Современная электронная библиотека ModernLib.Net

Давайте создадим компилятор!

ModernLib.Net / Программирование / Креншоу Джек / Давайте создадим компилятор! - Чтение (стр. 16)
Автор: Креншоу Джек
Жанр: Программирование

 

 


      Если вы скопировали программу в Turbo, первым делом нужно откомпилировать ее и удостовериться что она работает. Сделайте несколько объявлений а затем блок begin. Попробуйте что-нибудь вроде:
      va (для VAR A)
      vb (для VAR B)
      vc (для VAR C)
      b (для BEGIN)
      a=b
      b=c
      e. (для END.)
      Как обычно, вы должны сделать некоторые преднамеренные ошибки и проверить, что программа правильно их отлавливает.

Объявление процедуры

      Если вы удовлетворены, как работает наша маленькая программа, тогда пришло время поработать с процедурами. Так как мы еще не говорили о параметрах мы начнем с рассмотрения только таких процедур которые не имеют списка параметров.
      Для начала, давайте рассмотрим простую программу с процедурой и подумаем о коде который мы хотели бы увидеть для нее сгенерированным:
      PROGRAM FOO;
      .
      .
      PROCEDURE BAR; BAR:
      BEGIN .
      . .
      . .
      END; RTS
      BEGIN { MAIN PROGRAM } MAIN:
      . .
      . .
      FOO; BSR BAR
      . .
      . .
      END. END MAIN
      Здесь я показал конструкции высокоуровневого языка слева и желаемый ассемблерный код справа. Прежде всего заметьте, что здесь несомненно нам не нужно генерировать много кода! Для большей части процедуры и основной программы наши существующие конструкции позаботятся о генерируемом коде.
      Ключ к работе с телом процедуры – понимание того, что хотя процедура может быть очень длинной, ее объявление в действительности не отличается от объявления переменной. Это просто еще один вид объявлений. Мы можем записать БНФ:
      <declaration> ::= <data decl> | <procedure>
      Это означает, что можно легко изменить TopDecl для работы с процедурами. Как насчет синтаксиса процедуры? Хорошо, вот предлагаемый синтаксис, который по существу такой же как и в Pascal:
      <procedure> ::= PROCEDURE <ident> <begin-block>
      Здесь практически не требуется никакой генерации кода., кроме генерации внутри блока begin. Мы должны только выдать метку в начале процедуры и RTS в конце.
      Вот требуемый код:
      {–}
      { Parse and Translate a Procedure Declaration }
      procedure DoProc;
      var N: char;
      begin
      Match('p');
      N := GetName;
      Fin;
      if InTable(N) then Duplicate(N);
      ST[N] := 'p';
      PostLabel(N);
      BeginBlock;
      Return;
      end;
      {–}
      Обратите внимание, что я добавил новую подпрограмму генерации кода Return, которая просто выдает инструкцию RTS. Создание этой подпрограммы «оставлено как упражнение студенту».
      Для завершения этой версии добавьте следующую строку в оператор Case в DoBlock.
      'p': DoProc;
      Я должен упомянуть, что эта структура для объявлений и БНФ, которая управляет ей, отличается от стандартного Паскаля. В определении Паскаля от Дженсена и Вирта объявления переменных и, фактически, все виды объявлений, должны следовать в определенном порядке, т.е. метки, константы, типы, переменные, процедуры и основная программа. Чтобы следовать такой схеме, мы должны разделить два объявления и написать в основной программе что-нибудь вроде:
      DoVars;
      DoProcs;
      DoMain;
      Однако, большинство реализаций Паскаля, включая Turbo, не требуют такого порядка и позволяют вам свободно перемешивать различные объявления до тех пор пока вы не попробуете обратиться к чему-то прежде, чем это будет объявлено. Хотя это может быть больше эстетическим удовлетворением объявлять все глобальные переменные на вершине программы, конечно не будет никакого вреда от того, чтобы разрешить расставлять их в любом месте. Фактически, это может быть даже немного полезно, в том смысле, что это даст нам возможность выполнять небольшое элементарное скрытие информации. Переменные, к которым нужно обращатся только из основной программы, к примеру, могут быть объявлены непосредственно перед ней и будут таким образом недоступны для процедур.
      Испытайте эту новую версию. Заметьте, что мы можем объявить так много процодур, как захотим (до тех пор, пока не исчерпаем односимвольные имена!) и все метки и RTS появятся в правильных местах.
      Здесь стоит заметить, что я не разрешаю вложенные процедуры. В TINY все процедуры должны быть объявлены на глобальном уровне, так же как и в C. На Форуме Компьютерных Языков на CompuServe по этому поводу возникла порядочная дискуссия. Оказывается, существует значительная расплата сложностью которая должна быть заплачена за роскошь использования вложенных процедур. Более того, эта расплата платится во время выполнения, так как должен быть добавлен дополнительный код, который будет выполняться каждый раз когда процедура вызывается. Я также охотно верю что вложение это не очень хорошая идея просто на том основании, что я видел слишком много злоупотреблений этой возможностью. Прежде, чем сделать следующий шаг, также стоит обратить внимание на то, что «основная програма» в ее текущем состоянии незавершена, так как она не имеет метки и утверждения END. Давайте исправим эту небольшую оплошность:
      {–}
      { Parse and Translate a Main Program }
      procedure DoMain;
      begin
      Match('b');
      Fin;
      Prolog;
      DoBlock;
      Epilog;
      end;
      {–}
      .
      .
      .
      {–}
      { Main Program }
      begin
      Init;
      TopDecls;
      DoMain;
      end.
      {–}
      Обратите внимание, что DoProc и DoMain не совсем симметричны. DoProc использует вызов BeginBlock тогда как DoMain нет. Это из-за того, что начало процедуры определяется по ключевому слову PROCEDURE (в данном случае сокращенно 'p'), тогда как основная программа не имеет никакого другого ключевого слова кроме непосредственно BEGIN.
      И это ставит интересный вопрос: почему?
      Если мы посмотрим на структуры C программы, мы обнаружим, что все функции совсем одинаковы, за исключением того, что основная программа идентифицируется по своему имени «main». Так как функции C могут появляться в любом порядке, основная программа так же может быть в любом месте модуля компиляции.
      В Паскале наоборот, все переменные и процедуры должны быть объявлены прежде чем они используются, что означает, что нет никакого смысла помещать что-либо после основной программы... к ней никогда нельзя будет обратиться. «Основная программа» не идентифицирована вообще, кроме того, что эта часть кода следует после глобального BEGIN. Другими словами если это не что-нибудь еще, это должна быть основная программа.
      Это приводит к немалой путанице для начинающих программистов, а для больших программ на Паскале иногда вообще трудно найти начало основной программы. Это ведет к соглашениям типа идентификации ее в комментариях:
      BEGIN { of MAIN }
      Это всегда казалось мне немного клуджем. Возникает вопрос: Почему обработка основной программы должна так отличаться от обработки процедур? Теперь, когда мы осознали, что объявление процедур это просто... часть глобальных объявлений... не является ли основная программа также просто еще одним объявлением?
      Ответ – да, и обрабатывая ее таким способом мы можем упростить код и сделать его значительно более ортогональным. Я предлагаю использовать для идентификации основной программы явное ключевое слово PROGRAM (Заметьте, что это означает, что мы не можем начать с него файл, как в Паскале). В этом случае наша БНФ становится:
      <declaration> ::= <data decl> | <procedure> | <main program>
      <procedure> ::= PROCEDURE <ident> <begin-block>
      <main program> ::= PROGRAM <ident> <begin-block>
      Код также смотрится намного лучше, по крайней мере в том смысле, что DoMain и DoProc выглядят более похоже:
      {–}
      { Parse and Translate a Main Program }
      procedure DoMain;
      var N: char;
      begin
      Match('P');
      N := GetName;
      Fin;
      if InTable(N) then Duplicate(N);
      Prolog;
      BeginBlock;
      end;
      {–}
      .
      .
      .
      {–}
      { Parse and Translate Global Declarations }
      procedure TopDecls;
      begin
      while Look <> '.' do begin
      case Look of
      'v': Decl;
      'p': DoProc;
      'P': DoMain;
      else Abort('Unrecognized Keyword ' + Look);
      end;
      Fin;
      end;
      end;
      {–}
      { Main Program }
      begin
      Init;
      TopDecls;
      Epilog;
      end.
      {–}
      Так как объявление основной программы теперь внутри цикла TopDecl, возникают некоторые трудности. Как мы можем гарантировать, что она – последняя в файле? И выйдем ли мы когда либо из цикла? Мой ответ на второй вопрос, как вы можете видеть, – в том, чтобы вернуть нашего старого друга точку. Как только синтаксический анализатор увидит ее дело сделано.
      Ответ на первый вопрос: он зависит от того, насколько мы хотим защищать программиста от глупых ошибок. В коде, который я показал, нет ничего, предохраняющего программиста от добавления кода после основной программы... даже другой основной программы. Код просто не будет доступен. Однако, мы могли бы обращаться к нему через утверждение FORWARD, которое мы предоставим позже. Фактически, многие программисты на ассемблере любят использовать область сразу после программы для объявления больших, неинициализированных блоков данных, так что действительно может быть некоторый смысл не требовать, чтобы основная программа была последней. Мы оставим все как есть.
      Если мы решим, что должны дать программисту немного больше помощи чем сейчас, довольно просто добавить некоторую логику, которая выбросит нас из цикла как только основная программа будет обработана. Или мы могли бы по крайней мере сообщать об ошибке если кто-то попытается вставить две основных.

