Современная электронная библиотека ModernLib.Net

XX век - Открытие за открытием

ModernLib.Net / Непомнящий Николай Николаевич / XX век - Открытие за открытием - Чтение (стр. 21)
Автор: Непомнящий Николай Николаевич
Жанр:

 

 


В июле 1994 года ученые провели пресс-конференцию, на которой сказали: "Данные останки, очевидно, принадлежат Николаю II, поскольку вероятность этого равна 98,5 процента". В том же месяце, чтобы развеять последние сомнения, пришлось эксгумировать могилу великого князя Георгия, младшего брата последнего русского царя, похороненного в Петропавловском соборе в Санкт-Петербурге. На этот раз обратились к третейским судьям. Образцы костной ткани великого князя направили в лабораторию армии США (Роквилл, штат Мэриленд). 31 августа 1995 года было вынесено окончательное решение. Теперь на все сто процентов стало ясно, что в местечке Коптяки под Екатеринбургом были найдены останки Николая II. "В ДНК митохондрий великого князя Георгия обнаружилась та же самая гетероплазматическая мутация, как и у царя". Сколько их, лже?.. Не удалось разрешить лишь одну загадку: где же останки царевича Алексея и Анастасии? Почему их не нашли? Что же стало с младшими детьми Романовых? Быть может, они остались в живых? Но тут генетический анализ уже ничем не поможет. Не странно ли, что всегда приходилось иметь дело лишь с лжеАлексеями и лже-Анастасиями? Не было самозваных Марий, Ольг, Татьян... А вот здесь опять пора обращаться к генетикам. Им одним по силам разоблачать авантюристов, рядившихся в царственное обличье. Разоблачать даже после их смерти, как случилось со знаменитой "Анной Андерсон" (она же "Анастасия"). В феврале 1920 года, через девятнадцать месяцев после расстрела в Екатеринбурге, берлинская полиция задержала девушку, пытавшуюся покончить с собой. Имени своего девушка не назвала. Ее направили в психиатрическую лечебницу; там она и призналась, что при удивительных обстоятельствах сумела бежать из Екатеринбурга. "Я - Анастасия", - сказала она. Пациентка действительно была очень похожа на младшую царскую дочь. Правда, она совсем не говорила по-русски, но это объяснили шоком, поразившим ее после случившегося, нервной реакцией на все, что ей довелось испытать. И свершилось чудо: большинство родственников Романовых, навещавших странную девушку, поверило ей. И как было не поверить: больная упоминала такие подробности, узнать о которых можно было, "лишь живя при царском дворе". Впрочем, часть людей, окружавших Романовых, упорно считала ее авантюристкой. Впоследствии "Анастасия" пыталась получить легендарные царские миллионы, якобы хранившиеся в США и Англии, но ни один суд не сумел подтвердить ее высочайшее происхождение. Умерла она в 1984 году, и ее останки были кремированы. Казалось, никому никогда уже не удастся разобраться в этой загадочной истории. И все же одному американскому исследователю, а также (независимо от него) телевизионщикам из Германии удалось обнаружить сохранившиеся образцы крови и тканей покойной. В 1994 году генетики доказали, что эта "Анастасия" была вовсе не Романовой, а Франциской Шанцковской, дочерью польского батрака. Забавно, что на надгробии "Анастасии", по ее же просьбе, были начертаны слова: "Мельницы Господни неспоро мелют, да верно". Пусть и неспоро, но истина все же открылась. Недавно ученые столкнулись с еще одной, на этот раз живой, самозванкой. В начале 1996 года 94-летняя жительница Тбилиси объявила, что она и есть "Анастасия". У пожилой претендентки на престол взяли анализы крови и направили пробу в Бирмингем доктору Гиллу. 