Современная электронная библиотека ModernLib.Net

Компьютерра - Журнал "Компьютерра" N741-742

ModernLib.Net / Компьютерра Журнал / Журнал "Компьютерра" N741-742 - Чтение (стр. 9)
Автор: Компьютерра Журнал
Жанр:
Серия: Компьютерра

 

 


      Абсолютно недопустимо и попадание пыли в зазор между поверхностью и головкой, отчего все современные диски изолируют от внешней среды, а для выравнивания давления внутри и снаружи используют специальный барометрический фильтр. Для улавливания частичек, которые могут образоваться в процессе работы диска, внутри кожуха имеется еще один фильтр, устанавливающийся на пути воздушного потока, порожденного вращающимся пакетом дисков. Поэтому после разборки и сборки в бытовых условиях современный диск почти со стопроцентной гарантией можно отправлять в мусорное ведро. Есть и еще одна засада — если диск не предназначен для работы в специальных климатических условиях, то есть не имеет полностью герметичного корпуса, выдерживающего разность давлений, то после переноса из холодного помещения в теплое в нем может накапливаться конденсат. Так что при такой операции компьютер обязательно требуется выдержать как минимум несколько часов, пока не прогреется все его "нутро".
      Как ни странно, гораздо более примитивные дискеты (флоппи [Floppy (англ.) — свободно висящий.]-диски) изобрели позже жестких дисков — только в 1970 году сотрудник IBM Дэвид Ноубл под руководством Алана Шугарта сконструировал флоппи-диск, имевший 8 дюймов в диаметре и в первой версии позволявший записать 80 Кбайт данных. Вы не поверите, но дискета такой емкости вмещала ядро операционной системы далеко не персональных по возможностям и назначению компьютеров IBM System 370 — на ней содержались все данные, достаточные для "холодной" перезагрузки машины.
      Собственно, для этой цели первые дискеты, работавшие в режиме "только для чтения", и создавались.
      По инициативе того же Шугарта (впоследствии, кстати, основавшего фирму Sea gate) в 1975 году в его компании Shugart As sociates (совместно с Wang La boratories) была сконструирована дискета 5,25 дюйма, а в 1981 году из стен корпорации Sony вышла привычная ныне 3,5-дюймовая дискета в жестком пластмассовом корпусе (отчего в некоторых странах ее называют "жесткой"). Сначала для записи использовали одну сторону, так что 5-дюймовая дискета вмещала всего 110 Кбайт данных.
      Потом стали использовать обе стороны, удвоили количество дорожек (вместо сорока — восемьдесят) и усовершенствовали технологии кодирования данных. В результате удалось довести емкость 5-дюймовой дискеты до 1,2 Мбайт, а 3-дюймовой — до 1,44 Мбайт.
      Изобретение дешевых сменных носителей в виде флоппи-дисков во многом по спо собствовало появлению персонального ком пьютера: первый IBM PC, как известно, жесткого диска не имел, и операционная система DOS, пользовательские программы и данные записывались в нем на 5-дюймовые дискеты емкостью 320 Кбайт, для которых было предусмотрено целых два привода. Аналогично был устроен и знаменитый Apple в своих первых модификациях I и II.
      Кстати, по моим личным наблюдениям, несмотря на относительно примитивную конструкцию, "гибкие" дискеты 5,25 дюйма были даже надежнее, чем "твердые" 3,5-дюймовые: с последними, притом независимо от производителя, я в свое время достаточно натерпелся, даже выработалась привычка всегда писать данные в двух экземплярах, чего практически не требовалось в эпоху пятидюймовок (возможно, оттого, что поверхностная плотность информации в них значительно ниже). Факт: когда мне недавно потребовалось разыскать один старинный документ, датируемый примерно 1989 годом, я отряхнул пыль с пятидюймового привода, лежавшего на шкафу с незапамятных времен, без особой надежды засунул туда дискету "Изот" болгарского производства, предположительно содержавшую требуемое, и вся информация с нее прочиталась, словно была записана накануне. Без единого сбойного сектора — вот ведь!
 

