IU по DIN 41772/73), обеспечивающих бесперебойное питание нагрузки постоянным током.
      Преобразователи переменного тока в постоянный (рис. p052) выполняют функции аналогичные импульсным выпрямителям. Отличительной особенностью является частотный диапазон входных напряжений (16...60 Гц), что позволяет в автономных условиях или аварийных ситуациях заряжать аккумуляторные батареи от дизель-генератора. Выходное напряжение 24 В, выходная характеристика IU по DIN 41772/73, ток до 500 А.
      Универсальные выпрямительные блоки предназначены для мобильного применения устройств электропитания.
      Изделия Voigt & Haeffner соответствуют следующим международным стандартам по электросовместимости и электробезопасности:
      степень защиты -- класс F по DIN 0040;
      электромагнитная совместимость -- класс B по VDE 0878;
      электробезопасность -- IP 20 по DIN/VDE 0470 ч. 1.
      Системы электропитания монтируются в 19"шкафах имеющих несколько модификаций. Они обеспечивают следующий ряд напряжений постоянного тока: 24, 48, 60, 110, 220 и 400 В.
      При ограниченной площади используются шкафы настенного исполнения. Все модули Voigt & Haeffner имеют внутреннюю защиту от повышенного напряжения на входе, перегрева и перенапряжения на выходе.
      Источники постоянного тока монтируются в настенных и напольных шкафах. Для аккумуляторных батарей и распределительных устройств предлагаются отдельные специальные модификации. Выбор типоразмера конструкции определяется мощностью источника и емкостью аккумуляторных батарей.
      В шкафах монтируются щиты с установленными выпрямительными блоками, блок управления и контроля, фидеры постоянного тока и аккумуляторные батареи. Подключение устройств осуществляется при помощи разъемов.
      Импульсные выпрямители с регулированием в первичной цепи могут быть включены параллельно и обеспечивают напряжение от 12 до 400 В постоянного тока. Такие выпрямители используются при получении:
      высоких выпрямленных напряжений;
      больших выпрямленных токов нагрузки при низком выпрямленном напряжении;
      больших мощностей.
      Так как регулирование происходит на входе выпрямителя перед трансформатором, импульсные выпрямители с регулированием в первичной цепи допускают бесконтактное отключение трансформатора от сети. Каждый выпрямитель имеет отдельную защиту от перегрузок и коротких замыканий выхода. Технические характеристики выпрямителей представлены в табл. t039.
      Инверторы Voigt & Haeffner развивают мощность 2,5 кВт и выпускаются для работы с входным напряжением 48 и 60 В + 20%. При этом они обеспечивают выходное напряжение 230 В + 1...5% частотой 50 Гц + 1%. Максимальная нестабильность выходного напряжения + 5% нормируется при изменении нагрузки 0...100...10%.
      МКУ контролирует работу выпрямителей, устройств защиты и заряд аккумуляторов. Устройство контроля имеет аналоговые и цифровые входы и выходы, оборудовано жидкокристаллическим дисплеем, который индицирует параметры блоков, сети переменного тока и аккумуляторных батарей.
      Глава 4
      АВТОНОМНЫЕ ИСТОЧНИКИ ЭНЕРГИИ
      Бесперебойное обеспечение энергией предполагает наличие автономного источника. Выбор типа источника определяется его назначением, потребляемой мощностью, наличием или отсутствием сети электроснабжения, географическим положением потребителя и допустимыми затратами.
      По сей день универсальным автономным источником, безусловно, является дизель-генератор. Он находит широкое применение благодаря высокой надежности. Кроме того, он обеспечивает не только электроэнергией, но и теплом.
      Большинство источников энергии так или иначе загрязняют или изменяют природные условия. Лишь солнце и ветер -- два поставщика энергии, правда, достаточно капризные, не вносят практически никаких нарушений. Использование солнечной энергии позволяет расширить энергетические ресурсы и сэкономить значительное количество топлива от экватора до широты 60o. Возобновляемые источники энергии -- ветрогенераторы и гелиостанции делают первые реальные шаги в энергетике.