6 марта 1996 года он огласил приговор: "Определенно не Романова". Так генетические детективы борются с самозванцами, живыми и мертвыми. От свиньи до мумим Поговорим теперь о самой профессии. Итак, Питер Гилл генетический детектив. Улики, собираемые им, прячутся внутри клеток, тканей, органов. Истину он ищет с помощью пипеток и чашек Петри. Доказательства, приводимые им, именуются ДНК. Антропология и археология, история богословия и история искусства, медицина и география - все эти науки нуждаются в услугах исследователей такого рода. Завистливые коллеги называют генетических детективов "исследователями в стиле диско" и пренебрежительно относятся к и шумным успехам. А те, не обращая внимания на критику, опровергают положения эволюционной биологии, вмешиваются в споры ученых о зарождении христианства, по-своему спорят о роли живописи в жизни первобытных людей. В каждой молекуле ДНК зашифрована информация о строении всего организма, будь то растение, животное или человек. Можно сказать, что ДНК - своего рода "паспорт" живого существа. В этом документе на языке биохимии указаны происхождение и определенные особенности его владельца. Молекулы ДНК присутствуют в любой живой клетке. Следовательно, каждый человек снабжен биллионами биопаспортов. Догадываться об этом люди начали не так давно. В 1944 году австрийский физик Эрвин Шредингер предположил, что в основе законов Менделя (законов наследственности) таится некий цифровой код. Когда формируется сложный живой организм, писал Шредингер в своей работе "Что такое жизнь?", этим процессом непременно управляет длинная цепочка генетических данных. Всего через десять лет пророчество знаменитого физика сбылось. Выяснилось, что хромосомы являются гигантскими цепными молекулами, в которых - в виде последовательности нуклеотидов - закодирована вся генетическая программа организма. В 1966 году удалось разгадать этот основополагающий код всего живого. Стало понятно, что человек живет в океане биологической информации. В каждом волоске, в каждой травинке, в каждой капельке пота или слюны прячется ДНК. Если удастся прочесть эту гигантскую библиотеку природы, то можно будет отыскать ответ почти на все загадки, задаваемые живой материей. Прошло еще девятнадцать лет, и некий шведский студент, будущий медик, обнаружил фрагменты человеческой ДНК, возраст которой насчитывал не одну тысячу лет - так зародилась новая наука: генетическая археология. Днем Сванте Пээбо работал над своим дипломом и изучал ответвления человеческой иммунной системы, а по ночам в той же самой лаборатории занимался тем, что интересовало его больше, нежели все Т-клетки и антитела: исследовал крохотный кусок кожи египетской мумии. Его научный руководитель ничего не знал об этом увлечении своего подопечного, а того волновали довольно неожиданные вопросы. Можно ли обнаружить ДНК в тканях мумии? Можно ли расшифровать генетический код, если он сохранился? Это стало бы новым словом в египтологии. Для начала Пээбо принялся экспериментировать с печенью свиньи. Он высушил печень - ДНК все равно удалось обнаружить. Значит, гены сохраняются в высушенных тканях, поэтому надо попробовать поискать их и в древних мумиях. В Упсале Пээбо разжился кусочком мумии. Но к своему огорчению, ничего не нашел, никаких фрагментов генов. Молодой ученый не сдавался. Использовав все свои связи, он получил согласие от руководства Египетского музея (Восточный Берлин): ему разрешили отрезать образец ткани весом 1,6 грамма от очень хорошо сохранившейся мумии ребенка, жившего 2400 лет назад. На этот раз Пээбо повезло. В этом древнем кусочке кожи ему удалось выявить фрагменты наследственной информации. Случилось это в 1985 году. Молодой исследователь мигом стал знаменитым. В 1990-м 35летнего шведа пригласили возглавить кафедру общей биологии в Мюнхенском университете. - Пригласить меня было достаточно смелым шагом, - говорит Пээбо. - Но думаю, что раскаиваться не пришлось. К тому времени у Пээбо появились последователи. . Особым вниманием их стали пользоваться зоологические музеи и хранилища янтаря. Исследуя многочисленные чучела и останки животных, генетики устремлялись в глубь веков и тысячелетий. Найдена ДНК квагги - степной зебры, истребленной в конце прошлого века; найдены гены