Основы безопасности дорожного движения
ModernLib.Net / Коноплянко Владимир / Основы безопасности дорожного движения - Чтение
(стр. 1)
Коноплянко Владимир Ильич
Основы безопасности дорожного движения
Владимир Ильич Коноплянко ОСНОВЫ БЕЗОПАСНОСТИ ДОРОЖНОГО ДВИЖЕНИЯ В книге рассказывается об основных элементах теории движения автомобиля, даются психофизиологические основы вождения автомобиля, рекомендации по обеспечению безопасности движения в различных условиях. Рассматриваются вопросы гигиены труда водителя, оказания первой медицинской помощи пострадавшим. Книга предназначена для водителей, преподавателей автошкол и курсов ДОСААФ. ОГЛАВЛЕНИЕ Глава I. ОСНОВНЫЕ ЭЛЕМЕНТЫ ТЕОРИИ ДВИЖЕНИЯ АВТОМОБИЛЯ Силы, действующие на автомобиль Торможение автомобиля Устойчивость автомобиля Управляемость автомобиля Проходимость автомобиля Глава 2. ПСИХОФИЗИОЛОГИЧЕСКИЕ ОСНОВЫ ВОЖДЕНИЯ АВТОМОБИЛЯ Понятие о деятельности водителя Зрительные ощущения Зрительные восприятия Ощущения равновесия, ускорений, вибрации Слуховые ощущения и восприятия Реакции Внимание Навыки Роль водителя в предупреждении дорожно-транспортных происшествий Глава 3. ДОРОЖНО-ТРАНСПОРТНЫЕ ПРОИСШЕСТВИЯ И ИХ ПРИЧИНЫ Классификация дорожно-транспортных происшествий Основные причины аварийности Глава 4. ОБЕСПЕЧЕНИЕ БЕЗОПАСНОСТИ ДВИЖЕНИЯ ПРИ УПРАВЛЕНИИ АВТОМОБИЛЕМ В РАЗЛИЧНЫХ УСЛОВИЯХ Основные приемы вождения автомобиля Факторы, определяющие условия движения Движение по снежным и скользким дорогам Движение на подъеме Движение на спуске Движение на поворотах Маневрирование автомобилен Движение по грунтовым дорогам Движение в горных условиях Преодоление водных преград Вождение в темное время и в различных погодных условиях Вождение автопоездов Глава 5. ОБЩИЕ ВОПРОСЫ ГИГИЕНЫ ТРУДА ВОДИТЕЛЯ АВТОМОБИЛЯ Рабочее место водителя Режим труда и отдыха водителя Глава 6. КРАТКИЕ СВЕДЕНИЯ ПО АНАТОМИИ И ФИЗИОЛОГИИ ЧЕЛОВЕКА Организм как целое Органы дыхания. Сердечно-сосудистая система Основные понятия об органах пищеварения Глава 7. ПЕРВАЯ МЕДИЦИНСКАЯ ПОМОЩЬ Понятие о травме Раневая инфекция Первая помощь при ушибах, вывихах, сдавлениях, переломах, черепно-мозговых травмах, термических поражениях Первая помощь при остановке дыхания и сердечной деятельности Последовательность действий по оказанию первой помощи пострадавшим в дорожно-транспортном происшествии Глава 1. ОСНОВНЫЕ ЭЛЕМЕНТЫ ТЕОРИИ ДВИЖЕНИЯ АВТОМОБИЛЯ СИЛЫ, ДЕЙСТВУЮЩИЕ НА АВТОМОБИЛЬ Автомобиль перемещается с определенной скоростью в результате действия на него движущих сил и сил, оказывающих сопротивление движению (рис. 1). К силам, препятствующим движению автомобиля, относятся: силы сопротивления качению Рf, сопротивление, создаваемое подъемом дороги Рa, сопротивление воздуха Pw, сопротивление сил инерции PJ. Для преодоления этих сил автомобиль оснащен источником энергии - двигателем. Возникающий в результате работы двигателя крутящий момент передается через силовую передачу и полуоси на ведущие колеса автомобиля. Их вращению препятствует сила трения, которая появляется между колесами и поверхностью дороги. Во время вращения ведущие колеса создают окружные силы, которые действуют на дорогу, стремясь как бы оттолкнуть ее назад. Дорога, в свою очередь, оказывает равное противодействие (касательную реакцию) на колеса, что и вызывает движение автомобиля. Силу, которая приводит автомобиль в движение, называют силой тяги и обозначают Ph. Связь между этими величинами или предельное условие движения автомобиля, при котором обеспечивается равновесие между силой тяги и силами сопротивления движения, можно выразить формулой Pk = Pf+-Pa+Pw + Pj. Это уравнение называется уравнением тягового баланса и позволяет установить, как тяговая сила распределяется по различным видам сопротивлений. Сопротивление дороги Сопротивление качению шины по дороге является следствием затрат энергии на гистерезисные (внутренние) потери в шине и на образование колеи (внешние) потери. Кроме того, часть энергии теряется в результате поверхностного трения шин о дорогу, сопротивления в подшипниках ступиц ведомых колес и сопротивления воздуха ьращению колес. Ввиду сложности учета всех факторов сопротивление качению колес автомобиля оценивают по суммарным затратам, считая силу сопротивления качению