Дыхание третье: gmr и магнитные хитрости

 
      Современный диск, в отличие от древних накопителей вроде RAMAC, во многом подобных бытовому магнитофону, имеет отдельные головки чтения и записи, лишь конструктивно объединенные в одну. При этом в традиционных накопителях с продольной записью, каковые доминировали на рынке еще года два назад, головка записи в принципе мало чем отличается от обычной индуктивной магнитофонной головки, показанной на рис. 1. Со временем менялись лишь размеры и расстояния — сейчас зазор между головкой и поверхностью не превышает 100 нм (в сто раз меньше, чем в конструкциях 1970-х — начала 1980-х годов).
 
 
      А вот с головкой чтения происходили гораздо более значимые изменения. Совмещающая функции записи и чтения индуктивная головка имеет множество недостатков: очень плохое отношение сигнал/шум, зависимость чувствительности от скорости носителя и т. п. Потому еще в 1980-е вместо индуктивной головки для чтения стали применять более чувствительные тонкопленочные. А начиная примерно с 1991 года вообще изменили принцип их работы: в головках чтения стали использовать так называемый магниторезистивный эффект (MR). Суть его в том, что в зависимости от интенсивности внешнего магнитного поля меняется сопротивление некоего материала. Немаловажно, что эффект этот статический: головка будет выдавать сигнал, даже если носитель под ней остановить — в отличие от индуктивных, которые реагируют лишь на изменяющееся магнитное поле во время движения носителя. Поэтому сигнал в MR-головках не зависит от скорости. Увеличивается и отношение сигнал/шум, особенно в головках с "гигантским" (giant) магнито-резистивным эффектом (GMR), что очень важно в связи с прогрессирующим уменьшением площади, занимаемой единичным битом на поверхности диска. И примерно со второй половины 1990-х все накопители стали выпускать только с GMR-головками.
      В накопителях поколения RAMAC плотность записи составляла какие-то жалкие 2 кбит/кв. дюйм, а инженеров тогда больше занимали вопросы быстродействия и способы кодирования информации для повышения надежности хранения данных. По мере развития технологий емкость дисков увеличивалась, а габариты уменьшались (напомним, что 5-мегабайтный RAMAC в 1956 году был размером с платяной шкаф, а такой же емкости накопитель начала 1980-х уже занимал "всего" пару 5-дюймовых отсеков). К началу 1990-х размеры более-менее стабилизировались (появился, в частности, общепринятый ныне 3,5-дюймовый конструктив), но емкость продолжала расти. То есть плотность записи непрерывно повышалась, перевалив к концу 1990-х рубеж 1 Гбит/кв. дюйм.
 
 
      В ходе этого процесса, изобретая все новые магнитные материалы и методы их нанесения, совершенствуя головки, схемы управления и механику, разработчики изыскивали способы сделать область хранения единичного бита, называемую магнитным доменом, как можно меньше.
      Но беспредельно уменьшать размеры домена нельзя, и вот почему.
      Каждый домен состоит из отдельных магнитных зерен. Когда записывающая головка выдает импульс, сообщающий домену определенное направление намагничивания, то надо, чтобы большая часть зерен ориентировалась в нужном направлении.
 
 
      Чем больше таких правильно сориентированных зерен, тем больше отношение сигнал/шум. Следовательно, для повышения надежности чтения мы заинтересованы в том, чтобы увеличивать количество элементарных зерен в домене (сейчас их около сотни на каждый домен), а если хочется повышать плотность записи, то ничего не остается, кроме как уменьшать размер каждого зерна. Но беспредельно уменьшать их тоже нельзя — слишком маленькие зерна будут самопроизвольно размагничиваться из-за теплового движения — помните, что магнитные ленты хранили в холодильниках? Это явление получило название суперпарамагнитного эффекта, и поначалу предсказывалось, что физическое ограничение на плотность записи, наложенное им, наступит уже при 10 Мбит/кв. дюйм. За счет разных технологических ухищрений и подбора материалов порог удалось снизить в десятки тысяч раз — сейчас считается, что суперпарамагнетизм начнет сказываться при плотностях 100-200 Гбит/кв. дюйм, характерных для дисков в 3,5-дюймовом конструктиве. Это составляет примерно 250 Гбайт данных на пластину и в принципе позволяет довести емкость диска до терабайта. На практике же последние традиционные накопители с продольной записью имели емкость 100-133 Гбайт на пластину, что фактически было пределом.
 

