Эволюция растительного и животного мира происходила в течение сравнительно длительного периода времени и основные ее этапы хорошо известны. Вместе с тем, на всем протяжении этого развития от водорослей и бактерий до современных нам представителей флоры и фауны все процессы их образования, существования и отмирания подчинялись единым принципам системной организации Материи, действие которых распространяется на каждый организационный уровень, включая и подуровень И. Все относящиеся к нему организмы представляют собой целостные системы, структуры которых можно представить в виде определенным образом расположенных в пространстве фн. ячеек, заполненных в качестве фщ. единиц органическими клетками.
Системы организмов имеют, как правило, фн. подситемы - органы, несущие ту или иную фн. нагрузку. Структуру органов составляют фн. ячейки с примерно однотипными фн. алгоритмами и поэтому заполняющие их фщ. единицы - клетки имеют приблизительно одинаковое строение и, соответственно, фн. свойства. Группы таких клеток носят название тканей. Как и в предыдущих организационных подуровнях, время существования фн. ячеек не совпадает с периодом функционирования фщ. единиц. Поэтому все организмы имеют подсистемы, обеспечивающие доставку комплектующих элементов - различных атомов и молекул для образования новых фщ. единиц, идентичных заменяемым в фн. ячейках отфункционировавшим фщ. единицам. При этом фн. свойства вновь образованных клеток должны полностью совпадать с фн. свойствами заменяемых и, в конечном счете, корреспондировать алгоритмам заполняемых фн. ячеек. Механизмом, обеспечивающим поддержание в фн. ячейках подсистем организмов в постоянной фн. готовности соответствующих фщ. единиц, является митоз (деление) клеток.
Известно, что в любом организме, как и в любой фн. системе, каждую фн. ячейку занимает строго соответствующая ей по своим фн. свойствам фщ. единица. И наоборот, каждая фщ. единица должна занять место в строго соответствующей ей фн. ячейке. Поэтому любое отклонение от этого правила всегда ведет к тому, что не соответствующая данной фн. ячейке фщ. единица не в состоянии выполнять предписания имеющихся алгоритмов функционирования, что влечет за собой нарушение функционирования той или иной подсистемы организма или всей его системы в целом и что, в конечном итоге, может привести к его гибели.
Зарождение так называемой живой природы произошло в водах мирового океана, или вернее, на стыке морей и суши. Наличие всех компонентов, включая воду, а также атомов большинства химических элементов в совокупности с каждодневным постоянным источником энергии - лучистой энергией Солнца создало идеальные предпосылки для системного конструирования различных структур фн. ячеек, которые тут же могли заполняться необходимыми фщ. единицами. И поэтому не эпизодические грозовые разряды (бывшие лишь необходимым условием, но отнюдь не причиной) послужили толчком к зарождению сложных биоструктур (как утверждают отдельные научные гипотезы), а последовательное перебирание различных системных вариантов в сочетании с соответствующими благоприятными условиями внесистемной среды привело к созданию динамически устойчивых биосистем. Молекулы морской воды в сочетании с различными химическими элементами в виде растворов проникали сквозь оболочку новых системных формирований и заполняли в качестве фщ. единиц соответствующие фн. ячейки их структур, при этом лучистая энергия Солнца, преобразуясь и застывая в виде энергии межмолекулярной связи, способствовала удержанию на период функционирования фщ. единиц в своих фн. ячейках.
В результате длительного организационного процесса, протекавшего многие миллионы лет, вначале появились простейшие одноклеточные организмы синезеленые водоросли и бактерии, затем зеленые водоросли, грибы и другие многоклеточные растения, имевшие самое примитивное строение, но являвшиеся венцом творения Материи на тот момент ее Развития. Последующее течение времени и соответствующее продвижение Материи по ординате качества требовало дальнейшего умножения функций (). В силу этого водоросли, попадая на сушу, стали все более приспосабливаться к обезвоженной среде. В их организме началось расслоение подсистем, каждая из которых выполняла определенную функцию. В отдельных случаях некоторые ткани стали наделяться двумя и более функциями, то есть становились полифункциональными, отвечая тем самым законам общего Развития Материи.