внешней по отношению к автомобилю. При качении эластичного колеса по твердой дороге внешние потери незначительны. Слои нижней части шины то сжимаются, то растягиваются. Между отдельными частицами шины возникает трение, выделяется тепло, которое рассеивается, и работа, затрачиваемая на деформацию шины, не возвращается полностью при последующем восстановлении формы шины. При качении эластичного колеса деформации в передней части шины возрастают, а в задней - уменьшаются. Когда жесткое колесо катится по мягкой деформируемой дороге (грунт, снег), потери на деформацию шины практически отсутствуют и энергия затрачивается лишь на деформацию дороги. Колесо врезается в грунт, выдавливает его в сторону, спрессовывая отдельные частицы, образуя колею. Когда же деформируемое колесо катится по мягкой дороге, энергия затрачивается на преодоление как внутренних, так и внешних потерь. При качении упругого колеса по мягкой дороге деформация его меньше, чем при качении по твердой дороге, а деформация грунта меньше, чем при качении жесткого по тому же грунту. Величина силы сопротивления качению может быть определена из формулы Pf = Gf cos a, где: Pf - сила сопротивления качению; G - вес автомобиля; а - угол, характеризующий крутизну подъема или спуска; f - коэффициент сопротивления качению, который учитывает действие сил деформации шин и покрытия, а также трение между ними в различных дорожных условиях. Величина коэффициента сопротивления качению колеблется от 0,012 (асфальтобетонное покрытие) до 0,3 (сухой песок). Рис. 1. Силы, действующие на движущийся автомобиль Сопротивление подъему. Автомобильные дороги состоят из чередующихся между собой подъемов и спусков и крайне редко имеют горизонтальные участки большой длины. Крутизну подъема характеризуют величиной угла а (в градусах) или величиной уклона дороги t, представляющей собой отношение превышения Н к заложению В (см. рис. 1): i=H/B = tg a. Вес автомобиля G, движущегося на подъеме, можно разложить на две-составляющие силы: G sina, направленную параллельно дороге, и Gcosa, перпендикулярную к дороге. Силу G sin a называют силой сопротивления подъему и обозначают Ра. На автомобильных дорогах с твердым покрытием углы подъема невелики и не превышают 4 - 5°. Для таких малых углов можно считать i = tg a ~ sin а, тогда Ра - G sin а = Gi. При движении на спуске сила Ра имеет противоположное направление и действует как движущая сила. Угол а и уклон i считают положительными на подъеме и отрицательными при движении на спуске. У современных автомобильных дорог нет четко выраженных участков с постоянным уклоном; их продольный профиль имеет плавные очертания. На таких дорогах уклон и сила Р непрерывно меняются в процессе движения автомобиля. Сопротивление неровностей. Ни одно дорожное покрытие не является абсолютно ровным. Даже новые цементобетонные и асфальтобетонные покрытия имеют неровности высотой до 1 см. Под действием динамических нагрузок неровности быстро увеличиваются, уменьшая скорость автомобиля, сокращая срок его службы и увеличивая расход топлива. Неровности создают дополнительное сопротивление движению. При попадании колеса в длинную впадину оно ударяется о ее дно и подбрасывается вверх. После сильного удара колесо может отделиться от покрытия и снова удариться (уже с меньшей высоты), совершая затухающие колебания. Переезд через короткие впадины и выступы сопряжен с дополнительной деформацией шины под действием силы, возникающей при ударе о выступ неровности. Таким образом, движение автомобиля по неровностям дороги сопровождается непрерывными ударами колес и колебаниями осей и кузова. В результате происходит дополнительное рассеивание энергии в шине и деталях подвески, достигающее иногда значительных величин. Дополнительное сопротивление, вызываемое неровкостями дороги, учитывают, условно увеличивая коэффициент сопротивления качению. Величины коэффициента сопротивления качению f и уклона i в совокупности характеризуют качество дороги. Поэтому часто говорят о силе сопротивления дороги Р, равной сумме сил Рf и Ра: Р = Pf -f Ра = G (f cos а -f sin а) ~G (f + i). Выражение, стоящее в скобках, называют коэффициентом сопротивления дороги и обозначают буквой Ф. Тогда сила сопротивления дороги Р = G (f cos a -f sin а) = G