      Гелиоэнергетика (гелио... [гр. helios солнце] -- первая составная часть сложных слов, означающая: относящийся к солнцу или солнечным лучам) развивается быстрыми темпами в самых разных направлениях. Гелиоэнергетические программы приняты более чем в 70 странах -- от северной Скандинавии до выжженных пустынь Африки. Устройства, использующие энергию солнца разработаны для отопления и вентиляции зданий, опреснения воды, производства электроэнергии. Такие устройства используются в различных технологических процессах. Появились транспортные средства с "солнечным приводом": моторные лодки и яхты, солнцелеты и дирижабли с солнечными панелями. Солнцемобили, вчера сравниваемые с забавным автоаттракционом, сегодня пересекают страны и континенты со скоростью, почти не уступающей обычному автомобилю.
      Ветер стал первым природным источником использованным человеком для своего блага. Первыми изобретениями в области энергетики были парус и ветродвигатель. Парус позволил человеку открыть мир. За 200 лет до нашей эры ветряные мельницы работали в Персии, а еще раньше их использовали в Китае. Спустя несколько тысячелетий пришло время пара и электричества. С обострением энергетических кризисов интерес к ветроустановкам периодически возрастал, а теория ветродвигателей развивалась параллельно с теорией авиации.
      Солнце и ветер представляют собой неиссякаемые экологически чистые источники энергии. Обострение сырьевых и экологических проблем стимулирует коммерческое использование нетрадиционных источников энергии. Проектируются, строятся и эксплуатируются экспериментальные и промышленные энергоустановки. Стоимость вырабатываемой ими энергии определяется затратами на изготовление, установку и обслуживание.
      4.1. ДИЗЕЛЬ-ГЕНЕРАТОРНЫЕ УСТАНОВКИ ФИРМЫ ABZ AGGREGATE-BAUGMBH
      Все выдающиеся изобретения человечества окружены легендами. Одна из них гласит, что первая модель дизеля (Дизель Рудольф, немецкий изобретатель. В 1892 году запатентовал, а в 1897 году построил двигатель внутреннего сгорания с воспламенением от сжатия) проработав всего минуту взорвалась и все присутствующие при испытании сняли шляпы. Так это было или нет, но сегодня дизель-генераторы -- это традиционные источники энергии, а двигатель названный в честь своего изобретателя неустанно трудится на протяжении вот уже ста лет.
      Дизель-генераторные установки находят широкое применение в промышленности, строительстве, сельском и коммунальном хозяйствах. Они работают на предприятиях, в аэро-, морских и речных портах, в энергоблоках больниц, фермерских хозяйств, в системах аварийного энергоснабжения, на объектах оборонного комплекса -- везде, где необходима электроэнергия, а сеть или удалена или работает с перебоями.
      Дизель-генераторные установки -- источники электрической и тепловой энергии. Их основную часть составляют объединенные в агрегат двигатель и генератор, установленные на стальной раме (рис. p026). Синхронный генератор трехфазного тока приводится в движение дизельным двигателем. Двигатель и генератор соединяются через муфту или напрямую фланцем. В первом случае используется двухопорный генератор, т.е. генератор имеющий два опорных подшипника, во втором -- одноопорный с одним опорным подшипником. Между рамой, опорными поверхностями двигателя и генератора устанавливаются резино-металлические амортизаторы, что снижает вибрации передаваемые на фундамент агрегата.
      В состав дизель-генераторной установки входит следующее оборудование:
      топливная система;
      система выхлопа;
      система шумоподавления;
      контрольно-измерительные приборы и автоматика (КИПиА);
      системы теплообмена (если установка предназначена и для производства тепла).
      Фирма ABZ Aggregate-Bau GmbH -- известный производитель дизель-генераторных установок. Агрегаты ABZ успешно работают во многих странах мира. Гибкость в работе, квалифицированная работа сотрудников фирмы ABZ с заказчиками и проектировщиками -- это важнейший аспект работы в этой области.
      Прежде чем изготовить агрегат, нужно очень точно определить и посоветовать заказчику -- как выбрать состав установки и где ее лучше разместить на месте эксплуатации. В зависимости от режима эксплуатации выбирается соответствующая схема КИПиА и комплектация топливной системы.
      На практике выделяются два основных режима эксплуатации дизель-генераторной установки:
      длительный;
      резервный (в случае перебоев в сети).
      Фирма ABZ Aggregate-Bau GmbH производит и поставляет через своего представителя в Украине фирму "Селком" дизель-генераторы в диапазоне мощностей от 2 до 2500 кВА.