моа - гигантского страуса, вымершего в середине прошлого века; в туше мамонта, застывшего в сибирской мерзлоте 50 000 лет назад, тоже удалось обнаружить ДНК... В янтарном плену Но подлинной "машиной времени" для генетиков стал янтарь, ископаемая древесная смола. В доисторические времена в этой клейкой смоле часто застывали насекомые, цветочная пыльца, споры грибов, остатки растений. Текучая смола герметично обволакивала своих пленников. Ни бактерии, ни микроорганизмы не проникали внутрь, и биологический материал в целости и сохранности поджидал современных исследователей. И вот в 1990 году Джордж О. Пойнар из Калифорнийского университета сделал сенсационное открытие. Изучая термитов, попавших в янтарь 40 миллионов лет назад, он нашел хорошо сохранившуюся генетическую информацию. Позднее Пойнару удалось выделить из янтаря ДНК долгоносика, жившего 120 миллионов лет назад! В 1995 году поразительное сообщение пришло из Калифорнийского политехнического университета: его сотрудники, Рауль Каньо и Моника Боруцки, сумели размножить бактерии, взятые из кишечного тракта пчелы, застывшей внутри янтаря. Возраст их равнялся 30 миллионам лет. Янтарь был найден в Доминиканской Республике, где некогда жил особый, ныне вымерший вид пчел Proplebeia dominicana - лишенных жала. Для строительства своих жилищ они собирали смолу и при этом нередко навечно застывали внутри капли, упавшей на них сверху. Впрочем, новость была встречена скептически. Каньо нашел бактерию, очень схожую с Bacillus sphaericus, что и по сей день обитает в организмах пчел. Найденная ДНК была почти схожа с ДНК современной бактерии. Критики сомневались: не случилась ли ошибка? Не выросли ли в чашах с бактериальной культурой современные нам микроорганизмы? Пойнар много раз сотрудничал с Каньо и убежден, что тот работает крайне аккуратно. По мнению Пойнара, в схожести древних бактерий с нынешними их видами нет ничего удивительного, поскольку за сотни миллионов лет микроорганизмы мало изменились. О многом говорит Пойнару и собственный опыт. - Десять лет назад, когда я впервые попытался изолировать ДНК из посторонних включений, найденных в янтаре, многие мои коллеги посчитали, что я спятил. Между тем на очереди новые открытия. Впервые в янтаре удалось обнаружить кости млекопитающего. - Найденные ребра и фрагменты позвоночника принадлежат насекомоядному животному, весившему примерно 150 граммов, сообщает Росс Макфи из Американского музея естественной истории. Отыскали этот кусок янтаря опять же в Доминиканской Республике; возраст его - около 30 миллионов лет. От бактерий, воскрешенных в пробирке, кажется, недалеко и до секретных лабораторий, в которых таинственные ученые оживляют древних животных. Но на время воздержимся от смелых картин, подсказываемых воображением. К ним мы еще вернемся, а пока снова отправимся в лабораторию Пээбо и продолжим скрупулезно подсчитывать достижения новейшей науки. Сюда, в Мюнхен, регулярно поступают экспонаты из разных уголков мира; здесь соседствуют пробы крови эскимосов и индейцев, фрагменты тканей мамонтов и сумчатых волков, останки первобытных людей и наших современников. В мире наберется всего лишь с полдюжины лабораторий, овладевших искусством генетической археологии. - Причина в том, что мы занимаемся ужасно утомительным делом, - замечает Пээбо. Правда, уже десять лет, как генетические детективы располагают новой, чудесной техникой, - можно сказать, что в этой области произошел революционный переворот. Благодаря так называемой полимеразной цепной реакции можно быстро и очень точно копировать самые крохотные количества древнего наследственного материала, причем копировать миллиарды раз. - Однако главное наше оружие оборачивается против нас, тотчас спешит Пээбо охладить чрезмерные надежды. Полимеразная цепная реакция - это копировальная машина, действующая с несравненной точностью. Чтобы запустить ее, бывает достаточно одной