Современная электронная библиотека ModernLib.Net

Эйнштейн (Жизнь, Смерть, Бессмертие)

ModernLib.Net / История / Кузнецов Б. / Эйнштейн (Жизнь, Смерть, Бессмертие) - Чтение (стр. 31)
Автор: Кузнецов Б.
Жанр: История

 

 


      Второй этап научной революции приводит к понятию инерции. В этом главный вклад космологии и механики Галилея в необратимую эволюцию картины мира. Но прошлое еще не стало подлинным прошлым, оно находится еще в теперь. Инерция Галилея еще не порвала
      449
      связи с круговыми относительными движениями на сферах аристотелевой космологии. Небесные тела, предоставленные самим себе, движутся по круговым орбитам. Прямолинейное движение по инерции - открытие Декарта. Это основной вклад картезианской физики в необратимое развитие познания. Но этот новый импульс, который дан научной революции на ее третьем, картезианском, этапе, не может стать основой завершения революции, создания относительно устойчивой и однозначной картины мира. Прямолинейное движение по инерции может объяснить движение по круговым орбитам и всю сумму наблюдаемых фактов с помощью ряда введенных ad hoc искусственных гипотез. Картезианская физика была явным образом лишена внутреннего совершенства. Завершением научной революции XVI-XVII вв. был ее четвертый этап - динамизм Ньютона, понятие силы, "Математические начала натуральной философии".
      Конечно, такая периодизация научной революции крайне схематична и противоречащие ей исторические факты нетрудно найти. Но в данном случае схематизм вытекает из объективной "антипериодичности" науки XVI-XVII вв. Она сопротивляется периодизации в силу своего основного определения. Периодизация всегда исходит из различия раньше и позже, из временного интервала между ними. Но такой интервал был создан лишь на исходе XVII в., когда прошлое стало достоянием истории, подлинным прошлым, будущее стало содержанием прогнозов, подлинным будущим, а позитивное содержание науки отгородилось от того и от другого своей претензией на полную достоверность, своей подлинной, а иногда иллюзорной однозначностью.
      К этому следует добавить несколько слов о той полосе сравнительно органического развития науки, которая началась после "Начал". Нельзя думать, что эпитет "органическое" исключает борьбу направлений. Достаточно напомнить, с какой энергией картезианство в XVII в. восставало против своего перемещения из науки в ее историю. Органичность эволюции состояла в том, что открытые экспериментом новые области находили внутреннее совершенство на основе уже установившейся аксиоматики без трансформации последней. В XIX в. имел место ряд открытий, выявивших специфические закономерности сложных форм, движения, несводимые к зако
      450
      нам механики. Оказалось, законы термодинамики, электродинамики, атомистической химии, эволюционной биологии не укладываются в общие схемы. Тем самым исчезла концепция полной сводимости законов бытия к законам классической механики. Но эти революционные акты не трансформировали ни содержания законов механики, ни логических норм науки и не приводили к общей научной революции. До поры до времени. На рубеже XIX в. и XX в. электродинамика вступила в противоречие с законами механики. Требование внутреннего совершенства новых представлений об электромагнитном поле привело к новому взгляду на соотношение пространства и времени, и это было началом новой общей научной революции.
      Исходным пунктом теории относительности был конфликт между выводами классической механики и выводами классической электродинамики. Чтобы найти исторические антецеденты этого конфликта, исторические корни идей Эйнштейна в классической науке, следует остановиться на имеющихся в ньютоновых "Началах" истоках механики и истоках теории поля. Истоки того и другого это две задачи, которые Ньютон поставил перед исследованием природы. Первая из этих задач - по заданным силам определить движение тел, вторая - по заданному распределению тел определить действующие на них силы. Если первая задача получила сравнительно полное решение, то вторая, т.е. первоначальная форма теории поля, при своем решении, включавшем закон тяготения, содержала некоторую принципиальную нерасшифрованность понятия силы. Она и не могла быть расшифрована однозначным образом и здесь - корни того, что получило название физики принципов, противопоставленной физике моделей. В третьей книге "Начал" Ньютон поместил "Правила философствования" (Regula philosophandi), где излагается "индуктивный метод" с явной антикартезианской тенденцией, вызывавшей в Англии множество панегириков. Об "индуктивном методе" вообще писалось немало, но сейчас, в свете современной науки и эйнштейновской концепции критериев выбора физической теории, можно взглянуть по-новому на соотношение эмпирических и относительно априорных корней познания. При этом уточняется историческая оценка бэконовского и ньютоновского индуктивизма.