Вызов процедуры

      Если вы удовлетворены работой программы, давайте обратимся ко второй половине уравнения... вызову.
      Рассмотрим БНФ для вызова процедуры:
      <proc_call> ::= <identifier>
      с другой стороны БНФ для операции присваивания:
      <assignment> ::= <identifier> '=' <expression>
      Кажется у нас проблема. Оба БНФ утверждения с правой стороны начинаются с токена <identifier>. Как мы предполагаем узнать, когда мы видим идентификатор, имеем ли мы вызов процедуры или операцию присваивания? Это похоже на случай, когда наш синтаксический анализатор перестает быть предсказывающим и действительно это точно такой случай. Однако, оказывается эту проблему легко решить, так как все, что мы должны сделать – посмотреть на тип идентификатора записанный в таблице идентификаторов. Как мы обнаружили раньше, небольшое локальное нарушение правила предсказывающего синтаксического анализа может быть легко обработано как специальный случай.
      Вот как это делается:
      {–}
      { Parse and Translate an Assignment Statement }
      procedure Assignment(Name: char);
      begin
      Match('=');
      Expression;
      StoreVar(Name);
      end;
      {–}
      { Decide if a Statement is an Assignment or Procedure Call }
      procedure AssignOrProc;
      var Name: char;
      begin
      Name := GetName;
      case TypeOf(Name) of
      ' ': Undefined(Name);
      'v': Assignment(Name);
      'p': CallProc(Name);
      else Abort('Identifier ' + Name +
      ' Cannot Be Used Here');
      end;
      end;
      {–}
      { Parse and Translate a Block of Statements }
      procedure DoBlock;
      begin
      while not(Look in ['e']) do begin
      AssignOrProc;
      Fin;
      end;
      end;
      {–}
      Как вы можете видеть, процедура Block сейчас вызывает AssignOrProc вместо Assignment. Назначение этой новой процедуры просто считать идентификатор, определить его тип и затем вызвать процедуру, соответствующую этому типу. Так как имя уже прочитано, мы должны передать его в эти две процедуры и соответственно изменить Assignment. Процедура CallProc – это просто подпрограмма генерации кода:
      {–}
      { Call a Procedure }
      procedure CallProc(N: char);
      begin
      EmitLn('BSR ' + N);
      end;
      {–}
      Хорошо, к этому моменту у нас есть компилятор, который может работать с процедурами. Стоить отметить, что процедуры могут вызывать процедуры с любой степенью вложенности. Так что, даже хотя мы и не разрешаем вложенные объявления, нет ничего, чтобы удерживало нас от вложенных вызовов, точно так, как мы ожидали бы на любом языке. Мы получили это и это было не слишом сложно, не так ли?
      Конечно, пока мы можем работать только с процедурами, которые не имеют параметров. Процедуры могут оперировать глобальными переменными по их глобальным именам. Так что к этому моменту мы имеем эквивалент конструкции Бейсика GOSUB. Не слишком плохо... в конце концов масса серъезных программ была написана с применением GOSUBа., но мы можем добиться большего и добьемся. Это следующий шаг.