молекулы ДНК. И вот именно из-за высокой чувствительности исследователи часто терпят неудачу: вместе с уникальным наследственным материалом "молекулярный ксерокс" добросовестно копирует весь генетический мусор, случайно занесенный в пробу. А ведь любая археологическая находка загрязнена фрагментами современных генов: рабочие, раскапывающие захоронение, могли, например, чихнуть, музейные работники могли оставить отпечатки пальцев... Поэтому коллеги Сванте Пээбо - подобно вирусологам, манипулирующим со смертельно опасными вирусами, - исследуют древние кости и кусочки кожи только в специальной лаборатории, облачившись в защитные костюмы. Перед началом работы с образца приходится счищать весь верхний слой, так как обычно он очень сильно загрязнен. Все химикаты надо облучать ультрафиолетовым светом, чтобы уничтожить присутствующие в них биомолекулы. - Вы не поверите, как же трудно бывает получить пару миллилитров воды, очищенной от ДНК, - жалуется Пээбо. Впрочем, даже если удастся избавиться от всех примесей, это не обещает успех: желанных генов в пробе может попросту не оказаться. Совсем недавно один из сотрудников мюнхенской лаборатории, Маттиас Крингс, исследовал более сотни человеческих костей, доставленных из Африки (возраст их достигал, самое большее, 14 тысяч лет). Увы, лишь в трех из них сохранились крохи генетической информации. Дело в том, что ДНК - очень хрупкая биомолекула. Ее расщепляют ферменты, переваривают микроорганизмы, окисляет кислород. - Каждый день, - говорит Крингс, - наследственная информация, хранящаяся в каждой нашей клетке, выдерживает до 10 тысяч "ударов" враждебного ей окружающего мира. Химические связи легко разрушаются, но - так счастливо устроена живая природа - определенные фрагменты восстанавливают разорванные связи. После смерти разрушительные процессы продолжаются, но те ферменты, что спасали ДНК, уже не приходят на помощь. ДНК распадается на множество частей. И когда ученые принимаются за дело, исследовать, собственно говоря, уже нечего. Лучше всего генетический материал сохраняется в янтаре. Или же при низких температурах - в мерзлоте или в леднике. Так, когда исследователи имеют дело с костями, доставленными из холодной Скандинавии, они уверены, что гены непременно удастся найти. - Хуже дела в пустыне, - продолжает Крингс, возвращаясь к своему печальному опыту, - хотя там и сухо, но зато слишком жарко. В таком климате ДНК быстро разлагается. Другой сотрудник Пээбо, Хендрик Н. Пойнар (сын упомянутого уже Джорджа Пойнара), предложил в 1995 году метод, который облегчит работу и убережет исследователей от чрезмерного и бесплодного рвения: речь идет о рацемизации ископаемых останков. Хендрик Пойнар обратил внимание на следующий эффект: в биологическом материале одновременно с разрушением ДНК меняется и молекулярная структура аминокислот - они "рацемизируются". Например, так называемая "L-форма" молекулы аспарагиновой кислоты постепенно превращается в "D-форму", которая отличается от своего прообраза, как отражение, видимое нами в зеркале, от самого зеркала. Изменения эти легко зафиксировать. Когда содержание D- молекул превысит определенное пороговое значение, тогда ничего хорошего от ДНК можно уже не ожидать - искать гены будет поздно. - Так обстоит дело, кстати, со всеми останками динозавров, замечает X. Пойнар. - Когда сообщают, что якобы найдена ДНК динозавра, не верьте этому. Исследователи в очередной раз допустили ошибку и приняли за желаемое нечто другое: ДНК бактерий, грибков или человека. Где ты, неандерталец? Увы, природа слишком редко балует археологов. Такие находки, как Этци, редки: около 5200 лет назад этот человек поднялся в Альпы и, повидимому, был застигнут непогодой. Лед одел его панцирем, сквозь который воздух уже не проникал. Даже специалист не сохранит генетический материал лучше, чем это сделала природа. Правда, три года назад скептики заговорили о