Современная электронная библиотека ModernLib.Net

Компьютерра (№255) - Журнал «Компьютерра» №37

ModernLib.Net / Компьютеры / Компьютерра / Журнал «Компьютерра» №37 - Чтение (стр. 4)
Автор: Компьютерра
Жанр: Компьютеры
Серия: Компьютерра

 

 


К примеру, если мы вычисляем выражение вида A•B+C с сохранением результата в переменной X (XfA•B+C), то процессор, выполняя соответствующую выражению цепочку из двух команд типа R4fR1•R2; R0fR3+R4, должен вначале дождаться, пока первая инструкция сохранит результат умножения A•B, и только потом прибавлять к полученному результату число С. Цепочки зависимых инструкций в программах — скорее правило, нежели исключение, а исполнение команды с записью результата в регистры за один такт — наоборот, скорее исключение, нежели правило, поэтому в той или иной степени с проблемой зависимости по данным любая конвейерная архитектура обязательно сталкивается. Оттого-то в конвейере и появляются сложные декодеры, заранее выявляющие эти зависимости, и планировщики, которые запускают инструкции на исполнение, выдерживая паузу между запуском главной инструкции и зависимой от нее.

Ну как вам список проблем? Идея конвейера в процессоре очень красива на словах и в теории, однако реализовать ее даже в простом варианте чрезвычайно трудно. Но выгода от конвейеризации столь велика и несомненна, что приходится с этими трудностями мириться, ведь ничего лучшего до сих пор не придумано.

В 1991—92 годах корпорация Intel, освоив производство сложнейших кристаллов с более чем миллионом транзисторов, выпустила i486 — классический CISC-процессор архитектуры x86, но с пятистадийным конвейером. Чтобы вы смогли оценить этот рывок, приведу две цифры: тактовую частоту по сравнению с i386 введение конвейера позволило увеличить втрое, а производительность на единицу частоты — вдвое[В i386 многие инструкции выполнялись за несколько тактов; а в i486 среднее «время» исполнения инструкции в тактах удалось снизить почти вдвое]. Правда, расплатой за это стала чудовищная сложность ядра i486; но такие «мелочи» по меркам индустрии центральных процессоров — пустяк: быстро растущие технологические возможности кремниевой технологии уже через пару лет позволили освоить производство i486 всем желающим. Но к тому моменту RISC-архитектуры сделали еще один шаг вперед — к суперскалярным процессорам


MIPS-архитектура: «Pentium 4» 80-х годов

MIPS (Microprocessor without Interlocked Pipeline Stages), «процессор без блокировок в конвейере». Основная идея, которой руководствовался Джон Хеннеси, со своей командой проектировавший в 1981 году первый MIPS-процессор, такова. Сильно упростив внутреннее устройство CPU и используя очень длинный (по тем временам) конвейер, можно получить процессор, не умеющий выполнять сравнительно сложные инструкции, зато работающий на очень высоких тактовых частотах, позволяющих скомпенсировать потери производительности на эмуляцию этих сложных инструкций. Изначально предполагалось, что MIPS-процессоры не будут аппаратно поддерживать даже операции умножения и деления — благодаря чему можно было обойтись без сложных в реализации блокировок конвейера[Процедура приостановки конвейера, инициируемая, когда процессору встречается «медленно выполняющаяся» операция, которую невозможно выполнить на какой-то из стадий за один такт. В процессорах тех времен такими операциями являлись умножение и деление; в современных процессорах блокировку может вызвать неудачное обращение в оперативную память, не находящуюся в кэше CPU] (отсюда и название архитектуры). Тем не менее даже в самых первых MIPS’ах блокировки в конвейере, равно как и аппаратные инструкции умножения и деления все-таки присутствовали — «в чистом виде» идея оказалась малопригодной для создания коммерческих процессоров.

В 1984 году Хеннеси с командой покинул Стэндфордский университет и основал компанию MIPS Computer Systems. В 1985 она выпустила первый 32-разрядный MIPS-процессор R2000; в 1988 году — гораздо более быстрый, работающий с виртуальной памятью и поддерживающий многопроцессорность R3000. R3000 стал первым по-настоящему коммерчески успешным MIPS-процессором и использовался в рабочих станциях Silicon Graphics. Кстати, вариант MIPS R3000A хорошо известен в народе как центральный процессор приставки Sony PlayStation

В 1991 году вышел первый 64-разрядный MIPS R4000, легший в основу целого ряда различных процессоров, выпускавшихся по лицензиям другими фирмами. R4000 оказался настолько важен для SGI, что она не колеблясь приобрела испытывавшую тогда финансовые затруднения MIPS Computer Systems и превратила эту компанию в собственное подразделение MIPS Technologies. Тогда же SGI начала продавать лицензии на производство MIPS-процессоров сторонним фирмам, которые взялись разрабатывать свои, улучшенные варианты R4000. Помимо всего прочего, начиная с R4600 и R4700 (разработка Quantum Effects Devices) MIPS-процессоры стали основой для знаменитых маршрутизаторов Cisco, являющихся сегодня неотъемлемой частью большинства крупных сетей, включая Интернет. Использовались 64-разрядные MIPS-процессоры и в приставках: R4300 — в Nintendo 64, R5900 — в PlayStation 2.

В 1994 году вышел R8000 — первый суперскалярный MIPS-процессор; в 1995-м — R10000, улучшенный во всех отношениях вариант R8000, поддерживавший внеочередное исполнение команд в конвейере. Работая на частоте 200 МГц, R10000 был одним из самых быстрых CPU того времени. Пожалуй, на те времена пришелся расцвет архитектуры MIPS — она была столь успешной, что в 1998 году SGI снова сделала из MIPS Technologies отдельную компанию. Правда, «в стиле Тараса Бульбы» («я тебя породил, я тебя и убью»), — SGI сочла дальнейшее развитие MIPS как своей флагманской разработки бесперспективным и решила, когда настанет срок, перевести линейку Silicon Graphics на процессоры архитектуры IA-64 (Intel Itanium).