Передача параметров

      Снова, все мы знаем основную идею передачи параметров, но давайте просто для надежности разберем ее заново.
      Вообще, процедуре предоставляется список параметров, например:
      PROCEDURE FOO(X, Y, Z)
      В объявлении процедуры параметры называются формальными параметрами и могут упоминаться в теле процедуры по своим именам. Имена, используемые для формальных параметров в действительности произвольны. Учитывается только позиция. В примере выше имя 'X' просто означает «первый параметр» везде, где он используется.
      Когда процедура вызывается, «фактические параметры» переданные ей, связаны с формальными параметрами на взаимно-однозначном принципе.
      БНФ для синтаксиса выглядит приблизительно так:
      <procedure> ::= PROCEDURE <ident> '(' <param-list> ')' <begin-block>
      <param_list> ::= <parameter> ( ',' <parameter> )* | null
      Аналогично, вызов процедуры выглядит так:
      <proc call> ::= <ident> '(' <param-list> ')'
      Обратите внимание, что здесь уже есть неявное решение, встроенное в синтаксис. Некоторые языки, такие как Pascal и Ada разрешают списку параметров быть необязательным. Если нет никаких параметров, вы просто полностью отбрасываете скобки. Другие языки, типа C и Modula-2, требуют скобок даже если список пустой. Ясно, что пример, который мы только что привели, соответствует первой точке зрения. Но, сказать правду, я предпочитаю последний. Для одних процедур решение кажется должно быть в пользу «безсписочного» подхода. Оператор
      Initialize; ,
      стоящий отдельно, может означать только вызов процедуры. В синтаксических анализаторах, которые мы писали, мы преимущественно использовали процедуры без параметров и было бы позором каждый раз заставлять писать пустую пару скобок.
      Но позднее мы также собираемся использовать и функции. И так как функции могут появляться в тех же самым местах что и простые скалярные идентификаторы, вы не сможете сказать об их различиях. Вы должны вернуться к объявлениям, чтобы выяснить это. Некоторые люди полагают, что это преимущество. Их аргументы в том, что идентификатор замещается значением и почему вас заботит, сделано ли это с помощъю подстановки или функции? Но нас это иногда заботит, потому что функция может выполняться довольно долго. Если написав простой идентификатор в данном выражении мы можем понести большие затраты во время выполнения, то мне кажется, что мы должны быть осведомлены об этом.
      В любом случае, Никлаус Вирт разработал и Pascal и Modula-2. Я оправдаю его и полагаю что он имел веские причины для изменения правил во втором случае!
      Само собой разумеется, легко принять любую точку зрения на то, как разрабатывать язык, так что это строго вопрос персонального предпочтения. Делайте это таким способом, какой вам больше нравится.
      Перед тем как пойти дальше, давайте изменим транслятор для поддержки списка параметров (возможно пустого). Пока мы не будем генерировать никакого дополнительного кода... просто анализировать синтаксис. Код для обработки объявления имеет ту же самую форму, которую мы видели раньше когда работали со списками переменных:
      {–}
      { Process the Formal Parameter List of a Procedure }
      procedure FormalList;
      begin
      Match('(');
      if Look <> ')' then begin
      FormalParam;
      while Look = ',' do begin
      Match(',');
      FormalParam;
      end;
      end;
      Match(')');
      end;
      {–}
      В процедуру DoProc необходимо добавить строчку для вызова FormalList:
      {–}
      { Parse and Translate a Procedure Declaration }
      procedure DoProc;
      var N: char;
      begin
      Match('p');
      N := GetName;
      FormalList;
      Fin;
      if InTable(N) then Duplicate(N);
      ST[N] := 'p';
      PostLabel(N);
      BeginBlock;
      Return;
      end;
      {–}
      Сейчас код для FormalParam всего лишь пустышка, который просто пропускает имена переменных:
      {–}
      { Process a Formal Parameter }
      procedure FormalParam;
      var Name: char;
      begin
      Name := GetName;
      end;
      {–}
      Для фактического вызова процедуры должен быть аналогичный код для обработки списка фактических параметров:
      {–}
      { Process an Actual Parameter }
      procedure Param;
      var Name: char;
      begin
      Name := GetName;
      end;
      {–}
      { Process the Parameter List for a Procedure Call }
      procedure ParamList;
      begin
      Match('(');
      if Look <> ')' then begin
      Param;
      while Look = ',' do begin
      Match(',');
      Param;
      end;
      end;
      Match(')');
      end;
      {–}
      { Process a Procedure Call }
      procedure CallProc(Name: char);
      begin
      ParamList;
      Call(Name);
      end;
      {–}
      Обратите внимание, что CallProc больше не является просто простой подпрограммой генерации кода. Она имеет некоторую структуру. Для обработки я переименовал подпрограмму генерации кода в просто Call и вызвал ее из CallProc.
      Итак, если вы добавите весь этот код в ваш транслятор и протестируете его, вы обнаружите, что действительно можете правильно анализировать синтаксис. Обращаю ваше внимание на то, что здесь нет никакой проверки того, что количество (и, позднее, тип) формальных и фактических параметров совпадает. В промышленном компиляторе, мы конечно должны делать это. Сейчас мы игнорируем эту проблему той причине, что структура нашей таблицы идентификаторов пока не дает нам места для сохранения необходимой информации. Позднее мы подготовим место для этих данных и тогда сможем работать с этой проблемой.