      451
      Подойдем к "Regula philosophandi" Ньютона с точки зрения перехода от одного этапа научной революции к другому - от картезианской кинетической физики к динамической картине мира. И Декарт, и Ньютон шли от наблюдений к весьма общим умозаключениям. Первый это делал с акцентом на логическом выведении, на том, что через три столетия Эйнштейн назвал внутренним совершенством. При этом Декарт но слишком заботился об однозначности частных объяснений. Ньютон ставил акцент на внешнем оправдании и старался не включать в механику неоднозначные гипотетические модели, хотя и не раз, особенно в оптике, изменял своему заклятью. "Физика принципов" Ньютона без кинетических гипотетических моделей открывала дорогу феноменологическим понятиям, из которых главным оказалось понятие силы. Сила была объектом строгого математического анализа и вместе с тем объектом количественного эксперимента. Математика и эксперимент здесь встречались, и при этом достигалось некоторое согласие внешнего оправдания и внутреннего совершенства физической теории. Тем самым гарантировалась их однозначная достоверность; относительные истины в большей мере совпадали по направлению с необратимой эволюцией, направленной к абсолютной истине. Другое дело, что отказ от кинетической расшифровки силы абсолютизировался и это давало основание для справедливой критики ньютоновских индуктивистских претензий.
      Но здесь в игру вступало сохранение вопрошающего инварианта познания, сохранение вопроса о происхождении силы, о дальнейшей расшифровке силы как причины движения, которую Ньютон сделал конечным пунктом анализа, определив ее и измерив феноменологически. Здесь и начались те дефекты внутреннего совершенства классической физики, которые перечислил Эйнштейн в своей автобиографии (для этого и были там введены указанные понятия внешнего оправдания и внутреннего совершенства) и которые были основанием для перехода к неклассической картине мира.
      Там, где Ньютон отходил от приложенной к телу заданной силы и переходил к ее происхождению, сразу же появлялись неоднозначные, противоречивые, явно неудовлетворительные понятия первого толчка, действия на расстоянии, а также понятия абсолютного простран
      452
      ства и времени. Они появлялись вместе с попытками отказаться от дальнейшего анализа, ведущего к гипотетическим построениям, но сейчас, когда мы знаем, как впоследствии были решены наметившиеся коллизии, нас интересует их гносеологическая характеристика. Она состоит в следующем. Однозначность ньютоновых законов (сохранившихся в классической аппроксимации в качестве "ограниченно годных" и поныне) свидетельствует об исторической необратимости познания, о необратимости и растущей точности результатов познания. То, что называют "шуйцей" Ньютона, - неоднозначность в оптике, в проблеме действия на расстоянии, первого толчка и т.д. демонстрирует продолжение познания, его неисчерпаемость, сохранение вопросов как инварианта познания. В этом - основной гносеологический итог ньютоновского динамизма. Когда вопрос: "почему тело движется?" перешел в вопрос: "что такое сила?", он не был снят, он сохранился в более сложной форме.