Мы не будем подробно описывать весь длительный процесс эволюции организмов и их фн. подсистем в тот долгий период. Для нас важно отметить, что в результате этого процесса появилось большое количество разнообразных растений, которые мы отнесем к одной группе так называемых организмов первого поколения. Несмотря на кажущееся внешнее различие, а также наличие несхожих фн. подсистем, всех их объединяет, и это особенно важно, единый принцип построения фщ. структур. А именно: в их фн. ячейки в качестве фщ. единиц поступают в виде растворов представители всего набора подуровней В и Г атомы, молекулы, ионы, радикалы и т.п., то есть элементы неорганических соединений, находящихся в почве, а точнее, в окружающей среде и соединяемых в фн. ячейках данного вида организмов с помощью энергии Солнца в системы очень сложной организации. Синтезированные таким образом из CO2, H2O и других системных образований нижних подуровней глюкоза, аминокислоты, а затем углеводы, белки, нуклеотиды и т.д., то есть фщ. формирования более высоких подуровней заполняли в качестве фщ. единиц фн. ячейки подсистем органических клеток, которые сами уже являлись фщ. единицами в структуре организмов растений. Клетки, системная организация которых позволяла производить синтез структур указанным образом, впоследствии стали называться автотрофными. Характерными их представителями являются клетки современных нам зеленых растений.
Основной реакцией, протекающей в организмах первого поколения, является реакция фотосинтеза:
Кванты света, бомбардируя молекулярную структуру хлорофилла, передают определенное количество своей кинетической энергии части его электронов, переводя их таким образом в возбужденное состояние. В результате этого электроны покидают свои орбитали и перескакивают в более высокие. Часть из них, присоединяясь к ионам водорода, превращает их в водород и т.д. Одновременно при этом процессе АДФ превращается в АТФ, а CO2 в глюкозу. Фотосинтез служит основой постоянно протекающего в природе великого созидательного процесса биосинтеза, в результате которого создается бесчисленное множество фщ. единиц, заполняющих соответствующие им фн. ячейки в структурах различных биоорганизмов.
В настоящее время с помощью фотосинтеза на Земле ежегодно связывается в более сложные структуры свыше 170 млрд. тонн углерода, миллиарды тонн азота, фосфора, серы, кальция, магния, калия и других элементов. В результате этого образуется около 400 млрд. тонн различного рода органических веществ. Все они в виде фщ. единиц заполняют фн. ячейки клеток всех организмов растительно-животного мира, обеспечивая их нормальное функционирование в качестве системных образований более высокого порядка.
В процессе эволюции организмов первого поколения происходило все большее обособление отдельных подсистем их структур. Особенно это стало необходимым после постепенного освоения растениями суши и приспособления к новым для себя условиям существования. В итоге этого длительного процесса фн. дифференциации в структуре организмов растений появились следующие органы (или подсистемы): корни, стебли, листья и т.д., каждый из которых имеет свое фн. назначение. Так, основная функция подсистемы корней - обеспечивать снабжение всей системной структуры организма растения фщ. единицами предыдущих подуровней. Через корневую систему в растения поступают в виде растворов молекулы воды совместно с атомами и ионами различных неорганических веществ, необходимых при синтезировании сложных органических формирований (клеток, тканей и т.п.). Поэтому фн. алгоритмы подсистемы корней должны обеспечивать постоянное устойчивое поступление требуемых химических элементов, осуществляя при этом их опознование, дозирование, отсортировку и транспортировку в отведенные для них фн. ячейки структуры организмов.