Семантика параметров

      До этого мы имели дело с синтаксисом передачи параметров и получили механизм синтаксического анализа для его обработки. Сейчас мы должны рассмотреть семантику, т.е. действия, которые должны быть предприняты когда мы столкнемся с параметрами. Это ставит нас перед вопросом выбора способа передачи параметров.
      Существует более чем один способ передачи параметров и способ, которым мы сделаем это, может иметь глубокое влияние на характер языка. Так что это одна из тех областей, где я не могу просто дать вам свое решение. Скорее, было бы важно чтобы мы потратили некоторое время на рассмотрение альтернатив, так чтобы вы могли, если захотите, пойти своим путем.
      Есть два основных способа передачи параметров:
      • По значению
      • По ссылке (адресу)
      Различия лучше всего видны в свете небольшого исторического обзора.
      Старые компиляторы Фортрана передавали все параметры по ссылке. Другими словами, фактически передавался адрес параметра. Это означало, что вызываемая подпрограмма была вольна и считывать и изменять этот параметр, что часто и происходило, как будто это была просто глобальная переменная. Это был фактически самый эффективный способ и он был довольно простым, так как тот же самый механизм использовался во всех случаях с одним исключением, которое я кратко затрону.
      Хотя имелись и проблемы. Многие люди чувствовали, что этот метод создавал слишком большую связь между вызванной и вызывающей подпрограммой. Фактически, это давало подпрограмме полный доступ ко всем переменным, которые появлялись в списке параметров.
      Часто нам не хотелось бы фактически изменять параметр а только использовать его как входные данные. К примеру, мы могли бы передавать счетчик элементов в подпрограмму и хотели бы затем использовать этот счетчик в цикле DO. Во избежание изменения значения в вызываемой программе мы должны были сделать локальную копию входного параметра и оперировать только его копией. Некоторые программисты на Фортране фактически сделали практикой копирование всех параметров, исключая те, которые должны были использоваться как возвращаемые значения. Само собой разумеется, все это копирование победило добрую часть эффективности, связанной с этим методом.
      Существовала, однако, еще более коварная проблема, которая была в действительности не просто ошибкой соглашения «передача по ссылке», а плохой сходимостью нескольких решений реализации.
      Предположим, у нас есть подпрограмма:
      SUBROUTINE FOO(X, Y, N)
      где N – какой-то входной счетчик или флажок. Часто нам бы хотелось иметь возможность передавать литерал или даже выражение вместо переменной, как например:
      CALL FOO(A, B, J + 1)
      Третий параметр не является переменной, и поэтому он не имеет никакого адреса. Самые ранние компиляторы Фортрана не позволяли таких вещей, так что мы должны были прибегать к ухищрениям типа:
      K = J + 1
      CALL FOO(A, B, K)
      Здесь снова требовалось копирование и это бремя ложилось на программистов. Не хорошо.
      Более поздние реализации Фортрана избавились от этого, разрешив использовать выражения как параметры. Что они делали – назначали сгенерированную компилятором переменную, сохраняли значение выражения в этой переменной и затем предавали адрес выражения.
      Пока все хорошо. Даже если подпрограмма ошибочно изменила значение анонимной переменной, кто об этом знал или кого это заботило? При следующем вызове она в любом случае была бы рассчитана повторно.
      Проблема возникла когда кто-то решил сделать вещи более эффективными. Они рассуждали, достаточно справедливо, что наиболее общим видом «выражений» было одиночное целочисленное значение, как в:
      CALL FOO(A, B, 4)
      Казалось неэффективным подходить к проблеме «вычисления» такого целого числа и сохранять его во временной переменной только для передачи через список параметров. Так как мы в любом случае передавали адрес, казалось имелся большой смысл в том, чтобы просто передавать адрес целочисленного литерала, 4 в примере выше.
      Чтобы сделать вопрос более интересным большинство компиляторов тогда и сейчас идентифицирует все литералы и сохраняет их отдельно в «литерном пуле», так что мы должны сохранять только одно значение для каждого уникального литерала. Такая комбинация проектных решений: передача выражений, оптимизация литералов как специальных случаев и использование литерного пула – это то, что вело к бедствию.