      Нельзя рассматривать в качестве итогов научной революции XVI-XVII вв. только позитивные констатации, прочно вошедшие в науку. Выше уже говорилось о неотделимости позитивных ответов, гарантирующих необратимое направление научного прогресса, и нерешенных вопросов, гарантирующих дальнейшее движение в этом направлении. Это соотношение можно видеть в истории закона всемирного тяготения. Он был ответом на вопрос, поставленный открытием эллиптического движения планет. После открытия эллиптической формы орбит, после законов Кеплера возникла столь характерная для научных революций коллизия: внешнее оправдание, наблюдения Кеплера, не могли быть логически выведены из картины мира, сложившейся в первой половине XVII в. Ни система Галилея, не включавшая тяготения и исходившая из круговых движений планет, ни вихри Декарта не могли, естественно, без выдвинутых ad hoc искусственных конструкций обосновать законы Кеплера. Их объяснением была концепция Ньютона. Но далее понадобилась более общая перестройка науки. Позитивная и однозначная концепция тяготения была создана только в XX в. Общая теория относительности объяснила с высоким внутренним совершенством и равенство тяжелой и инертной массы и ряд других, чисто феноменологических посылок теории тяготения. Действие на расстоянии, явно
      453
      несоединимое с физикой Декарта, после попыток исключить его различными искусственными гипотезами типа давления эфира, держалось вплоть до Эйнштейна, введшего представление о воздействии тяжелого тела на геометрию окружающего пространства. Сам Ньютон колебался между ссылками на материальный механизм передачи сил тяготения и на нематериальный агент. Именно такие колебания, такой адресованный будущему вопрос был существенным итогом научной революции XVI-XVII вв.
      Уже в XVIII в. широко дебатировался другой, уже упоминавшийся вопрос о первоначальном толчке, объясняющем тангенциальную составляющую движения планеты по орбите. Ньютон приписал первоначальный толчок богу и говорил, что движение планет - это "перегородка, отделяющая друг от друга природу и перст божий". Кант назвал такую мысль "жалким для философа решением вопроса" и приписал первоначальный толчок, т.е. начальные условия системы движущихся тел, вращению первичной туманности. Такой выход за пределы данной динамической задачи стал чрезвычайно мощным методом построения единой космогонической и космологической системы.
      Все сказанное приводит к некоторому общему выводу: "пятна на Солнце" ньютоновой механики - это результат сравнительной неразработанности проблемы происхождения сил, их зависимости от распределения масс. Иначе говоря, - отсутствие концепции силового поля. Вторая задача Ньютона, о которой он говорил в "Началах", - определение сил по пространственному распределению масс, теория тяготения без его физической расшифровки и с фактической презумпцией действия на расстоянии - все это начало теории поля, но начало, еще несущее родимые пятна старого, новые понятия, еще не-отделившиеся от старых, наблюдения, еще не получившие внутреннего совершенства, обобщения, не получившие внешнего оправдания. И в целом - это вопрос, адресованный будущему и стимулирующий будущее. Стимулирующий основную линию подготовки новой научной революции, происшедшей через три столетия после первой.
      Такая функция - стимулирование теории поля - принадлежала к наиболее темному "пятну на Солнце" ньютоновой механики и классической науки в целом.
      454
      Речь идет о понятиях абсолютного пространства и абсолютного времени. Эти понятия еще раз показывают, что итоги научной революции - это не только ее завершение, но и ее переход в новую полосу, когда под затвердевшей, послереволюционной почвой установившихся аксиом и методов пробиваются внутренние тектонические сдвиги, ведущие к новой революции. Внешнее оправдание концепции абсолютного пространства у Ньютона - силы инерции, возникающие при ускоренном движении данного тела относительно мирового пространства и не возникающие при движении окружающих тел относительно данного. Отсюда следует неравноправность координатной системы, связанной с данным ускоренно движущимся телом, и координатной системы окружающего пространства. Но у этой концепции не было внутреннего совершенства: силы инерции в нарисованной Ньютоном картине не вытекают из общего принципа, силы не связаны с взаимодействием тел, причиной физических явлений оказывается пустое пространство и принципиально непредставимое движение в пустом пространстве. "Пятна на Солнце" толкали картину мира к заполнению пространства физической средой, но этот импульс приводил в конце концов к иной трактовке сил инерции, к их эквивалентности полю - гравитационному полю.