      "Селком" производит монтаж, пусконаладку и сервисное обслуживание дизель-генераторных установок. Основные технические характеристики агрегатов представлены в табл. t012.
      В агрегатах, в качестве приводных, используются дизельные или газовые двигатели следующих фирм: Deutz, MAN, Daimler-Benz, MTU, Cummins, Perkins/Dorman, Scania, Volvo, Iveco и синхронные генераторы трехфазного тока фирм: Leroy Somer, Месс Alte, A.v.Kaick, Newage-Stamford, Siemens.
      Гарантированный срок службы агрегатов до капитального ремонта составляет 20 000 моточасов, что соответствует сроку эксплуатации 15...20 лет.
      Малый расход топлива (около 1 литра на 4 кВтч) достигается благодаря использованию двигателей с турбонаддувом. Воздух в таких двигателях, прежде чем попасть в камеру сгорания, сжимается в турбокомпрессоре. Его турбина приводится в движение выхлопными газами. После сжатия он (воздух) охлаждается воздухом или водой и поступает в камеру сгорания двигателя. По уровню выбросов агрегаты ABZ удовлетворяют действующим в Германии нормам TA-Luft (см. табл. t012).
      Важным техническим показателем в работе дизель-генераторных установок является уровень шума. В агрегатах ABZ, благодаря комплексному шумоподавлению, уровень шума составляет не более 75 dB, а при усиленном шумоподавлении -- не более 65 dB.
      4.1.1. ВЫБОР СПОСОБА УПРАВЛЕНИЯ АГРЕГАТОМ
      В соответствии с режимом работы дизель-генераторной установки выбирается способ управления -- ручной или автоматический. Для длительного режима эксплуатации предпочтительнее ручной режим управления. При этом следует контролировать следующие параметры:
      давление масла двигателя;
      число оборотов генератора;
      уровень и температуру охлаждающей жидкости;
      напряжение в сети.
      Важным элементом дизель-генераторной установки является блок управления. Все элементы автоматики собраны в настенном или напольном шкафу. От агрегата к шкафу ведут кабели управления и силовые кабели. При ручном режиме исполнение шкафа управления и силовой части достаточно простое.
      Для автоматического режима резервного энергоснабжения требуется более сложная схема управления и больший набор элементов автоматики. Они обеспечивают автоматический режим работы агрегата в резервном режиме работы.
      Когда в сети есть напряжение -- агрегат не работает. При пропадании напряжения подается управляющий сигнал на запуск агрегата и через 1...3 с он достигает номинального числа оборотов -- 1500 об/мин. Через 15 секунд нагрузка автоматически переключается на генератор, который замещает сеть.
      Когда напряжение в сети восстанавливается, происходит автоматическое переключение нагрузки с генератора на сеть с задержкой, которую можно задать. Обратное переключение может осуществляться с кратковременной, синхронно с сетью, параллельной работой генератора. При этом не происходит прерывания питания потребителей.
      После восстановления напряжения в сети агрегат около 3 минут продолжает работу на холостом ходу для охлаждения двигателя, а затем останавливается. После остановки он сразу готов к запуску.
      Топливная система установки включает:
      расходный топливный бак;
      бак резерва топлива;
      запорную арматуру;
      системы трубопроводов;
      насосный блок;
      контрольно-измерительные приборы.
      Расходный топливный бак может быть интегрирован в раму дизель-генератора. Для агрегатов, работающих в режиме резервного автоматического энергоснабжения, интегрированный расходный бак не используется, так как в любой момент уровень топлива в нем должен быть выше уровня точки входа топлива в топливный насос дизельного двигателя. В этом случае используется отдельно расположенный топливный бак. В нем уровень топлива поддерживается за счет подкачки топлива насосным блоком состоящим из ручного и электрического насосов и устройства автоматизированного контроля уровня. Так обеспечивается надежный топливный резерв на случай аварийного автоматического запуска агрегата.
      Силовая часть генератора и сети нагрузки комплектуется автоматами защиты или трехполюсными переключателями-автоматами с ручным или электрическим приводом.