Дыхание четвертое: перпендикулярная запись

 
      Недавно, проанализировав патент Поульсена, инженеры пришли к выводу, что датчанин делал запись не продольным, как во всех последующих конструкциях, а поперечным способом — когда ось намагниченности домена находится перпендикулярно плоскости материала. В 1970-х годах Шуничи Ивасаки из японского Технологического института Тохоку, ничего, видимо, не зная про Поульсена, изобрел перпендикулярную запись заново.
      Любопытно, что этот способ первоначально пытались использовать для увеличения емкости дискет (до 2,88 Мбайт, такая емкость даже предусмотрена в некоторых технических спецификациях; например, Windows ее поддерживает), но что-то не заладилось, и технология "не пошла".
      Почему во всех конструкциях, от бытовых магнитофонов до последних моделей винчестеров, традиционно использовали продольную запись, когда оси намагниченности доменов находятся в плоскости носителя, понятно из рис. 2 — просто симметричная индуктивная головка записи имеет именно такое, продольное направление магнитных линий. Перпендикулярная же запись (рис. 3) дает массу преимуществ — линейные размеры домена, если смотреть со стороны плоскости диска, становятся намного меньше, не теряя в объеме, то есть в количестве элементарных зерен, что увеличивает отношение сигнал/шум. Кроме того, соседние домены меньше влияют друг на друга, а границы между ними становятся более четкими.
      Диск с перпендикулярной записью устроен сложнее обычного и имеет двухслойное покрытие. Нижний слой состоит из магнитомягкого материала, то есть такого, который не сохраняет намагничивание после воздействия магнитного поля, а верхний слой представляет собой обычное магнитное покрытие. Толщина каждого слоя составляет несколько десятков нанометров, в тысячи раз тоньше человеческого волоса. Главная роль во всем этом деле отведена записывающей головке новой конструкции — на рис. 3 видно, что она имеет несимметричную форму.
      Острый край концентрирует магнитное поле, увеличивая его интенсивность, и одновременно конфигурирует поле так, что оно оказывается направленным перпендикулярно поверхности. Противоположный край головки имеет большую поверхность, и магнитные линии рассредотачиваются на большем пространстве, то есть поле здесь значительно слабее. А магнитомягкая подложка собирает параллельные носителю линии в себе, не давая им повлиять на результирующее направление намагниченности домена.
      Однако путь освоения перпендикулярной записи (PMR), имеющей реальные преимущества перед продольной, оказал ся тернистым. Только в 2003 году из недр Hitachi и Toshiba стали просачиваться сведения о работающих образцах дисков, а первый опытный диск был представлен лишь в 2004 году. В начале 2006 года компания Seagate привезла на CES первый "перпендикулярный" рыночный образец, он имел форм-фактор 2,5” и объем 160 Гбайт, в 2007-м Hitachi выпустила первый накопитель емкостью 1 Тбайт. Сегодня терабайтники есть у всех производителей, однако дальше этого объема дело пока не идет. Одна из причин — отсутствие реальной потребности в таких объемах среди пользователей и дороговизна одного гигабайта в таких продуктах.
      Как я говорил в начале статьи, поначалу предполагалось, что PMR-накопители позволят отрасли продержаться где-то до 2010 года, после чего уступят место накопителям на других принципах записи, среди которых называются не только стремительно дешевеющие твердотельные диски, но и прямые наследники магнитных — диски на основе тепловой магнитной записи (heat assisted magnetic recording, HAMR). Однако еще прошлой осенью появились сведения, что хоронить магнитный принцип рано и что усовершенствованная PMR (с предварительной разметкой пластин в процессе изготовления и с увеличенным числом слоев) отодвигает поминки по крайней мере лет на пять, до 2015 года. Ну а за это время еще что-нибудь обязательно придумают…
 