      Концепция абсолютного времени основана на презумпции мгновенной передачи сигналов, придающей физический смысл "моментальной фотографии" Вселенной, мгновению, единому для всех точек пространства. Внешним оправданием концепции абсолютного времени было множество наблюдений, подтверждавших неограниченное нарастание скорости при последовательных импульсах, т.е. постоянство массы. Но эти факты относились к первой задаче Ньютона, к определению поведения тел при заданных силах. Вторая задача определение сил - требовала обобщения механики постоянных масс, но такого общего принципа не было. Классическая физика пыталась подчинить теорию поля понятиям первой, механической задачи Ньютона, приписать полю, фигурировавшему под именем эфира, механические свойства. Но теория поля добивалась эмансипации и в конце концов не только добилась ее, но и подчинила себе механику, сделав массу зависимой от движения и эквивалентной внутренней энергии тела.
      455
      Таким образом, основное memento mori классической науки уже содержалось в ее генезисе, в том, что было создано научной революцией XVI-XVII вв., было итогом этой революции.
      Подобный итог содержал не только позитивные инварианты познания, но и залог дальнейшего преобразования картины мира - инвариантные вопросы, которые, переходя из эпохи в эпоху, модифицируются и, не находя окончательного решения, создают внутренние импульсы безостановочного даже в органические эпохи движения и трансформации представлений о мире.
      Попробуем теперь отыскать центральную идею, которая проходит через итоги научной революции XVI- XVII вв., через последовательные этапы этой революции. Мы видели характерную для нее диалогическую форму развития, непрерывное столкновение позитивных и вопрошающих дедукций. Что же является сквозным предметом диалога, вокруг чего объединяются и сохраняющиеся на будущее позитивные ответы и все время возникающие из этих ответов, как феникс из пепла, неисчезающие вопросы? Таким предметом диалога, объединяющим сравнительно частные коллизии науки XVI- XVII вв., были физические события в здесь-теперь, в точке и в мгновении. Каждый ответ на вопрос о поведении частицы здесь и теперь был достаточно парадоксальным: в непротяженной точке, в данное, точно определенное мгновение пространственно-временные события и процессы не могут происходить, для них в буквальном смысле "нет места" и "нет времени".
      Конечно, это сквозная апория, осознанная со времен Зенона. Но в XVI-XVII вв. движение сделалось неотъемлемой компонентой бытия, ставшего в это время пространственно-временным, движущимся бытием. Как же соединить концепцию локального бытия с пространственно-временным представлением о мире? Без этого не могло быть создано новое представление о реальности как о становлении. Такое наименование, отнесенное к исходным категориям бытия, найдено Гегелем, но мысль о движении как критерии реальности была достаточно четкой уже у Галилея. Она была и у натурфилософов XVI в. Последние продолжали в этом отношении традицию Треченто и Кватроченто, реабилитировавших мгновенное и локальное, протекающее и движущееся, состоящее из элементарных ситуаций. В этом и состояла секуляризация картины мира, уход от перипатетического и патристического апофеоза вечного, неподвижного и неизменного, как определений основной структуры бытия.
      456
      Для математики понятие бесконечно малого было выходом из коллизии локального и движущегося, коллизии, лежавшей в основе апорий Зенона. "Исчисление нулей"-Эйлера (нулей, парадоксальным образом обладающих направлением) и лейбницевы пренебрежимо малые величины явились различными формами (число их, включая оттенки, было очень велико) выведения реальных пространственно-временных отношений для локальных ситуаций. Математика при этом становилась онтологической, ее преобразовывали применительно к картине реальных процессов. Вообще научные революции приводят к исключению априорных и конвенциональных тенденций в обосновании математики. Основы исчисления бесконечно малых закладывались не только в собственно математических работах XVII в., но и в механике. В особенности важными были в этом отношении "Беседы" Галилея. С них начинается развитие представления о движении от точки к точке и от мгновения к мгновению, заменившее концепцию движения Аристотеля из чего-то во что-то. Такая замена была общим, может быть, самым общим направлением научной мысли начала Нового времени. Оно очень точно выражено у Кеплера. "Там, - писал Кеплер, - где Аристотель усматривает между двумя вещами прямую противоположность, лишенную посредствующих звеньев, там я, философски рассматривая геометрию, нахожу опосредствованную противоположность, так что там, где у Аристотеля один термин: "иное", у нас два термина: "более" или "менее"" [3].