      4.1.2. СФЕРЫ ПРИМЕНЕНИЯ ДИЗЕЛЬ-АГРЕГАТОВ
      При работе дизеля часть энергии (до 40%) безвозвратно теряется в виде рассеиваемого тепла. Агрегаты фирмы ABZ могут быть оснащены устройствами регенерации. В этом случае между двигателем и радиатором, на общей раме, устанавливается теплообменник (см. рис. p027). В нем охлаждающая двигатель жидкость, прежде чем охладиться в радиаторе, передает тепло воде, например, для отопления здания.
      Кроме нагрева в первом теплообменнике, вода системы отопления может дополнительно подогреваться во втором выхлопными газами агрегата.
      Таким образом, кроме электроэнергии агрегаты вырабатывают большое количество вторичного тепла. Оно может использоваться для технологических нужд производства. Так в деревообрабатывающей промышленности его используют в сушильных камерах, в сельском хозяйстве -- для обогрева теплиц и ферм.
      На рисунках рис. 4.1...рис. 4.4 представлены различные варианты исполнения дизельных агрегатов фирмы ABZ.
      Агрегат тип ON-700/50 работает в аэропорту г. Франкфурт-на-Майне и в случае отсутствия напряжения в сети питает электроэнергией установку заправки самолетов топливом.
      Дизельный агрегат (рис. p026) мощностью 700 кВА, в шумоизолированном 9-метровом контейнере:
      тип ON-700/50;
      двигатель MTU серии 396;
      генератор Leroy Somer.
      Агрегат в исполнении блочной минитеплоэлектростанции (рис. p027). Тепловой шкаф показан со снятой передней стенкой. Данный агрегат работает на деревообрабатывающем комбинате под Санкт-Петербургом.
      Агрегат резервного энергоснабжения (рис. p028), для Центра Люфтганзы в Пекине (Китай), мощностью 1000 кВА:
      тип CS-1000/50;
      двигатель Cummins серии КТА-50;
      генератор Leroy Somer.
      Передвижной агрегат легкой конструкции (рис. p029), мощностью 60 кВА транспортируемый легковым автомобилем:
      тип АТ-60/50;
      двигатель Iveco;
      генератор Leroy Somer.
      Агрегат показан в закрытом положении и с поднятым кожухом.
      Автономный насос с дизельным приводом мощностью 319 кВт:
      тип RG-319/PP/1800;
      двигатель MAN;
      насос Sulzer Weise.
      4.2. ДИЗЕЛЬ-ГЕНЕРАТОРЫ КОНЦЕРНА SDMO
      Концерн SDMO (Франция) входит в группу компаний Group Meunier. Он образован в 1969 году и к настоящему времени включает три крупных подразделения ES, MS, AS и шесть заводов. На заводах концерна выпускаются дизели мощностью от 1 до 5000 кВА.
      Отделение ES работает с двумя заводами, где выпускает агрегаты мощностью от 1 до 100 кВА.
      Отделение MS выпускает дизель-генераторы мощностью от 100 до 2000 кВА. Здесь проектируются и изготавливаются дизель-электростанции. Они могут располагаться в стационарных сооружениях или контейнерах.
      Отделение AS выпускает нестандартные агрегаты. Оно проектирует и изготавливает специализированные системы для военных приложений, средств связи, морских судов.
      В агрегатах SDMO используются двигатели следующих производителей: Cummins, Volvo, Perkins, Lister, Petter, для которых характерны надежность и экономичность.
      Дизель-генераторы SDMO выпускаются в трех исполнениях для установки в помещении или под открытым небом:
      Compact -- на виброизолирующей раме (рис. p056);
      Silent -- в шумопоглощающем контейнере;
      Super Silent -- в двойном шумопоглощающем контейнере.
      Контейнеры Silent и Super Silent могут устанавливаться на колесное шасси.
      Важным техническим показателем дизель-генераторных установок является уровень шума. В агрегатах SDMO, благодаря комплексному шумоподавлению, уровень шума составляет не более 85 dB, а при усиленном шумоподавлении -- не более 75 dB. Шумопоглощающая оболочка для контейнеров имеет слоеную структуру с чередующимися слоями металл-полиуретан-металл.
      Фирма производит и поставляет дизель-генераторы в диапазоне мощностей от 1 до 5000 кВА. Типы генераторных установок концерна SDMO представлены в табл. t030. Гарантированный срок службы агрегатов 4 000 моточасов или 12 месяцев эксплуатации.