Первые устройства памяти

 
      В первых ЭВМ одним из основных типов ОЗУ была память на осциллографических трубках, аналогичных кинескопам.
      Данные хранились в виде зарядов на внутренней поверхности трубки. Такое устройство было крайне неудобным и дорогим, но имело неоценимое достоинство: электронно-лучевая трубка — одно из самых быстродействующих устройств, придуманных в дополупроводниковую эпоху. Частота считывания информации с такого ОЗУ могла достигать 10 МГц, что совсем неплохо в условиях, когда тактовые частоты процессорных узлов не превышали сотен килогерц или единиц мегагерц.
      Кроме ОЗУ, требовались емкие долговременные накопители информации. Исторически первым типом таких ЗУ стали магнитные барабаны. В них считывающая головка передвигалась вдоль вращающегося цилиндра, покрытого магнитным слоем, и за один оборот могла считать одну дорожку данных. Барабан можно было вращать достаточно быстро, что позволяло считывать данные с приемлемой скоростью при простой и надежной механической части. Например, барабан диаметром 10 дюймов вращался со скоростью 3600 об./мин., а время доступа к данным на одной дорожке составляло 8-9 мс, что сравнимо с характеристиками современных жестких дисков.
      Ленточные накопители, естественно, работали гораздо медленнее: они мало чем отличались от обычного магнитофона, в котором для доступа к произвольному месту записи ленту нужно перематывать, в пределе — от начала до конца. Зато у них была ни с чем не сравнимая по тем временам емкость — если типовая осциллографическая трубка хранила 1024 бита данных, емкость барабана могла достигать полумегабита, то на ленте можно было записать несколько миллионов, притом не бит, а сразу байт — за счет многодорожечной записи. Выпускались даже специальные ленты шириной 76,2 мм, с которых за один такт считывалось 36-битовое число. Беспрецедентная емкость в сочетании с надежностью хранения данных стала причиной того, что ленточные накопители дожили до наших дней — и сейчас во многих организациях резервное копирование данных выполняется с помощью стриммеров. Правда, ленту приходится хранить в холодильнике, при комнатной температуре магнитный слой деградирует гораздо быстрее, но это не очень большая плата за общую надежность и неприхотливость.