том, что тело древнего обитателя Тироля было на самом деле мумией инки, каковую некий шутник и любитель розыгрышей взял и спрятал в альпийском глетчере. Однако гены Этци четко свидетельствовали, что он был древним европейцем, а не жителем Южной Америки. Более того: по своим генетическим особенностям он очень похож на современных обитателей Альпийского региона. Пээбо, исследовавший "ледникового человека", надеется, что Этци поможет сделать важные открытия и в области истории медицины. Мюнхенский ученый намерен отыскать вирусы и бактерии, присутствующие в организме Этци. Так выяснится, какие болезни досаждали европейцам каменного века. Ученого вдохновляет открытие, сделанное американскими коллегами. Те, изучая мумию женщины доинкского периода, обнаружили в ткани легкого следы туберкулезных бактерий. Выходит, индейцы умирали от чахотки задолго до появления испанцев. Прежде считалось, что именно конкистадоры занесли в Америку этот недуг. Гены помогут прояснить и тайны эволюции человека. Почему бы, например, не найти ДНК неандертальца? Последние неандертальцы загадочно исчезли 34 тысяч лет назад. Неужели не сохранилась их ДНК? Неужели не удастся узнать, какие родственные отношения связывали человека современного и неандертальца? - Чтобы выяснить степень родства, достаточно отыскать фрагменты ДНК длиной всего 400 базовых пар, - комментирует Маттиас Крингс (сейчас в лаборатории Пээбо как раз ищут ДНК неандертальца). Со временем возникают случайные мутации; меняется последовательность "букв" ДНК, то есть последовательность нуклеобаз А (аденин), С (цитозин), G (гуанин) и Т (тимин). Чем больше разнятся одни и те же фрагменты ДНК, взятые у двух различных существ, тем дальше эти существа отстоят друг от друга. Так определяется степень родства. - В наших исследованиях, - продолжает Крингс, - мы обращаем внимание прежде всего на ДНК митохондрий, энергетических станций клетки. В каждой клетке имеется около 2 тысяч митохондрий, поэтому велики шансы отыскать в ископаемых останках фрагменты генетического материала. - Кроме того, уровень мутаций здесь в сотни раз выше, чем в клеточном ядре, поэтому мы можем точнее определить родственные связи. Каждые 10 тысяч лет одна из 400 баз меняется - происходит мутация ее "букв". Удастся ли обнаружить ДНК неандертальца, пока никто не берется сказать. Проблема еще и в следующем. Возьмем останки мамонта, до которых дотрагивалась рука человеческая. Легко отличить гены человека от генов древнего хоботного. Но как выделить нужные фрагменты ДНК, когда исследуются останки древнего человека? Где подлинная ДНК, где привнесенная? Неясно. Сколько людей прикасались к костям, когда раскапывали захоронение, перевозили останки человека, препарировали их, брали их в руки, украшая музейные экспозиции. Одного прикосновения достаточно, чтобы увековечить свои гены на древних костях. Поэтому исследователю приходится брать пробы материала из самой сердцевины кости. - Однако эти кости настолько ценны, - подчеркивает Пээбо, что для начала мы решили исследовать найденные поблизости кости животных. Пока результат неутешительный. Судя по показателям рацемизации, состояние генетического материала очень плохое. И все же ученые так быстро не сдаются. Поиски ДНК наших отдаленных родственников продолжаются. Итак, пока неясно, появится ли у нас новая родня. А правомерна ли вообще такая постановка вопроса? Что, если неандертальцы все же сохранились в качестве генетического реликта именно в европейцах? Главными сторонниками этой гипотезы являются антрополог А. Торн из Канберрского университета и М. Уолпофф из Мичиганского. Вот некоторые доводы в пользу их гипотезы. Так, некоторые особенности строения черепа (например, отверстие с внутренней стороны нижней челюсти) присутствовали лишь у неандертальцев и - по крайней мере, вплоть до неолита - у европейцев. То же относится и к крупным, массивным носам. Или же возьмем волосяной