По мере совершенствования корневой подсистемы в некоторых организмах ее структура стала включать также фн. ячейки аккумулятивного центра, в которых временно размещался запас необходимых для организма растения химических элементов и соединений. Поэтому в периоды отсутствия по какой-либо причине поступлений необходимых элементов извне, растение могло пополнять их из аккумулятивных клеток корнеплодов. Фн. подсистема корней является неотъемлемой частью единой структуры организма растения и подчиняется его внутреннему алгоритмическому распорядку, направленному на обеспечение фн. свойств растения, как целостной системы - фщ. единицы более высокого уровня. Если произвести искусственное отделение подсистемы корней от остальных подсистем организма растения, то внутренний алгоритмический порядок нарушится и обе части системы прекратят свое фн. существование, распавшись на составляющие их фщ. единицы.
Другой важной подсистемой организмов растений являются листья. Их основная функция состоит в осуществлении важнейшего органического процесса реакции фотосинтеза в период функционирования организмов растений. Структура каждого листа (то есть пространственное расположение его фн. ячеек) представляет собой довольно совершенный механизм, позволяющий обеспечивать оптимальное течение реакций фотосинтеза при данных условиях. При этом все другие подсистемы организма способствуют нормальному протеканию этого процесса. Полученные в результате фотосинтеза органические соединения транспортируются в отведенные для них соответствующие фн. ячейки, освобождая место для образования новых единиц органических соединений. Реакция фотосинтеза сопровождается интенсивным газообменом, для чего в структуре листьев имеются специализированные фн. ячейки с соответствующими алгоритмами, в которых происходит приток молекул углекислого газа и отток молекул кислорода. Кроме того, в функции подсистемы листьев входит терморегулирование реакции фотосинтеза, достигаемое путем сбора всей излишне поступающей энергии фотонов Солнца и отвода ее специальным механизмом подсистемы, в основе действия которого лежит принцип испускания (испарения) молекул воды.
Подсистема листьев, следуя климатическим колебаниям, функционирует лишь в благоприятные для этого периоды. Когда же температурный режим окружающей среды препятствует нормальному течению фотосинтеза и действует разрушающим образом на тонкие механизмы листьев, внутренний алгоритмический распорядок организма растения предусматривает их отторжение. Это самозащитное явление нисколько не нарушает целостного единства структуры организма растения и служит целям обеспечения сохранности остальных его подсистем. Поэтому опадание листьев является таким же естественным событием в цикле алгоритмов развития растений, как и их появление в процессе регенерации.
Следующей функционально важной подсистемой организмов растений являются стебли. Перечень функций, выполняемый сочетаниями их фн. ячеек, также весьма обширен. Сюда прежде всего следует отнести внутрисистемные пространственные перемещения различных фщ. единиц из одних частей системы в другие: от листьев к корням, от корней к листьям и т.д. Для этих целей структура стеблей предусматривает наличие специальных транспортных артерий, или сосудов, пронизывающих подсистемы всего организма, и по которым фщ. единицы перемещаются из одних фн. ячеек в другие. При этом вода и минеральные соли поднимаются от корней в верхнюю часть растений по внутренним сосудам, а образовавшиеся в листьях органические вещества транспортируются по внешним артериям стеблей. У многих растений структура стеблей (стволов) включает аккумулятивные фн. ячейки, куда складируется запас необходимых для последующего использования элементов. Стебли (стволы) растений служат также целям оптимального расположения фн. ячеек структуры организма растения в геометрии пространства. Поэтому даже пространственное расположение лиственного покрова растения с целью обеспечения максимальной площади его облучения Солнцем входит в функцию стеблей.