      Запуск и управление дизелями осуществляется в ручном или автоматическом режимах. Для этого устанавливается одна из следующих систем управления (рис. p057).
      MICS Nano -- система контроля и управления дизель-генератором для ручного способа управления (рис. p057 а).
      MICS Pico -- система контроля параметров работы и управления дизель-генератором в автоматическом режиме (рис. p057 б).
      MICS Process -- микропроцессорная система контроля и управления всеми функциями дизель-генератора (старт, выход на режим, остановка, управление системой охлаждения и т.д.). На цифровом дисплее отображаются параметры работы агрегата в режиме реального времени (рис. p057 в).
      MICS Commander -- система управления функциями энергосистемы, состоящей из нескольких агрегатов. Она строится на базе интегрированных модулей MICS Process и осуществляет синхронизацию параллельно работающих дизель-генераторов. Максимальное количество параллельно работающих агрегатов -- 12.
      MICS Process обрабатывает до 100 признаков неполадок, включая 60 установленных изготовителем и 30 программируемых пользователем, регистрирует дату и время признаков отклонений параметров работы узлов дизель-генераторов в режиме реального времени.
      Программирование режимов работы позволяет MICS Commander использовать минимально необходимое количество агрегатов для питания потребителей. Запуск, синхронизация, включение и выключение осуществляется в автоматическом режиме.
      Для дистанционного управления энергосистемой используется телекоммуникационный модуль. Он позволяет осуществлять удаленный контроль и управление через интерфейс RS422 и регулировать 32 параметра энергосистемы.
      Кроме широкой номенклатуры дизель-генераторов концерн SDMO выпускает автономные агрегаты для освещения, сварочных работ (рис. p058) и электрогенераторы с нестандартным выходным напряжением. Для автономного освещения большой площади выпускается передвижной агрегат оборудованный шестиметровой мачтой с натриевой лампой мощностью 1,5 кВт.
      Мощность сварочных автономных агрегатов концерна SDMO -3,7 кВт. Три типа исполнения -- на раме, на тележке и на автомобильном прицепе удовлетворяют любым требованиям. Технические характеристики сварочных автономных агрегатов приведены в табл. t031.
      4.3. СОЛНЕчНАЯ ЭНЕРГИЯ
      Первые попытки использования солнечной энергии на коммерческой основе относятся к 80-м годам нашего столетия. Крупнейших успехов в этой области добилась фирма Loose Industries (США). Ею в декабре 1989 года введена в эксплуатацию солнечно-газовая станция мощностью 80 МВт.
      Здесь же, в Калифорнии, в 1994 году введено еще 480 МВт электрической мощности, причем, стоимость 1 кВтч энергии -7...8 центов. Это ниже, чем на традиционных станциях. В ночные часы и зимой энергию дает, в основном, газ, а летом в дневные часы -- солнце.
      Электростанция в Калифорнии продемонстрировала, что газ и солнце, как основные источники энергии ближайшего будущего, способны эффективно дополнять друг друга. Поэтому не случаен вывод, что в качестве партнера солнечной энергии должны выступать различные виды жидкого или газообразного топлива. Наиболее вероятной "кандидатурой" является водород. Его получение с использованием солнечной энергии, например, путем электролиза воды может быть достаточно дешевым, а сам газ, обладающий высокой теплотворной способностью, легко транспортировать и длительно хранить.
      Отсюда вывод: наиболее экономичная возможность использования солнечной энергии, которая просматривается сегодня -- направлять ее для получения вторичных видов энергии в солнечных районах земного шара. Полученное жидкое или газообразное топливо можно будет перекачивать по трубопроводам или перевозить танкерами в другие районы.
      Быстрое развитие гелиоэнергетики стало возможным благодаря снижению стоимости фотоэлектрических преобразователей в расчете на 1 Вт установленной мощности с 1000 долларов в 1970 году до 3...5 долларов в 1997 году и повышению их КПД с 5 до 18%. Уменьшение стоимости солнечного ватта до 50 центов позволит гелиоустановкам конкурировать с другими автономными источниками энергии, например, с дизельэлектростанциями.