покров на теле: для неандертальца, как для человека, жившего в ледниковую эпоху, сильный волосяной покров на груди, животе и плечах был очевидным эволюционным преимуществом. Почему же из всех современных человеческих рас этим характерным признаком наделены лишь европейцы? - На мой взгляд, неандерталец и гомо сапиенс настолько похожи, что я вряд ли сумею их различить, - признается Герхард Бозински, директор Музея археологии ледникового периода (Нойвидер, Германия). - Почему бы не объединить их обоих под наименованием "среднепалеолитический человек? Теперь взглянем шире на эволюцию человека. Девять лет назад американский исследователь Аллан Уилсон попробовал с позиций генетики описать хронику человечества. Он воспользовался тем, что митохондрии всегда наследуются материнской яйцеклеткой. Прослеживая генетическую эволюцию гомо сапиенс по материнской линии, Уилсон определил, когда жила прародительница всего нынешнего населения Земли. Результат анализа стал сенсацией. Ева оказалась негритянкой, жившей 200 тысяч лет назад в африканской кустарниковой саванне. Все современные люди, будь то пигмеи, тибетцы или индейцы, произошли именно от нее. В 1995 году американские исследователи сообщили, что "всеобщий праотец" родился около 270 тысяч лет назад, причем срок жизни, отпущенный ему, был очень короток. По генетическим уликам Уйлсону удалось восстановить и хронику покорения человеком Земли. 100 тысяч лет назад, согласно его расчетам, гомо сапиенс достиг Переднего Востока, через 40 тысяч лет заселил почти весь Азиатский континент. За последние 60 тысяч лет он освоил земли Австралии, Америки и Европы. ДНК маньяка О заселении Америки поговорим чуть подробнее. Считается, что первые люди здесь появились около II тысяч лет назад. Но генетические штудии, похоже, указывают на более раннюю дату. Доктор Антонио Торрони из Атлантского университета, изучив накопившиеся в генетическом материале дефекты, подсчитал, что предки современных индейских племен жили 22-29 тысяч лет назад. Впрочем, неясно, населяли ли они Азию или уже перебрались в Америку. Его коллега, Дуглас Уоллос, убежден в том, что не все переселенцы прибывали в Америку по "утвержденному наукой" маршруту, через Берингов пролив. По крайней мере, одна волна мигрантов (6-12 тысяч лет назад) добиралась сюда иначе. В ДНК индейцев атапакской группы (к ним относятся навахо и апачи) Уоллос открыл мутацию, которая встречается также у азиатов, полинезийцев и меланизийцев, а вот у жителей Сибири ее нет. Вполне возможно, что азиаты колонизовали не только тихоокеанские острова, как полагали прежде, но и достигли Центральной и Южной Америки, расселившись оттуда по всему континенту. В последнее время предпринимаются также попытки найти ДНК первых переселенцев. Тщательное изучение их останков поможет восстановить маршруты великой миграции. Интерес представляют не только случайно сохранившиеся фрагменты ДНК людей, населявших нашу планету в отдаленные времена. Нет, Пээбо и его коллеги изучают также гены ныне живущих людей. Обычно эти исследования проводятся по заказу криминалистов. "Сбор генетических улик полностью меняет методику следствия", - говорит Хуберт Пехе, сотрудник Института судебной медицины при берлинском Свободном университете. В холодильнике его лаборатории громоздятся сотни разноцветных пробирок величиной с наперсток - набор ДНК убийц и маньяков. Да и не в одних преступниках дело. За несколько тысяч марок Пехе открывает семейные тайны. В прошлом году ему пришлось 52 раза устанавливать отцовство. Так, например, пара близнецов пожелала узнать, кто же был их настоящим отцом: законный супруг матери или же ее приятель. Результат анализа оказался очень неожиданным: у близнецов были разные отцы. В последнее время криминалистика превратилась в "область высоких технологий": химический анализ пуль проводится с точностью до миллионных долей грамма; модель автомобиля и дата