      Чтобы увидеть, как это работает, вообразите, что мы вызываем подпрограмму FOO как в примере выше, передавая ей литерал 4. Фактически, что передается – это адрес литерала 4, который сохранен в литерном пуле. Этот адрес соответствует формальному параметру K в самой подпрограмме.
      Теперь предположите, что без ведома программиста подпрограмма FOO фактически присваивает K значение -7. Неожиданно, литерал 4 в литерном пуле меняется на -7. В дальнейшем, каждое выражение, использующее 4, и каждая подпрограмма, в которую передают 4, будут использовать вместо этого значение -7! Само собой разумеется, что это может привести к несколько причудливому и труднообъяснимому поведению. Все это дало концепции передачи по ссылке плохое имя, хотя, как мы видели, в действительности это была комбинация проектных решений, ведущая к проблеме.
      Несмотря на проблему, подход Фортрана имел свои положительные моменты. Главный из них – тот факт, что мы не должны поддерживать множество механизмов. Та же самая схема передачи адреса аргумента работает для всех случаев, включая массивы. Так что размер компилятора может быть сокращен.
      Частично из-за этого подводного камня Фортрана и частично просто из-за уменьшенной связи, современные языки типа C, Pascal, Ada и Modula 2 в основном передают скаляры по значению.
      Это означает, что значение скаляра копируется в отдельное значение, используемое только для вызова. Так как передаваемое значение – копия, вызываемая процедура может использовать его как локальную переменную и изменять ее любым способом, каким нравится. Значение в вызывающей программе не будет изменено.
      Сначала может показаться, что это немного неэффективно из-за необходимости копировать параметр. Но запомните, что мы в любом случае окажемся перед необходимостью выбирать какое-то значение, является ли оно непосредственно параметром или его адресом. Внутри подпрограммы, использование передачи по значению определенно более эффективно, так как мы устраняем один уровень косвенности. Наконец, мы видели раньше, что в Фортране часто было необходимо в любом случае делать копии внутри подпрограммы, так что передача по значению уменьшает количество локальных переменных. В целом, передача по значению лучше.
      Исключая одну маленькую деталь: если все параметры передаются по значению, у вызванной процедуры нет никакого способа возвратить результат в вызвавшую! Переданный параметр не изменяется в вызвавшей подпрограмме а только в вызванной. Ясно, что так работы не сделать.
      Существуют два эквивалентных ответа на эту проблему. В Паскале Вирт предусмотрел параметры-переменные, которые передаются по ссылке. VAR параметр не что иное как наш старый друг параметр Фортрана с новым именем и расцветкой для маскировки. Вирт аккуратно обходит проблему «изменения литерала» так же как проблему «адрес выражения» с помощью простого средства, разрешая использовать в качестве фактических параметров только переменные. Другими словами, это тоже самое ограничение, которое накладывали самые ранние версии Фортрана.
      Си делает ту же самую вещъ, но явно. В C все параметры передаются по значению. Однако одним из видов переменных, которые поддерживает С, является указатель. Так передавая указатель по значению, вы в действительности передаете то, на что он указывает по ссылке. В некоторых случаях это работает даже еще лучше, потому что даже хотя вы и можете изменить указываемую переменную на все, что хотите, вы все же не сможете изменить сам указатель. В функции типа strcpy, к примеру, где указатель увеличивается при копировании строки, мы в действительности увеличиваем только копии указателей, так что значение указателей в вызвавшей процедуре все еще остается каким было. Чтобы изменить указатель вы должны передавать указатель на указатель.
      Так как мы просто проводим эксперименты, мы рассмотрим и передачу по значению и передачу по ссылке. Таким образом у нас будет возможность использовать любой из них как нам нужно. Стоит упомянуть, что было бы тяжело использовать здесь подход С, так как указатель это другой тип а типы мы еще не изучали!