ф. Сопротивление воздуха. При движении автомобиля на него оказывает сопротивление и воздушная среда. Затраты мощности на преодоление сопротивления воздуха складываются из следующих величин: - лобового сопротивления, появляющегося в результате разности давлений спереди и сзади движущегося автомобиля (около 55 - 60% всего сопротивления воздуха); - сопротивления, создаваемого выступающими частями: подножками, крыльями, номерным знаком (12 - 18%); - сопротивления, возникающего при прохождении воздуха через радиатор и подкапотное пространство (10-15%); - трения наружных поверхностей о близлежащие слои воздуха (8 - 10%); - сопротивления, вызванного разностью давлений сверху и снизу автомобиля (5 - 8%). При увеличении скорости движения увеличивается и сопротивление воздуха. Прицепы вызывают увеличение силы сопротивления воздуха вследствие значительного завихрения воздушных потоков между тягачом и прицепом, а также из-за увеличения наружной поверхности трения. В среднем можно принять, что применение каждого прицепа увеличивает это сопротивление на 25% по сравнению с одиночным автомобилем. Сила инерции Кроме сил сопротивления дороги и воздуха влияние на движение автомобиля оказывают силы инерции Р). Всякое изменение скорости движения сопровождается преодолением силы инерции, и ее величина тем больше, чем больше обитая м,аееа автомобиля: P=G*j/g Время равномерного движения автомобиля обычно мало по сравнению с общим временем его работы. Так, например, при работе в городах автомобили движутся равномерно 15 - 25% времени. От 30% до 45% времени занимает ускоренное движение автомобиля и 30 - 40% - движение накатом и торможение. При трогании с места и увеличении скорости автомобиль движется с ускорением - его скорость при этом неравномерна. Чем быстрее автомобиль увеличивает скорость, тем больше ускорение автомобиля. Ускорение показывает, как за каждую секунду возрастает скорость автомобиля. Практически ускорение автомобиля достигает 1 - 2 м/с2. Это значит, что за каждую секунду скорость будет возрастать на 1 - 2 м/с. Сила инерции изменяется в процессе движения автомобиля в соответствии с изменением ускорения. Для преодоления силы инерции расходуется часть тяговой силы. Однако в тех случаях, когда автомобиль движется накатом после предварительного разгона или при торможении, сила инерции действует по направлению движения автомобиля, выполняя роль движущей силы. Принимая это во внимание, некоторые труднопроходимые участки пути можно преодолевать с предварительным разгоном автомобиля. Величина силы сопротивления разгону зависит от ускорения движения. Чем быстрее разгоняется автомобиль, тем большей становится эта сила. Ее величина меняется даже при трогании с места. Если автомобиль трогается плавно, то сила эта почти отсутствует, а при резком трогании она может даже превысить тяговую силу. Это приведет или к остановке автомобиля, или к буксованию колес (в случае недостаточной величины коэффициента сцепления). В процессе работы автомобиля непрерывно меняются условия движения: тип и состояние покрытия, величина и направление уклонов, сила и направление ветра. Это приводит к изменению скорости автомобиля. Даже в наиболее благоприятных условиях (движение по усовершенствованным автомагистралям вне городов и населенных пунктов) скорость автомобиля и тяговая сила редко остаются неизменными в, течение продолжительного времени. На средней .скорости движения (определяемой как отношение пройденного пути ко времени, затраченному на прохождение этого пути с учетом времени остановок в пути) сказывается помимо сил сопротивления влияние весьма большого количества факторов. К ним относятся: ширина проезжей части, интенсивность движения, освещенность дороги, метеорологические условия (туман, дождь), наличие опасных зон (железнодорожные переезды, скопление пешеходов), состояние автомобиля и т. д. В сложных дорожных условиях может случиться так, что сумма всех сил сопротивления превысит тяговую силу, тогда движение автомобиля будет замедленным и он может остановиться, если водитель не примет необходимых мер. Сцепление колеса автомобиля с дорогой Для того чтобы неподвижный автомобиль привести в движение, одной силы тяги недостаточно. Необходимо еще трение между колесами и дорогой. Иначе