его выпуска определяются по микроскопическим остаткам лакокрасочного покрытия; действия преступников восстанавливаются с помощью компьютера. Особую роль играет анализ ДНК. Если прежде экспертам приходилось изобличать преступников лишь после кропотливого (и порой неточного) анализа улик, алиби подозреваемых, свидетельских показаний и возможных мотивов поступка, то теперь в арсенале следователей появляется средство, уличающее убийцу или насильника с научной точностью: "генетический отпечаток пальцев". Достаточно волоска на ковре, капельки крови на куртке, брызги слюны, оставшейся на сигаретном окурке, то есть достаточно сущей безделицы, чтобы определить преступника по его ДНК. Некоторые детективы применяют новую технику прямо-таки с невероятной старательностью: 1. В январе 1992 года в окрестностях Ганновера, в Хенигсене, погибла 19-летняя девушка. Она возвращалась домой после танцевального вечера. Несчастную изнасиловали и убили. Тогда полицейские решили взять анализы крови у всех мужчин, побывавших на вечере. Проделав 138 анализов, детективы выявили преступника. 2. В 1994 году в Гессене была убита 27-летняя воспитательница. Следователям, изобличившим преступника, пришлось исследовать ДНК 560 мужчин. 3. Еще усерднее трудились криминалисты из британского графства Лейчестершир. Чтобы отыскать сексуального маньяка, были проанализированы ДНК 5 тысяч мужчин. Точнее, чем Дельфийский оракул Сейчас британские юристы спорят о том, стоит ли создавать "всеобщий банк ДНК", в который стали бы заносить "генетический отпечаток пальцев" любого новорожденного, - до такой системы контроля за людьми не додумался даже сам Джордж Оруэлл. Прообраз подобного генетического банка данных намерены учредить власти английского местечка Брунтингторп. Уже лет десять, как местное население разделилось на две партии: на тех, кто держит собак, и тех, кто от них страдает. Люди добрые, "бессобачные", возмущаются, негодуют, неистовствуют - и поделом: как ни выйдешь прогуляться, того и гляди, угодишь в кучку "собачьих прелестей". Благочинному человеку скоро ногу поставить будет негде. В Брунтингторпе насчитывается всего три десятка собак, и каждая имеет обыкновение хоть раз в день, но гадить. Однако теперь - по новейшим научным методам - будет проведен генетический анализ животных (владельцам их придется сдать в лабораторию по клоку шерсти с каждой завалящей собаки). Так возникнет банк данных, и тогда у нарушителей общественного порядка жизнь станет собачьей. Как только тротуар будет снова загажен, виновного пса моментально отыщут, а нерадивый хозяин понесет наказание. Когда-то, чтобы узнать истину в последней инстанции, люди обращались к Дельфийскому оракулу, теперь они вопрошают ДНК. Сами гены не лгут, но вот всегда ли бывают непогрешимы исследователи, приступающие к анализу? Немалое возмущение вызвала история с одним берлинским рабочим, которого безо всякой вины, внимая признанию генов, упекли за решетку по обвинению в убийстве. Оказалось, что во время экспертизы пробы, взятые у него, перепутали и подменили уликами, добытыми на месте преступления. Невиновный был арестован, и лишь после повторных анализов его выпустили на свободу, а в камеру водворили настоящего преступника. Адвокаты знаменитого американского футболиста О. Симпсона жонглировали подобными примерами, пытаясь опровергнуть генетические улики, клеймившие их подзащитного, героя скандального судебного расследования: темнокожий спортсмен обвинялся в двойном убийстве. На месте преступления были обнаружены следы его крови, а в принадлежавшем ему автомобиле замечена кровь одной из его жертв. Однако Симпсон был оправдан судом присяжных. На одну чашу весов легли скрупулезные отчеты медиков, рассуждения о характерных особенностях ДНК, о схеме расположения наследственной информации, о статистике и прочие и прочие сведения, рассчитанные на вдумчивую публику, а на другую чашу весов свалилась