Еще одной очень важной особеностью строения стеблей является включение в их структуру сигнальной подсистемы организма растения, имеющей свои ответвления практически во всех его органах. Однако главные каналы связи проходят именно через стебли. По этим каналам внутренняя информация организма поступает из одной подсистемы в другую, координируя таким образом во времени начало и прекращение тех или иных реакций, запрограммированных алгоритмами соответствующих фн. ячеек. Эти же сигналы служат для внесения коррекции в указанные алгоритмы. Здесь следует отметить, что само понятие организм включает в себя наличие условно целостной биологической системы с обязательным присутствием сигнальной подсистемы. Именно благодаря сигнальной подсистеме некое скопление органических клеток объединено в систему единого организма. В простейших организмах растений сигнальная подсистема появилась вначале также в довольно зачаточном состоянии, развившись со временем в примитивную первую сигнальную подсистему, положившую одновременно начало появлению духовности в организме. Как уже отмечалось, сигнальная подсистема организмов растительно-животного мира имеет биоэлектрическую природу. С ее помощью происходит тесное взаимодействие подсистем единой структуры организма, регулирование во времени алгоритмической деятельности тех или иных фщ. единиц.
Здесь необходимо также отметить и то, что в столь сложных системных образованиях, каковыми являются организмы I-го поколения, свое дальнейшее развитие получило общее для всей живой организации Материи свойство раздражимость. Под раздражимостью понимают способность системы отвечать на внешние воздействия такой реакцией, которая по своей силе, месту и характеру не соответствует силе, месту и характеру самого внешнего воздействия, при этом данная реакция имеет обратимый характер, что способствует ее многократному повторению. В организмах, даже самых примитивных, раздражимость проявляется в гораздо более сложной, чем в изолированном белковом комплексе, дифференцированной форме, имеющей свое определенное функциональное значение, однако и здесь она базируется на закономерностях, свойственных всем системным формированиям, а именно: перемещении в определенный период времени отдельных фщ. единиц из одних фн. ячеек в другие. Элементарной формой раздражимости является способность находящегося в клетках миозина отвечать сокращением при воздействии на него минимальным количеством АТФ, как естественного химического раздражителя. Реакция сократительного белка на АТФ исчезает, если блокировать одну из важнейших реактивных групп белков - сульфгидрильную группу. Восстановление этих групп в структуре сократительного белка восстанавливает и реакцию белка на названный раздражитель. Растения не имеют специальных тканей или какого-либо координационного центра, воспринимающих и проводящих раздражения. Однако, несмотря на относительную примитивность реакций растений на раздражения, сложнейшая подсистема плазматических, сосудистых и гормональных связей, объединенная в примитивную сигнальную подсистему, в свою очередь объединяет все их части и органы в единый целостный организм и регулирует все физиологические и биологические процессы. Возбужденный участок ткани или органа растения приобретает отрицательный по отношению к невозбужденным участкам заряд, вследствие чего между возбужденным и невозбужденным участками возникает электрический ток (биоэлектрический потенциал). Кроме того, в возбужденном участке образуются (или освобождаются) вещества высокой физиологической активности (ауксины и другие фитогормоны), которые передвигаются к другим участкам ткани и, наряду с биотоками, вызывают в них состояние возбуждения. Скорость распространения возбуждения у растений составляет единицы и десятки микронов/сек. Претерпев соответствующие молекулярно-физические изменения в ответ на воздействие раздражающих агентов, белковые структуры в силу действия имеющейся генозаписи их исходного построения вновь возвращаются в свое первоначальное состояние и могут снова реагировать на те или иные воздействия. Энергия ответной реакции на раздражение обычно пропорциональна, но не равна энергии раздражения, так как реакция на раздражение осуществляется за счет внутренней энергии организма растения, накопленной ранее при ассимиляции. Если в предыдущих реакциях на раздражения эта внутренняя энергия израсходовалась, то новые раздражения не будут вызывать ответной реакции до тех пор, пока не восстановятся исходный энергетический уровень и другие свойства возбуждаемого участка ткани. Очень сильные раздражения не стимулируют, а наоборот, угнетают жизнедеятельность организма, и при достаточной продолжительности действия такие раздражители нарушают нормальный ритм его функционирования. В силу этого сила раздражения должна быть строго дозирована.