говоря, автомобиль может двигаться лишь при условии сцепления ведущих колес с поверхностью дороги. В свою очередь, сила сцепления зависит от сцепного веса автомобиля Gv, т. е. вертикальной нагрузки на ведущие колеса. Чем больше вертикальная нагрузка, тем больше сила сцепления: Pсц = ФGk, где Pсц - сила сцепления колес с дорогой, кгс; Ф - коэффициент сцепления; GK - сцепной вес, кгс. Условие движения без буксования колес Рk < Рсц, т. е. если тяговая сила меньше силы сцепления, то ведущее колесо катится без буксования. Если же к ведущим колесам приложена тяговая сила, большая, чем сила сцепления, то автомобиль может двигаться только с пробуксовкой ведущих колес. Коэффициент сцепления зависит от типа и состояния покрытия. На дорогах с твердым покрытием величина коэффициента сцепления обусловлена главным образом трением скольжения между шиной и дорогой и взаимодействием частиц протектора и мнкронеровностей покрытия. При смачивании твердого покрытия коэффициент сцепления уменьшается весьма заметно, что объясняется образованием пленки из слоя частиц грунта и воды. Пленка разделяет трущиеся поверхности, ослабляя взаимодействие шины и покрытия и уменьшая коэффициент сцепления. При скольжении шины по дороге в зоне контакта возможно образование элементарных гидродинамических клиньев, вызывающих приподнимание элементов шины над микровыступами покрытия. Непосредственный контакт шины и дороги в этих местах заменяется жидкостным трением, при котором коэффициент сцепления минимален. На деформируемых дорогах коэффициент сцепления зависит от сопротивления грунта срезу и величины внутреннего трения в грунте. Выступы протектора ведущего колеса, погружаясь в грунт, деформируют и уплотняют его, что вызывает увеличение сопротивления срезу. Однако после некоторого предела начинается разрушение грунта, и коэффициент сцепления уменьшается. На величину коэффициента сцепления влияет также рисунок протектора шины. Шины легковых автомобилей имеют протектор с мелким рисунком, обеспечивающим хорошее сцепление на твердых покрытиях. Шины грузовых автомобилей имеют крупный рисунок протектора с широкими и высокими выступами-грунтозацепа-ми. Во время движения грунтозацепы врезаются в грунт, улучшая проходимость автомобиля. Истирание выступов в процессе эксплуатации ухудшает сцепление шины с дорогой. При увеличении внутреннего давления в шине коэффициент сцепления вначале увеличивается, а затем уменьшается. Максимальное значение коэффициента сцепления соответствует примерно величине давления, рекомендуемого для данной шины. При полном скольжении шины по дороге (буксование ведущих колес или юз тормозящих колес) величина ф может быть на 10 - 25% меньше максимальной. Коэффициент поперечного сцепления зависит от тех же факторов, и его обычно принимают равным 0,7Ф. Средние значения коэффициента сцепления колеблются в широких пределах от 0,1 (обледенелое покрытие) до 0,8 (сухое асфальте- и цементобетонное покрытие). Сцепление шин с дорогой имеет первостепенное значение для безопасности движения, так как оно ограничивает возможность интенсивного торможения и устойчивого движения автомобиля без поперечного скольжения. Недостаточная величина коэффициента сцепления является причиной в среднем 16%, а в неблагоприятные периоды года - до 70% дорожно-транспортных происшествий от общего их числа. Международной комиссией по борьбе со скользкостью дорожных покрытий установлено, что величина коэффициента сцепления по условиям безопасности движения не должна быть меньше 0,4. ТОРМОЖЕНИЕ АВТОМОБИЛЯ Надежные и эффективные тормоза позволяют водителю уверенно вести автомобиль с большой скоростью и вместе с тем обеспечивают необходимую безопасность движения. В процессе торможения кинетическая энергия автомобиля переходит в работу трения между фрикционными накладками колодок и тормозными барабанами, а также между шинами и дорогой (рис. 2). Величина тормозного момента, развиваемого тормозным механизмом, зависит от его конструкции и давления в приводе. Для наиболее распространенных типов тормозных приводов, гидравлического и пневматического, сила нажатия на колодку прямо пропорциональна давлению, развиваемому в приводе при торможении. Тормоза современных автомобилей могут развивать момент, значительно