эффектная сцена, разыгранная в зале заседания суда, сцена, которую увидело множество телезрителей: Симпсон, дергая и поводя рукой, вновь и вновь пытался натянуть окровавленную перчатку, найденную на месте преступления, - все было напрасно. Ликуя, обвиняемый поднял перчатку вверх: пускай все видят, что он невиновен. И все же пусть язык, на котором изъясняются генетики, сух и абстрактен, пусть атмосфера, царящая в лаборатории, спокойна и деловита, все равно новая наука, наука, способная ответить на самые загадочные вопросы истории, вызывает повышенный интерес. Генетические археологи привыкли к тому, что им регулярно присылают самые разные образцы тканей, и анализ любого образца обещает сенсацию. Так, одним из ярких достижений нового метода стала четкая и однозначная идентификация останков Иозефа Менгеле, врача Освенцимского концлагеря, умершего в 1979 году. Совсем недавно к Сванте Пээбо обратилась Хильдегард Хаммершмидт-Хуммель, специалистка по английской филологии. Ее заинтересовала "посмертная маска" Уильяма Шекспира, хранящаяся в Дармштадтском дворце. Маску считают подделкой, изготовленной в прошлом веке, но так ли это? Вдруг это подлинник? К маске прилипло девятнадцать волосков бороды, несомненно таящих биологический код человека, с которого ее сняли. Достаточно исследовать их, а результат сравнить с ДНК останков, погребенных в Стратфордена-Эйвоне, и тогда вопрос будет решен. Увы, из Мюнхена пришло неутешительное известие. Современная диагностика не настолько сильна, чтобы по девятнадцати волоскам восстановить точный генетический код человека, жившего несколько столетий назад. Опять Каспар Хаузер Недавно внимание исследователей привлекла загадочная история Каспара Хаузера. В 1828 году в Нюрнберге был замечен странный молодой человек. Он едва умел говорить; на вопросы о том, откуда он взялся, давал какие-то бессмысленные ответы, поэтому полицейские отправили его в тюрьму, и там врачи сделали любопытное открытие: у юноши виднелись следы от прививки, а в те годы это было редкостью, привилегией аристократов. Кто же он, таинственный незнакомец? Отпрыск знатного рода? Сказочный принц? Или же хитрющий обманщик? Его история обрастала слухами. "Таким же был человек в раю, до того как случилось грехопадение" - это сказал один из самых именитых людей Нюрнберга. Интерес к "явленному нам Адаму" выказал ряд высочайших особ, например, члены Баварского королевского дома. Были и более проницательные суждения. Ансельм Фейербах, составитель Баварского уголовного уложения, один из виднейших юристов того времени, после тщательного анализа пришел к мрачному выводу: "Каспар Хаузер - законный отпрыск некой княжеской семьи, коего решено было извести, дабы сделать наследником другого человека, которому ребенок только мешал". Фейербах назвал и княжеское семейство, которому было выгодно избавиться от законного наслед- ника: "Перо противится выводить эти слова - дом герцогов Баденских". Вот трагическая картина, нарисованная Фейербахом. У наследного принца Карла Баденского и его жены, Стефании, рождается сын. Проходит несколько дней, и вот новорожденного незаметно подменяют умирающим младенцем. Кто же решился на преступление? Кто покусился на будущего помазанника? Коварной зачинщицей была, несомненно, графиня Хохберг, вторая супруга великого герцога Баденского, Карла-Фридриха. Дело в том, что ее дети могли наследовать герцогство лишь в том случае, если от первой жены Карла-Фридриха не останется никакого другого наследника по мужской линии. Итак, принесенный младенец умер, а подлинного герцога до шестнадцати лет держали в каком-то темном подвале. Через два года после его внезапного появления на улицах Нюрнберга на баденский трон поднялся первый Хохберг. 14 декабря 1833 года Каспар Хаузер при загадочных обстоятельствах погибает. Его закалывают ножом или же он сам убивает себя.

  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29