      3 Kepler I. Opera orania, t. I. Frankfurt, 1858, p. 423.
      Эти строки нуждаются в пояснении. "Прямая противоположность, лишенная посредствующих звеньев", - это интегральное представление, указывающее на качественно различные полюсы: абсолютное начало и абсолютный конец движения из чего-то во что-то. Такое интегральное представление приписывает началу и концу процесса некоторое субстанциональное (тело возникает и исчезает) или качественное различие. Полюсы движения или логического сопоставления определяются один по от
      457
      ношению к другому словом "иное". Что же такое "опосредствующие звенья?" Это непрерывный ряд пространственных положений, скоростей, ускорений и бесконечное множество точек и мгновений, которым соответствуют определенные состояния движущихся тел. Сопоставляемые предметы, свойства и состояния, если их определять через такие "опосредствующие звенья", характеризуются мерой. Они могут занимать то или другое место в ряде "опосредствующих звеньев", они могут быть больше или меньше, и этим определяется их отличие.
      Генезис математического естествознания, складывавшийся из физикализации математики и математизации физики на основе количественных законов бытия, связан, таким образом, с дифференциальным представлением о движении. Основные успехи естествознания в XVII- XIX вв. были результатом преимущественного внимания к бесконечно малым областям. "От той точности, писал Риман, - с которой нам удается проследить явления в бесконечно малом, существенно зависит наше знание причинных связей. Успехи в познании механизма внешнего мира, достигнутые на протяжении последних столетий обусловлены почти исключительно благодаря точности того построения, которое стало возможным в результате открытия анализа бесконечно малых, применения основных простых понятий, которые были введены Архимедом, Галилеем и Ньютоном и которыми пользуется современная физика" [4].
      4 Риман Б. О гипотезах, лежащих в основании геометрии. - Избр. произв. М.; Л., 1948, с. 291.
      Преимущественный интерес к бесконечно малому существовал до нашего времени. Сейчас преимущественного интереса уже нет: в современной теории элементарных частиц с анализом их поведения во внутриядерных областях связан анализ космических процессов. Для классической науки и ее генезиса в рамках научной революции XVI-XVII вв. дифференциальное представление было сквозным и центральным направлением физической мысли. Он связан с перечисленными выше основными итогами указанной революции. В том числе - с ньютоновым динамизмом. Приложенная к телу сила как феноменологическая причина его движения позволяет обойтись без анализа интегральной космической обстановки,
      458
      переносит центр тяжести в локальные пункты, в здесь-теперь. В пределах первой задачи Ньютона - определения положения тел по заданным силам, интегральные ситуации - это результат дифференциальных законов. Противоположная задача - выяснение происхождения сил из зависимости от начальных условий, первоначального толчка - все это переносится в область "пятен на Солнце", в область, где сконцентрировались нерешенные вопросы, ставшие импульсом для дальнейшей эволюции классической науки, эволюции, приведшей к ее неклассическому финалу.
      Подобный взгляд на идеи классической науки, на творчество Ньютона, на соотношение позитивной компоненты познания и его вопрошающей компоненты заставляет несколько пересмотреть традиционное понимание "классицизма" науки, созданной в XVI-XVII вв. Фигура Ньютона перестает казаться фигурой мыслителя, нашедшего непоколебимые устои представления о мире. Ньютон был революционером не только потому, что завершил научную революцию XVI-XVII вв., но и потому, что созданная в XVII в. наука, в силу диалога между ее позитивными утверждениями и ее апориями, сохранила незатухающую трансформацию своих основных положений.
      Это касается и рассматриваемой здесь проблемы отношения локального здесь-теперь к вселенскому вне-здесь-теперь, отношения микрокосма к космосу. Фундаментальная коллизия классической науки вытекает из различного уровня однозначности в двух основных направлениях: в механике тел, движущихся под влиянием приложенных сил, и в том, что было началом теории поля. Эти две задачи - "десница" и "шуйца" Ньютона - сами были в некотором смысле антецедентом неклассической коллизии движения и поля; Эйнштейн, говоря о ней, перешел от "десницы" и "шуйцы" к двум "частям строения" общей теории относительности: "мраморной" - тензору кривизны пространства-времени и неполноценной "деревянной части" - тензору энергии-импульса [5].