письмоносец: Свобода или безопасность

      Свобода или безопасностьАвтор: Владимир Гуриев
      Опубликовано в журнале "Компьютерра" N25-26 от 08 июля 2008 года
      Люди, есть у меня к вам такое странное предложение: вложите в середину какого-нибудь юбилейного номера полную факсимильную копию первого номера вашего журнала. А что, неплохой, по.моему, подарок постоянным читателям журнала, тем более что я как-то не могу найти в Интернете (под мудрым руководством Яндекса) ссылок на старые архивы (1992-95), а на вашем сайте их, к сожалению, тоже не нашел…
      Михаил Бич
       ОТ РЕДАКЦИИ: Михаил, все просто. Полного архива за 1992-95 гг. не существует — ни в Яндексе, ни на сайте, ни в редакции. Впрочем, первый номер у нас как раз есть (по крайней мере, я его видел пару лет назад). Спасибо за идею, подумаем.
      Физкультпривет! Я — велосипедист, читающий ваш журнал. Не такой, который скачет с огроменных трамплинов или наматывает километры по трассе, а так, доехать до места работы да на выходных погонять по окрестным горам. И я замечаю, что горные велосипеды очень похожи на компьютеры.
      1. Это болезнь.
      2. Цена на нормальный начинается с 1000 долларов.
      3. Возможна при желании болезнь "апгрейд".
      4. Производители пытаются придумать каждый год что-то новое, чтобы вы сменили свой велосипед на такой же, но с другим изгибом трубы на раме.
      5. Поломка какой-нибудь мелочи останавливает все, и становится обидно.
      Ну так вот, хотелось бы прочитать в компьютерном журнале о велоиндустрии. Про то, как рассчитываются рамы, сиденья, рули и все остальное, все это испытывается, какие электронные системы внедряются в двухколесных агрегатах на мускульной тяге. За какими материалами будущее. А не только про необычные конструкции велосипедов.
      P.S. По.моему, велосипедов больше, чем автомобилей (только на Китай посмотрите), а про автомобили у вас даже рубрика есть, а велотем не было!
      Сергей Бондарь
       ОТ РЕДАКЦИИ: Сергей, рубрика у нас не про автомобили, а про транспорт вообще (и про велосипеды там, кстати, был целый разворот). Но суть одной из новых рубрик вы почти угадали, хотя она, увы, тоже не совсем про велосипеды.
      Вам написал Дмитрий Шпиль в номере 739. Дмитрий не смог ничего возразить своему папе, а зря. Государство — просто слово без определенного значения. Государство представляют люди, такие, как мы с вами. Со своими интересами, друзьями и знакомыми. Да, конечно, тотальное наблюдение за гражданами — это безопасность самих граждан. Особенно если подключить возможности дата.майнинга. Могут спасти вас или ваших близких в критических ситуациях (нападение на улице, автоавария и т. п.). Прекрасно. Мы повышаем безопасность людей. Система определила, что человек упал на улице, и вызвала скорую, спасла жизнь человеку. Следующий шаг. Камера наблюдения установлена на доме напротив вашего. Она оснащена системами инфракрасного видения, направленным микрофоном, аппаратурой снятия колебаний с оконного стекла, следит за четырьмя десятками окон. Тоже хорошо?
      Вам нравится? Вчера я пришел домой, в квартире — запах горелой картошки. Жена варила картошку, забыла проследить, вода выкипела. Неприятность. А так бы ей позвонили, предупредили… Или вас нет дома, а в квартире короткое замыкание, пожар. Система наблюдения вызвала пожарных.
      Автомобильная сигнализация тоже не нужна. Опера сидят за компьютерами и раскрывают все преступления. Вы — законопослушный гражданин, от вас почти ничего не требуется. Вы просто не должны говорить слова из черного списка. Ни дома, ни по телефону, ни на улице. В перспективе вы даже думать их не должны. Иначе вам позвонят и корректным компьютерным голосом спросят: "А о чем это вы подумали в 16:47 25.06.2015?"
      Прикольно? Freedom, блин. Voila. И чего же будет стоить свобода вашего папы, если он сказать не сможет то, что думает. А то и просто подумать… Или камера зафиксировала, что он вошел в некоторый подъезд, в котором в то же время произошло преступление. Задержание, обыск, сообщение на работу и т. п.
      Ложки потом нашлись, а осадок остался. То есть папа ваш остался без любимой им работы. И, главное, никому сейчас не известно, какая психика сформируется у людей, живущих под постоянным колпаком, думающих только так, как предписано компьютерной программой. Мы же превратимся в пятилетних детей, живущих под присмотром родителей. Шаг влево, шаг вправо считается побегом, прыжок на месте — провокация. А ведь дети сопротивляются и бунтуют. Только их за это в тюрьму не сажают.
      И еще вопрос о копирайте. Если я иду и напеваю песенку — это нарушение интеллектуальной собственности? Ведь эта информация существует в моих нейронах и является частью моего сознания и меня. Или я должен сразу забывать то, что только что прослушал?
      С уважением, Сергей Потапов
       ОТ РЕДАКЦИИ: Сергей, вы совершенно правы. На место лозунгу "свобода или смерть" приходит дихотомия "свобода или безопасность". Что касается нарушений копирайта, то напевание мотива, как правило, считается fair use. Но я бы, на всякий случай, немножко фальшивил. Вы же знаете этих юристов.
      Приз получает Сергей Потапов. Выделенный VPS хостинг для веб сайтов и электронной почты. Диск 2,5 Гбайт, память 256 Мбайт, процессор 500 МГц, ОС: CentOS 5, панель управления Plesk® Приз предоставлен компанией
 
      
 

  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9