Организмы I-го поколения, несмотря на их относительную примитивность, имели уже довольно надежную подсистему алгоритмозаписи, в основе которой лежит биохимическая запись генетического кодирования ДНК. В ней собирается информация практически от всех клеток, входящих в организм. По мере усложнения системной организации растений повышалась надежность и подсистемы алгоритмозаписи, обеспечивавшей кодирование развертывания структуры фн. ячеек всех подсистем организма, соотнесенное с пространственно-временными интервалами. Вначале подсистему алгоритмозаписи имел практически каждый орган растения. Так до сих пор существуют растения, у которых при культивировании лишь одного органа происходит развертывание всех остальных. К ним можно отнести лесной ландыш (корневище), тополь (часть стебля) и т.д. Однако, в конечном итоге, наиболее надежной оказалась система записи алгоритмов, производимая в особом, специально для этого предназначенном органе растения его семенах. Одно из главных преимуществ такой записи является возможность ее реализации (алгоритмочтения) с большим интервалом как в пространстве, так и во времени.
И действительно, семена можно перенести на многие километры от материнского растения и посадить, то есть дать начало развития нового организма растений, через несколько лет после отделения семени от родителя. Все это отвечало требованиям Развития Материи по ординатам качества-времени-пространства. Мы не будем останавливаться на самом механизме алгоритмической записи развертывания структур подсистем всего организма растения в зародыше семян, однако отметим, что запись эта настолько полная, что включает в себя количественное и качественное отличие всех входящих в структуру данного организма фн. ячеек, время их развертывания и период функционирования, а также алгоритмические особенности каждой группы функционально обособленных ячеек. Поэтому как только семя попадает в соответствующую фн. ячейку биогеоценоза, тут же включаются его биочасы и начинается декодирование кропотливо составленной генозаписи зародыша, являющееся первой фазой развертывания структуры организма очередного растения.
Семена, как известно, помимо генетической записи зародыша имеют и небольшой запас (сухой паек) тщательно отобранных элементов, необходимых для использования в качестве фщ. единиц на первых порах развертывания структуры растения. Позднее, по мере развития их различных подсистем, организмы растений стали более запасливыми и помимо накопления строго обязательного запаса необходимых элементов в семени, они начали также аккумулировать значительное количество элементов в другой своей, более обширной аккумулятивной подсистеме - плодах. При созревании плодов основная масса их фн. ячеек, имеющих главным образом аккумулятивную функцию, заполняется всеми элементами, необходимыми для нормального развертывания из семян первых подсистем растения. Это заполнение, как и все трансформации в растениях, происходит не хаотически, а повинуясь строгому регламентированию соответствующими алгоритмами, согласно которым строго определенные молекулярные соединения в виде фщ. единиц заполняют отведенные для них фн. ячейки, где они с помощью энергии Солнца полимеризуются в более сложные соединения, что обеспечивает им более продолжительный период существования. В последующем, после завершения созревания плода и семян, то есть когда все фн. ячейки их структур наполнятся соответствующими фщ. единицами, плод вместе с семенами опадает на верхний слой почвы, где происходит деполимеризация его фщ. единиц, в результате чего создается среда питательных элементов для находящихся здесь же семян. Поэтому, как только из семени начинается развертывание структуры нового растения, сохранившиеся элементы деполимеризированного плода служат основным источником, обеспечивающим заполнение его фн. ячеек соответствующими фщ. единицами.