      5 См.: Эйнштейн, 4, 217.
      459
      Теория поля XVIII-XIX вв. унаследовала характерную ньютонову оторванность от механики. Последняя управляла в микромире движениями атомов и молекул, в XVIII в. она здесь претендовала на всевластие, в XIX в. осознала некоторую автономию управляемых областей, но в область, где рассматривали природу сил, природу силового поля, механика входила с трудом, здесь авансцену занимали континуальные представления, и Планк был прав, когда сказал об эфире, что это дитя классической физики, зачатое в скорби... Конечные образы статического бытия, атомы и их конфигурации, не сливались с континуальными и инфинитезимальными представлениями аналитической механики и теории поля. Глубокая трещина, разделившая атомистику и континуум, тела и поле, не могла быть полностью устранена статистической континуализацией атомистики. Она была устранена атомизацией поля, установлением его дискретности и континуализацией частицы, открытием "волн материи" в рамках неклассической физики.
      Подготовкой неклассического финала классической физики был последовательный переход от локальных ситуаций к более обширным в связи с поисками начальных условий, определяющих поведение изолированной частицы или изолированной системы частиц. Исходным пунктом и здесь была "шуйца" Ньютона, нерасшифрованность силы, нереализованная до поры до времени тяга к включению космических условий в объяснение локальных ситуаций. К "шуйце" принадлежит упоминавшаяся уже ньютоновская концепция первоначального толчка. Схема, предложенная Кантом во "Всеобщей естественной истории и теории неба", апеллирует к прошлому, к процессам, происходившим до образования солнечной системы, к возникшей тогда первичной туманности. Иначе говоря, причина тангенциальной скорости лежит в более широкой во времени системе. И в более широкой в пространстве: схема Канта охватывает весь космос, где образуются первичные туманности. Но переход к более широким системам не ограничивается объяснением первоначального толчка. Здесь мы встречаем весьма общую тенденцию классической физики, которая вела к новой научной революции - ровеснице XX столетия. Приведем отрывок из статьи М. Борна, посвященной подготовке неклассической науки в новой эпохе в физике.
      460
      "Путь к этому был расчищен в результате длительного развития науки, в течение которого выявилась недостаточность классической механики для рассмотрения поведения вещества. Дифференциальные уравнения механики сами по себе не определяют движения полностью - нужно задать еще начальные условия. Например, эти уравнения объясняют эллиптичность планетных орбит, но отнюдь не позволяют понять, почему существуют именно данные орбиты, а не какие-то другие. Однако реально существующие орбиты подчиняются вполне определенным закономерностям, например известному закону Боде. Объяснение этих закономерностей ищут в предыстории системы, которая рассматривается как проблема космогонии, до сих пор еще в высшей степени дискуссионная. В атомной области неполнота дифференциальных уравнений является еще более существенной. В кинетической теории газов впервые стало ясно, что необходимо сделать какие-то новые предположения о распределении атомов в данный момент времени, и эти предположения оказались важнее уравнений движения: истинные траектории частиц не играют никакой роли; существенна только полная энергия, которая определяет наблюдаемые нами средние значения. Механические движения обратимы, поэтому для объяснения необратимости физических и химических процессов требовались новые предположения статистического характера. Статистическая механика проложила дорогу новой, квантовой эпохе" [6].
      6 Вопросы причинности в квантовой механике. М., 1955, с. 104; см. также: Born M.~ Proc. Phys. Soc, 1953, 66, N 402 А, р. 501.
      Этот большой отрывок очень отчетливо раскрывает роль поисков начальных условий, т.е. включения более широкой пространственно-временной системы для переноса парадигм классической физики в другие области, т.е. для генезиса классической науки. Следует подчеркнуть, что переносятся не только позитивные парадигмы, но и вопросы, апории, противоречия классической физики. В таких поисках и в таком включении значительную роль играло философское обобщение науки. Оно оказывается существенной стороной выявления "пятен на Солнце", не только исходных позиций классической науки - итогов научной революции XVI-XVII вв., но и последующего, послереволюционного развития классической науки в XIX в. и ее перехода в неклассическую в начале XX в.