Передача по значению

      Давайте просто попробуем некоторые нехитрые вещи и посмотрим, куда они нас приведут. Давайте начнем со случая передачи по значению. Рассмотрим вызов процедуры:
      FOO(X, Y)
      Почти единственным приемлемым способом передачи данных является передача через стек ЦПУ. Поэтому, код который мы бы хотели видеть сгенерированным мог бы выглядеть так:
      MOVE X(PC),-(SP) ; Push X
      MOVE Y(PC),-(SP) ; Push Y
      BSR FOO ; Call FOO
      Это конечно не выглядит слишком сложным!
      Когда BSR выполнен центральный процессор помещает адрес возврата в стек и переходит к FOO. В этой точке стек будет выглядеть следующим образом:
      .
      .
      Значение X (2 bytes)
      Значение Y (2 bytes)
      SP –> Адрес возврата (4 bytes)
      Так что значения параметров имеют адреса с фиксированными смещениями от указателя стека. В этом примере адреса такие:
      X: 6(SP)
      Y: 4(SP)
      Теперь рассмотрим, на что могла бы походить вызываемая процедура:
      PROCEDURE FOO(A, B)
      BEGIN
      A = B
      END
      (Помните, что имена формальных параметров произвольные... учитываются только позиции).
      Желаемый код мог бы выглядеть так:
      FOO: MOVE 4(SP),D0
      MOVE D0,6(SP)
      RTS
      Обратите внимание, что для адресации формальных параметров нам будет необходимо знать, какую позицию они занимают в списке параметров. Это подразумевает некоторые изменения в содержимом таблицы идентификаторов. Фактически, в нашем односимвольном случае лучше всего просто создать новую таблицу идентификаторов для формальных параметров.
      Давайте начнем с объявления новой таблицы:
      var Params: Array['A'..'Z'] of integer;
      Нам также необходимо отслеживать, сколько параметров имеет данная процедура:

  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23