В процессе своего формирования каждое семя проходит стадию оплодотворения, то есть момент соединения двух системообразующих структур пыльцы и яйцеклетки. Это соединение служит целям улучшения генотипа растений посредством распространения более совершенных структур фн. ячеек подсистем, образовавшихся при мутации генов. Совершенствование этого процесса шло по пути от обоеполых растений через однодомные, то есть у которых есть и тычиночные, и пестичные цветки, до двудомных, где тычиночные и пестичные цветки расположены на разных растениях. Таким образом, уже у организмов I-го поколения сформировались особи разных полов. Появление семян от разнополых растений обеспечивает наличие генозаписи как минимум от двух родительских системных образований, что способствует постоянному совершенствованию структуры фн. ячеек данного вида растения и соответственной оптимализации совокупности их алгоритмов. Генозаписью алгоритмов построения и функционирования фщ. единиц всех подсистем растения, произведенной в ДНК клеток зародыша семян, а также обеспечением минимального запаса необходимых при развертывании структуры организма элементов, сосредоточенного в плодах, практически заканчивается фн. деятельность большинства растений - организмов I-го поколения. Отфункционировав, структуры их подсистем распадаются, а фщ. единицы, заполнявшие ранее их фн. ячейки, деполимеризуясь, покрывают верхний слой почвы, образуя и поддерживая таким образом ее гумусовый слой. В дальнейшем разрозненные элементы гумусового слоя могут войти в состав фщ. единиц структуры нового растения с тем, чтобы, отфункционировав там, вновь вернуться в гумусовый слой. Этот процесс бесконечен и составляет основу биогеоценоза.
Как ни велико множество разновидностей организмов I-го поколения, функциональная нагрузка их в целом одинакова, а разница состоит лишь в структурной организации их подсистем, приспособленных под те или иные особенности биогеоценоза, в котором они территориально размещены и фщ. единицами которого они сами являются. Поэтому, исчерпав весь набор возможных функциональных приращений () в структурах организмов I-го поколения, Развитие Материи перешло в новую область - к конструированию структур с новыми функциями у организмов с более высокой системной организацией, которые объединяются в следующую группу - организмы II-го поколения. Их появление было следствием существования уже достаточно развившихся организмов I-го поколения, хотя последующее одновременное функционирование и развитие организмов обоих поколений несколько затушевывает вторичность генезиса организмов II-го поколения. Но уже то, что их различает, а именно: при формировании фщ. единиц для фн. ячеек своих подсистем в последних используются в качестве основы комплексные блоки фщ. единиц организмов I-го поколения, раскрывает очередность появления поколений.
К II-му поколению организмов относятся все растительноядные представители животного мира. Развитие у них подсистемы ускоренного искусственного расщепления органических соединений тканевых структур растений позволило им добывать в большом количестве комплексные материальные соединения, с помощью которых они могли постоянно заполнять фн. ячейки своих все более усложнявшихся подсистем, что способствовало появлению фн. ячеек с новыми свойствами и соответствовало движению Материи по ординатам качества-времени. Мы не будем подробно анализировать эволюцию организмов II-го поколения от простейших одноклеточных до современных нам хордовых класса млекопитающих травоядных животных. Отметим лишь, что главной причиной дивергенции их системной организации была потребность следования законам Развития Материи. Основой этого длительного процесса явилось усложнение морфофизиологической структуры организмов, что привело к появлению в протерозойскую эру (2 млрд. лет назад) животных с двусторонней симметрией тела с дифференцировкой его на передний конец и задний. Передний конец стал местом для развития органов чувств, нервных узлов, а в дальнейшем - головного мозга. В процессе последующей эволюции происходила, главным образом, дивергенция типов животного мира и замена первоначальных низкоорганизованных примитивных форм более высокоорганизованными путем еще большей дифференциации строения и функций тканей и органов организмов. При этом фн. ячейки тканей организмов II-го поколения заполнялись в качестве фщ. единиц уже лишь гетеротрофными клетками, то есть неспособными к синтезу органических соединений из неорганических. В самих клетках еще более усовершенствовалась система генозаписи в цепочках ДНК. Характерной особенностью клеток любого органа осталось то, что в каждой из них имелся весь набор генов данного вида организмов, однако в клетках разных тканей используются лишь немногие группы генов, то есть только те из них, на которых записаны алгоритмы структурного развертывания и функционирования структур фн. ячеек, которые данные клетки занимают в качестве фщ. единиц.