превышающий момент силы сцепления шины с дорогой. Поэтому весьма часто в практике наблюдается юз, когда при интенсивном торможении колеса автомобиля блокируются и скользят по дороге, не вращаясь. До блокировки колеса между тормозными накладками и барабанами действует сила трения скольжения, а в зоне контакта шины с дорогой - сила трения покоя. После блокировки, наоборот, между трущимися поверхностями тормоза действует сила трения покоя, а в зоне контакта шины с дорогой - сила трения скольжения. При блокировке колеса затраты энергии на трение в тормозе и на качение прекращаются и почти все тепло, эквивалентное поглощаемой кинетической энергии автомобиля, выделяется в месте контакта шины с дорогой. Повышение температуры шины приводит к размягчению резины и уменьшению коэффициента сцепления. Поэтому наибольшая эффективность торможения достигается в случае качения колеса на пределе блокировки. При одновременном торможении двигателем и тормозами достижение величины силы сцепления на ведущих колесах происходит при меньшей силе нажатия на педаль, чем при торможении только тормозами. Длительное торможение (например, во время движения на затяжных спусках) в результате нагрева тормозных барабанов резко уменьшает коэффициент трения фрикционных накладок, а следовательно, и тормозной момент. Таким образом, торможение с неотъединенным двигателем, применяемое в качестве дополнительного способа уменьшения скорости, позволяет увеличить срок службы тормозов. Кроме того, при торможении с неотъединенным двигателем увеличивается поперечная устойчивость автомобиля. Рис. 2. Силы, действующие на колесо автомобиля при торможении Различают экстренное и служебное торможение. Служебным называется торможение для остановки автомобиля или снижения скорости движения в заранее назначенном водителем месте. Снижение скорости в этом случае осуществляется плавно, чаще комбинированным торможением. Экстренным называется торможение, которое производится в целях предотвращения наезда на неожиданно появившееся или замеченное препятствие (предмет, автомобиль, пешеход и пр.). Это торможение может быть охарактеризовано остановочным путем и тормозным путем автомобиля. Под остановочным путем понимают расстояние, которое пройдет автомобиль от момента обнаружения водителем опасности до момента остановки автомобиля. Тормозным путем называют часть остановочного пути, который пройдет автомобиль с момента начала торможения колес до полной остановки автомобиля. Общее время t0, необходимое для остановки автомобиля с момента возникновения препятствия ("остановочное время"), можно представить в виде суммы нескольких составляющих: t0 = tр + tПР + tу + tT, где tр - время реакции водителя, с; tпр - время между началом нажатия на тормозную педаль и началом действия тормозов, с; tу - время увеличения замедления, с; tT - время полного торможения, с. Сумму tnp+ty часто называют временем срабатывания тормозного привода. Автомобиль в течение каждого из составляющих интервалов времени проходит определенный путь, и их сумма является остановочным путем (рис. 3): S0 = S1 + S2 + S3, м, где S1, S2, S3 - соответственно пути, пройденные автомобилем за время tр, tПр+tу, tт. За время tр водитель осознает необходимость торможения и переносит ногу с педали подачи топлива на педаль тормоза. Время tр зависит от квалификации водителя, его -возраста, утомляемости и других субъективных факторов. Оно колеблется от 0,2 до 1,5 с и более. При расчетах обычно принимают tр = 0,8 с. Время tnp необходимо для выбирания зазоров и перемещения всех деталей привода (педали, поршней тормозных цилиндров или диафрагмы тормозных камер, тормозных колодок). Это время зависит от конструкции тормозного привода и его технического состояния. Рис. 3. Путь торможения и дистанция безопасности автомобиля В среднем для исправного гидравлического привода можно принять tпp = 0,2 с, а для пневматического - 0,6 с, У автопоездов с пневматическим приводом тормозов время tпр может достигать 2 с. Отрезок tу характеризует время постепенного увеличения замедления от нуля (начало действия тормозов) до максимального значения. Это время составляет в среднем 0,5 с. В течение времени tp+tпp автомобиль движется равномерно с начальной скоростью Vа. За время tу скорость