      4.3.1. ГЕЛИОУСТАНОВКИ НА ШИРОТЕ 60o
      Одним из лидеров практического использования энергии Солнца стала Швейцария. Здесь построено примерно 2600 гелиоустановок на кремниевых фотопреобразователях мощностью от 1 до 1000 кВт и солнечных коллекторных устройств для получения тепловой энергии. Программа, получившая наименование "Солар-91" и осуществляемая под лозунгом "За энергонезависимую Швейцарию!", вносит заметный вклад в решение экологических проблем и энергетическую независимость страны импортирующей сегодня более 70 процентов энергии.
      Программа "Солар-91" осуществляется практически без поддержки государственного бюджета, в основном, за счет добровольных усилий и средств отдельных граждан, предпринимателей и муниципалитетов. К 2000-му году она предусматривает довести количество гелиоустановок до 3000.
      Гелиоустановку на кремниевых фотопреобразователях, чаще всего мощностью 2...3 кВт, монтируют на крышах и фасадах зданий. Она занимает примерно 20...30 квадратных метров. Такая установка вырабатывает в год в среднем 2000 кВтч электроэнергии, что достаточно для обеспечения бытовых нужд среднего швейцарского дома и зарядки бортовых аккумуляторов электромобиля. Дневной избыток энергии в летнюю пору направляют в электрическую сеть общего пользования. Зимой же, особенно в ночные часы, энергия может быть бесплатно возвращена владельцу гелиоустановки.
      Крупные фирмы монтируют на крышах производственных корпусов гелиостанции мощностью до 300 кВт. Одна такая станция может покрыть потребности предприятия в энергии на 50...70%.
      В районах альпийского высокогорья, где нерентабельно прокладывать линии электропередач, строятся автономные гелиоустановки с аккумуляторами.
      Опыт эксплуатации свидетельствует, что Солнце уже в состоянии обеспечить энергопотребности, по меньшей мере, всех жилых зданий в стране. Гелиоустановки, располагаясь на крышах и стенах зданий, на шумозащитных ограждениях автодорог, на транспортных и промышленных сооружениях не требуют для размещения дорогостоящей сельскохозяйственной или городской территории.
      Автономная солнечная установка у поселка Гримзель дает электроэнергию для круглосуточного освещения автодорожного тоннеля. Вблизи города Шур солнечные панели, смонтированные на 700-метровом участке шумозащитного ограждения, ежегодно дают 100 кВт электроэнергии. Солнечные панели мощностью 320 кВт, установленные по заказу фирмы Biral на крыше ее производственного корпуса в Мюнзингене, почти полностью покрывают технологические потребности предприятия в тепле и электроэнергии.
      Современная концепция использования солнечной энергии наиболее полно выражена при строительстве корпусов завода оконного стекла в Арисдорфе, где солнечным панелям общей мощностью 50 кВт еще при проектировании была отведена дополнительная роль элементов перекрытия и оформления фасада.
      КПД кремниевых фотопреобразователей при сильном нагреве заметно снижается и, поэтому, под солнечными панелями проложены вентиляционные трубопроводы для прокачки наружного воздуха. Нагретый воздух работает как теплоноситель коллекторных устройств. Темно-синие, искрящиеся на солнце фотопреобразователи на южном и западном фасадах административного корпуса, отдавая в сеть 9 кВт электроэнергии, выполняют роль декоративной облицовки [13].
      4.3.2. ГЕЛИОМОБИЛЬ СЕГОДНЯ
      Один из крупных разделов программы "Солар-91" -- развитие транспортных средств использующих солнечную энергию, так как автотранспорт "съедает" четверть энергетических ресурсов необходимых стране. Ежегодно в Швейцарии проводится международное ралли солнцемобилей "Тур де сол". Трасса ралли, протяженностью 644 километра, проложена по дорогам северо-западной Швейцарии и Австрии. Гонки состоят из 6 однодневных этапов, длина каждого -- от 80 до 150 километров.
      Швейцарские граждане возлагают большие надежды на децентрализованное производство электрической и тепловой энергии собственными гелиоустановками. Это отвечает независимому и самостоятельному швейцарскому характеру, чувству цивилизованного собственника, не жалеющего средств ради чистоты горного воздуха, воды и земли. Наличие персональных гелиостанций стимулирует развитие в стране электроники и электротехники, приборостроения, технологии новых материалов и других наукоемких отраслей.