Протекавший многие сотни миллионов лет морфофизиологический прогресс, или ароморфоз, привел к значительным эволюционным изменениям подсистем структуры организмов II-го поколения (что выразилось в общем подъеме их организации), биологическому прогрессу, а также другим не менее важным последствиям. Сюда прежде всего следует отнести отрыв их систем от гумусового слоя почвы и способность свободно и автономно перемещаться по субстрату. Вследствие этого организмы получили возможность постепенно осваивать до этого пустынные районы земной поверхности в трех сферах: на суше, в воде и воздухе, что вело к увеличению фн. разнообразия их структур и вполне отвечало требованиям движения Материи в качестве-времени-пространстве. Приобретенная способность к передвижению в пространстве околоземной поверхности позволило организмам II-го поколения перемещаться от одного источника питания (системы организмов I-го поколения) к другому, максимально расширяя ареал своего обитания. Кроме того, в неблагоприятные моменты организм стал иметь возможность укрываться в более безопасном для себя месте. Потребление разнообразных травянистых растений увеличило набор элементов, из которых слагались фщ. единицы, заполнявшие фн. ячейки подсистем организмов животных, при этом каждый элемент заполнял отведенную именно для него фн. ячейку, где он мог проявить свои, присущие лишь ему фн. свойства. Вместе с тем, как и во всех системных образованиях предыдущих подуровней, любая вновь означившаяся фн. ячейка структуры того или иного организма безусловно требовала для своего заполнения лишь фщ. единицу, способную выполнять ее набор фн. алгоритмов. Малейшее несоответстие фщ. единицы заполняемой фн. ячейке вело к нарушению функционирования данной подсистемы организма и к возможному прекращению существования всей его системы в целом.
Рассмотрим вкратце строение организмов II-го поколения. В качестве примера возьмем структуру организма любого современного нам млекопитающего животного. Его целостная полуавтономная система включает в себя множество подсистем. Одной из основных среди них является опорно-двигательная подсистема. Она включает в себя костный скелет с прикрепленными к нему группами мышц. Костный скелет, определяя геометрическое расположение в пространстве прочих подсистем организма, в отдельных случаях выполняет и защитную функцию. Клетки мышечной ткани с помощью биохимических реакций при участии АТФ, как универсального источника биоэнергии, сокращаясь в заданный момент времени, приводят к пространственному перемещению с заданной скоростью отдельных частей организма. Опорно-двигательная подсистема, хорошо скоординированная и четко управляемая, позволяет некоторым современным животным перемещаться со скоростью в несколько десятков км/час.
Другой важной подсистемой организма является подсистема пищеварения. Она включает в себя ряд органов, где регулярно протекают процессы размельчения органических соединений подсистемных образований организмов I-го поколения до такого состояния, когда они могут быть использованы в качестве составных элементов в синтезируемых гетеротрофных клетках различных органов подсистем рассматриваемого нами организма. Регулярность указаных процессов определяется потребостью отдельных подсистем в замене в их фн. ячейках отфункционировавших фщ. единиц на новые. Наряду с подсистемой пищеварения функционирует также подсистема выделения. Через ее органы из организма удаляются непотребовавшиеся элементы, имевшиеся в органических соединениях пищи, а также элементы распада отфункционировавших фщ. единиц большинства подсистем организма.
Постоянно функционирующая подсистема дыхания служит для обеспечения газообмена протекающих в различных органах и тканях биохимических реакций. В процессе газообмена происходит постоянный подвод требующегося для окислительно-восстановительных реакций кислорода, а также отвод одного из продуктов распада всех органических соединений - углекислого газа.
Аккумулятивная подсистема организма включает в себя органы, фн. ячейки которых заполняются определенным запасом большинства элементов, необходимых для построения фщ. клеток других подсистем, удлиняя тем самым период автономного функционирования организма в целом. В органах данной подсистемы скапливается также ряд органических соединений, последующее расщепление которых может послужить дополнительным источником энергии. Аккумулятивная подсистема имеет очень важное значение в жизнедеятельности организмов животного мира. С ее помощью организм имеет возможность увеличить интервалы между приемами пищи, нормально функционируя в указанные перерывы. Это особенно важно для животных, ареал обитания которых находится в пустынной местности, а также в зимнее время года.