несколько уменьшается. В течение временя tт замедление сохраняется примерно постоянным. В момент остановки автомобиля замедление уменьшается до нуля практически мгновенно. Остановочный путь автомобиля без учета силы сопротивления дороги можно определить по формуле S = (t*V0/3.6) + kэ(Va2/254Фх) где S0 - остановочный путь, м; VA - скорость движения автомобиля в начальный момент торможения, км/ч; kэ - коэффициент эффективности торможения, который показывает, во сколько раз действительное замедление автомобиля меньше теоретического, максимально возможного на данной дороге. Для легковых автомобилей kэ~1,2, для грузовых автомобилей и автобусов kэ~1,3 - 1,4; Фх - коэффициент сцепления шин с дорогой, t=tр + tпр + 0,5tу. Выражение kэ= V2 /(254 ух) - представляет тормозной путь, величина которого, как это видно из формулы, пропорциональна квадрату скорости, с которой двигался автомобиль перед началом торможения. Поэтому при увеличении скорости движения вдвое, например, с 20 до 40 км/ч, тормозной путь увеличится в 4 раза. Нормативы эффективности действия ножного тормоза автомобилей в условиях эксплуатации приведены в табл. 1 (начальная скорость торможения 30 км/ч). При торможении на снежных и скользких дорогах тормозные силы всех колес автомобиля достигают значения силы сцепления практически одновременно. Поэтому при Фх<0,4 следует принимать кэ= 1 для всех автомобилей. # Вид транспортного средства Тормозной путь, м, не более Максимальное замедление, м/с2, не менее Легковые автомобили и другие, сконструированные на их базе 7,2 5,8 Грузовые автомобили с разрешенной массой до 8 т, а также автопоезда, сконструированные на их базе; автобусы длиной до 7,5 м 9,5 5,0 Грузовые автомобили с разрешенной массой более 8т, а также автопоезда, сконструированные на их базе; автобусы длиной более 7,5 м 11,0 4,2 # Таблица 1 Замедление величины изменения (уменьшения) скорости движения автомобиля в течение одной секунды является важным оценочным показателем эффективности действия тормозов. Величина замедления при торможении пропорциональна тормозной силе, действующей на автомобиль, зависит она также и от величины коэффициента сцепления: jз= (Фхg)/kэ, м/с2. Нормы эффективности торможения, которые предусмотрены правилами движения, рассчитаны на дороги с асфальто- или цементобетонным покрытием с коэффициентом сцепления не ниже 0,6. При торможении автомобиля под действием силы инерции создается момент, увеличивающий нагрузку на передние колеса и уменьшающий нагрузку на задние, т. е. происходит так называемое перераспределение динамического веса между осями. В этом случае передняя часть автомобиля нагружается и прижимается к дороге, а задняя, наоборот, разгружается и приподнимается. Это явление проявляется тем заметнее, чем интенсивнее торможение. В результате происходящей разгрузки задние колеса более склонны к затормаживанию "на юз", особенно у автомобилей, имеющих в статическом состоянии примерно равную нагрузку на оси. Во время торможения автомобиля величины тормозных сил на колесах правой и левой стороны могут быть неодинаковы. В результате этого образуется момент, поворачивающий автомобиль вокруг вертикальной оси, что может вызвать занос автомобиля. Причинами подобного явления могут быть различное состояние накладок и барабанов, разрегулировка и увеличение зазора между накладками и барабаном, различное состояние шин и т. д. Ухудшение тормозной динамичности может также наступить вследствие проникновения в тормоза масла, воды или грязи, уменьшающих тормозной момент. Значительное влияние на величину тормозного пути оказывает состояние покрытия. Новое покрытие имеет шероховатую поверхность, микроскопические выступы которой, вдавливаясь в резину покрышки, увеличивают её сцепление с дорогой. По мере износа покрытия микронеровности уменьшаются, поверхность становится гладкой и. коэффициент сцепления уменьшается. На зимних заснеженных и обледенелых дорогах ус-, ловия сцепления резко ухудшаются, и стирается разлит чне в.