      В июне 1985 года Урс Мунтвайлер, 27-летний инженер из Берна, провел по дорогам Европы первое многодневное ралли легких электромобилей, оборудованных фотопреобразователями и использующих для движения солнечную энергию. В нем участвовало несколько швейцарских самодельщиков, восседавших в "поставленных на колеса ящиках из-под мыла" с прикрученными к ним сверху солнечными панелями. Во всем мире тогда едва ли можно было насчитать с десяток гелиомобилей.
      Прошло четыре года. "Тур де сол" превратился в неофициальный чемпионат мира. В пятом "солнечном ралли", состоявшемся в 1989 году, участвовало свыше 100 представителей из ФРГ, Франции, Англии, Австрии, США и других стран. Тем не менее, больше половины гелиомобилей принадлежало по-прежнему швейцарским первопроходцам.
      В течение последующих пяти лет появилось понятие серийный гелиомобиль. Гелиомобиль считается серийным, если фирма-изготовитель продала не менее 10-ти образцов и они имеют сертификат, разрешающий движение по дорогам общего пользования.
      4.3.3. ПРЕОБРАЗОВАТЕЛИ СОЛНЕЧНОЙ ЭНЕРГИИ
      Существуют и другие направления в освоении солнечной энергии. Это, прежде всего, использование фотосинтезирующей способности растений. Уже созданы и успешно работают, правда пока в лабораторных условиях, фотобиохимические системы, где энергия кванта света используется для переноса электронов. Они являются прообразом эффективных преобразователей будущего, использующих принципы естественного фотосинтеза.
      Решая вопросы "экономичности" солнечной энергетики, нельзя впадать в распространенное заблуждеие: сравнивать дорогостоящую, но очень молодую технологию преобразования энергии Солнца в электричество с помощью фотоэлементов, с дешевой, но "грязной" технологией использования нефти и газа. Экономичность этого нового вида энергетических ресурсов должна сравниваться с теми видами энергии, которые будут в тех же масштабах использоваться в будущем.
      Расчеты показывают, что стоимость широкого производства синтетического жидкого топлива с помощью солнечной энергии будет равняться 60 долларам за баррель (баррель [англ. barrel букв. бочка] -- мера объема жидких и сыпучих веществ. Английский барель равен 163,65 л; винный барель в США -- 119,24 л; нефтяной -- 19 л). Для сравнения отметим, что сегодня стоимость барреля нефти из района Персидского залива составляет 35 долларов.
      Интенсивность солнечного света на уровне моря составляет 1...3 кВт на квадратный метр. КПД лучших солнечных батарей составляет 12...18 процентов. С учетом КПД преобразование энергии солнечных лучей с помощью фотопреобразователей позволяет получить с одного квадратного метра не более 1/2 кВт мощности.
      Опыт использования солнечной энергии в умеренных широтах показывает, что энергию солнца выгоднее непосредственно аккумулировать и использовать в виде тепла. Разработаны проектные предложения для Аляски и севера Канады. Природно-климатические условия этих регионов сопоставимы с условиями средней полосы нашей страны.
      Существует два основных направления в развитии солнечной энергетики: решение глобального вопроса снабжения энергией и создание солнечных преобразователей, рассчитанных на выполнение конкретных локальных задач. Эти преобразователи, в свою очередь, также делятся на две группы; высокотемпературные и низкотемпературные [10].
      В преобразователях первого типа солнечные лучи концентрируются на небольшом участке, температура которого поднимется до 3000oС. Такие установки уже существуют. Они используются, например, для плавки металлов (см. рис. p096).
      Самая многочисленная часть солнечных преобразователей работает при гораздо меньших температурах -- порядка 100...200oС. С их помощью подогревают воду, обессоливают ее, поднимают из колодцев. В солнечных кухнях готовят пищу. Сконцентрированным солнечным теплом сушат овощи, фрукты и даже замораживают продукты. Энергию солнца можно аккумулировать днем для обогрева домов и теплиц в ночное время.
      Солнечные установки практически не требуют эксплуатационных расходов, не нуждаются в ремонте и требуют затрат лишь на их сооружение и поддержание в чистоте. Работать они могут бесконечно.
      4.3.4. КОНЦЕНТРАТОРЫ СОЛНЕЧНОГО СВЕТА
      С детства многие помнят что с помощью собирательной линзы от солнечного света можно зажечь бумагу. В промышленных установках линзы не используются: они тяжелы, дороги и трудны в изготовлении.

  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8