      461
      В науке XVII-XVIII вв. и даже позже, в науке XIX в., философское обобщение не было достаточно явной и непосредственной движущей силой естествознания в процессе осознания "пятен на Солнце" и в поисках их устранения. Кантовские коррективы ньютоновой схемы мироздания были очень ярким, но не столь уж частым примером такой функции философского обобщения. Философия XVII-XVIII вв. и даже философия XIX в. была в значительной мере обобщением того, что Энгельс, говоря о Гегеле, назвал естествознанием "старой ныотоново-линнеевской школы" [7]. Объединение имен Ньютона и Линнея подчеркивает позитивную парадигму - презумпцию неизменности и непротиворечивости бытия в науке XVII-XVIII вв.
      7 Маркс К., Энгельс Ф. Соч., т. 20, с. 565.
      Преимущественное внимание к позитивной парадигме и некоторое игнорирование апорий классической науки заметно даже у Гегеля, хотя в целом его философия отразила новый этап, когда ряд естественнонаучных открытий продемонстрировал указанные апории и создал немало новых. Но какими бы косвенными и неявными ни были воздействия философского обобщения на развитие естествознания, такое воздействие было широким. Оно происходило не только и даже не столько в форме логических дедукций, сколько через общественную и научную психологию, через последовательно усугублявшееся понимание, учет и ощущение живых апорий бытия. Но были и прямые, осознанные переходы от философских дедукций к констатации и попыткам решения нерешенных вопросов науки - негативной и вопрошающей компоненты научной революции. Такие переходы были лишь явным проявлением общей связи между развитием естествознания и философскими идеями. "Всеобщая естественная история и теория неба" вовсе не отделена от основного пути развития немецкой классической философии - одного из основных фарватеров философского обобщения научной революции XVI-XVII вв.
      462
      Сейчас следует перейти к формам такого обобщения с указанной только что точки зрения, рассматривая его как движущую силу той трансформации картины мира, исходные пункты которой уже содержались в итогах научной революции XVI-XVII вв. В докритических натурфилософских работах Канта, от "Мыслей об истинной оценке живых сил" (1746) до работы "О первом основании сторон в пространстве" (1768), мы встречаем ту же тенденцию, что и в "Естественной истории неба"; это попытки философского обобщения апорий классической науки. Но и в критический период Кант, так или иначе, прямо или косвенно, шел по указанному пути. Учение об антиномиях - это философский эквивалент неразрешимых до конца противоречий науки. В классической физике понятие бесконечности было точкой перехода от внешнего оправдания, от экспериментальной обоснованности теорий, основывающейся на наблюдении конечных объектов и процессов, к внутреннему совершенству, к выведению теории из более общих принципов, с презумпцией неограниченной, бесконечной применимости таких принципов. С антиномиями была связана (в качестве абсолютизации, "одеревенения" витка познания) кантианская "критическая" концепция бесконечности. У Гегеля решение вопроса о бесконечности иное, не критическое, а диалектическое. "Истинная бесконечность", как и другие понятия, введенные Гегелем, бесконечность, присутствующая в каждом конечном элементе, была примирением указанных эйнштейновских критериев научной теории, вернее, программой их реализации в развитии науки. Нужно сказать, что немецкая классическая философия обладала очень существенной "обратной связью", обратным воздействием на естествознание. Но о таком обратном воздействии и его значении для выявления и решения апорий классической науки можно было судить лишь post facium, когда апории классической науки привели к ее неклассическому эпилогу.
      Является ли этот эпилог завершением классической физики? Завершил ли Эйнштейн то, что было создано Ньютоном?
      Ответ на этот вопрос не может быть простым и определенным. Прежде всего, назвав теорию относительности завершением классической физики, мы убедимся, что при этом меняется смысл и понятия "завершение" и понятия "классическая физика". Вообще, с какой бы стороны мы ни рассматривали теорию относительности, какой бы эпитет ей ни присваивали, в какой бы класс ее ни помещали, мы сталкиваемся с известной деформацией вклю

  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46