тормозной динамичности автомобилей всех типов, характерное при торможении на сухих покрытиях. УСТОЙЧИВОСТЬ АВТОМОБИЛЯ Под устойчивостью понимают способность автомобиля противостоять заносу (скольжению) и опрокидыванию. В зависимости от направления скольжения или опрокидывания различают продольную и поперечную устойчивость. Более вероятно нарушение поперечной устойчивости, возникающее вследствие действия боковых сил: центробежной силы, поперечной составляющей силы тяжести, бокового ветра, ударов о неровности дороги. Устойчивость движущегося автомоби-ля зависит от следующих факторов: массы автомобиля, высоты его центра тяжести, базы, ширины колеи; размера шин, их конструкции и состояния; радиусов кривизны дороги и состояния ее поверхности; конструкции и состояния тормозов; скорости и направления движения; умения управлять автомобилем. Установлено, что чем выше расположен центр тяжести автомобиля и чем уже колея, тем выше вероятность опрокидывания. Для повышения устойчивости колея должна быть возможно шире, а центр тяжести - ниже. Наличие груза в кузове, особенно крупногабаритного (контейнеров, тюков, прессованного сена и т. д.), увеличивает высоту центра тяжести, тем самым снижая устойчивость. На повороте существенное влияние на устойчивость кроме перечисленных факторов оказывает также скорость поворота управляемых колес. Резкий поворот может в определенных условиях явиться основным фактором, вызвавшим нарушение устойчивости автомобиля. Движение по косогору и по кривой связано с некоторыми дополнительными явлениями, усиливающими вероятность опрокидывания автомобиля. Сюда относится, например, перемещение пассажиров и грузов в сторону действия поперечной силы. Это перемещение вызывает изменение положения центра тяжести подрессоренных масс, вследствие которого возрастает опасность опрокидывания автомобиля. Под действием поперечных сил происходит деформация шин одновременно в двух направлениях - радиальном и поперечном. При больших значениях поперечных сил шина соприкасается с проезжей частью дороги не только протектором, но и частью боковины, менее эластичной по сравнению с протектором. При весьма больших перегрузках возможно также полное сплющивание шин и врезание обода колеса в верхний слой дорожного покрытия. Механическое зацепление, возникающее в этом случае, резко увеличивает общую силу поперечного сцепления шин с дорогой, а вместе с этим и вероятность опрокидывания автомобиля. Максимальную допустимую скорость движения автомобиля на поворотах до появления бокового скольжения можно определить по следующей формуле: V3 = VgRФy где Vз - максимальная скорость на повороте до появления бокового скольжения автомобиля, м/с; g - ускорение силы тяжести, м/с2; R - радиус поворота автомобиля, м; фу - коэффициент поперечного сцепления шины с дорогой. Во всех случаях заноса на автомобиль действует поперечная (центробежная) сила, которая появляется при всяком отклонении автомобиля от прямолинейного направления. Как видно из последней формулы, возникновение заноса наиболее вероятно при крутых поворотах автомобиля на скользкой дороге. В практике редко наблюдается одновременное скольжение обеих осей в поперечном направлении. Гораздо чаще начинают скользить колеса одной оси передней или задней. Наиболее вероятен занос задней оси автомобиля, на колеса которой при разгоне и преодолении больших сопротивлений действует касательная реакция, в десятки раз большая, чем на переднюю ось. Во время торможения же сила сцепления задних колес уменьшается вследствие перераспределения нагрузки, что также способствует их заносу. Занос задней оси у большинства автомобилей не только вероятнее, но и опаснее заноса передней оси. Последний погашается автоматически, так как возникающие центробежная сила и инерционный момент противодействуют повороту передней части автомобиля в сторону заноса. Для гашения заноса задней оси обычно рекомендуется поворачивать управляемые колеса в сторону заноса, уменьшая тем самым величину центробежной силы. Если передние колеса будут повернуты на достаточно большой угол, центробежная сила направится в сторону, противоположную заносу, и он прекратится. Однако резкий поворот передних колес на чрезмерно большой угол может вызвать скольжение задней оси в обратную сторону и движение автомобиля в направлении повернутых колес. Поэтому сразу после прекращения заноса передние колеса следует повернуть в обратном направлении и вывести автомобиль на прямолинейное движение.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8
|
|