В итоге дизайн всех последующих MIPS-процессоров основывался на R10000. Изменялись только объем кэш-памяти и постепенно наращивалась тактовая частота. Фактически после прорыва R10000 архитектура MIPS была заброшена[После очередного сообщения о задержке выпуска Itanium, выходила очередная версия MIPS R1xxxx. Причем этих задержек было столько, что MIPS Technologies помаленьку добралась и до R16000A с тактовой частотой 800 МГц], и мало-помалу эти процессоры утратили лидирующее положение в индустрии. В 2001 году топовым CPU от MIPS Technologies был R14000 с тем же старым ядром R10000 и тактовой частотой всего 600 МГц. Конкуренты в лице, к примеру, более совершенных в технологическом плане AMD Athlon уже достигли частот 1,3—1,4 ГГц, были в несколько раз производительнее, а стоили куда меньше. Так что как «тяжелая высокопроизводительная RISC-архитектура» MIPS к началу нового тысячелетия умерла. Но компания MIPS Technologies процветает до сих пор — за счет лицензирования архитектуры сторонним разработчикам.

Еще в 1999 году MIPS Technologies упростила свою лицензионную политику, предложив всем желающим два варианта MIPS-архитектуры: MIPS32 — для 32-разрядных систем и MIPS64 — для 64-разрядных. С тех пор эту технологию лицензировали NEC, Toshiba, Broadcom, Philips, LSI Logic и IDT, выпустившие огромное количество специализированных интегрированных процессоров на ее основе. Сегодня MIPS — самая популярная высокопроизводительная[То есть там, где производительность критична, используется MIPS, а где нет — ARM] архитектура, использующаяся во встраиваемых системах. А это львиная доля сетевых устройств (от роутеров Cisco Systems до небольших мостов домашних и офисных сетей); большая часть процессоров игровых приставок прошлых поколений; процессоры для WiFi и VoIP; кодеры-декодеры MPEG; некоторая часть процессоров терминалов, КПК и сотовых телефонов. Не очень завидная участь для бывшего лидера, но если сравнивать с судьбой SPARC или Alpha — не такая уж и плохая.

Шаг 4. Суперскалярные и Out-of-Order-процессоры

У полноценной конвейеризации, более или менее эффективно обходящей перечисленные выше проблемы, есть одно несомненное достоинство: она настолько сложна, что, единожды реализованная, позволяет легко построить на ее основе целый ряд интересных новшеств. Для начала заметим, что коль уж у нас есть очереди готовых к исполнению инструкций и мы знаем взаимозависимости между ними по данным, есть техника переименования регистров, позволяющая разным инструкциям одновременно задействовать одни и те же регистры для разных целей, и, наконец, есть надежно работающая система сброса конвейера, то мы можем:

Запускать на исполняющие устройства сразу несколько инструкций (если они не зависят друг от друга и могут быть безболезненно выполнены одновременно).

Переупорядочивать независящие друг от друга инструкции так, как сочтем нужным.

Процессоры, использующие первую технику, называются суперскалярными. К примеру, сугубо теоретически, по числу исполнительных устройств, Pentium 4 может выполнять семь инструкций за такт, а Athlon 64 — девять. Реальные цифры, конечно, гораздо скромнее и определяются трудностью полноценной загрузки всех исполнительных устройств, однако Pentium 4 все же способен исполнять в устоявшемся режиме две (при некоторых условиях — четыре), а Athlon 64 — три инструкции за такт, одновременно производя две (A64 — три) операции по адресации и выборке данных из оперативной памяти. Может показаться, что реализация суперскалярного процессора очень проста (достаточно со стадии schedule просто распределять инструкции по разным исполнительным устройствам), однако такой лобовой подход обычно упирается в то, что Front-end процессора перестает успевать загружать исполнительные блоки работой. Поэтому на практике хорошо сделанные суперскалярные архитектуры, подобные AMD K7/K8, приходится специально «затачивать» под суперскалярность.

Процессоры, использующие вторую технику, называются процессорами с внеочередным исполнением инструкций (Out-of-Order processors, OoO). Техника переупорядочивания инструкций замечательна тем, что резко ослабляет негативные эффекты от медленной оперативной памяти и от наличия зависимых цепочек инструкций. Если, например, инструкция A обратилась к оперативной памяти, а нужных данных в кэше не оказалось или если A занимается ожиданием результатов выполнения какой-то другой инструкции, то OoO-процессор сможет пропустить вперед другие инструкции, не зависящие от результатов выполнения инструкции A. Кроме того, продвинутый планировщик OoO-процессора иногда может использоваться для реализации специфических деталей той или иной архитектуры — например, для спекулятивного исполнения по данным в случае Pentium 4 или одновременного исполнения нескольких веток программного кода в IA-64. Реализация OoO-процессоров не требует специальной оптимизации всего конвейера — это всего лишь усложнение схемы планировщиков, запускающих готовые к исполнению инструкции на исполнительные устройства в другом порядке, нежели они на планировщики поступили, плюс усложнение схем сброса конвейера и сохранения полученных результатов: результат выполнения прошедших вне очереди инструкций все равно должен сохраняться в последовательности, строго соответствующей расположению инструкций в изначальном коде[Это связано с тем, что если случится какая-то ошибка, то результаты выполнения запущенных вперед очереди инструкции придется аннулировать].

На сегодняшний день не существует ни одного суперскалярного или OoO CISC-процессора. Дело в том, что поскольку для нормальной реализации навороченных диспетчеров и планировщиков все равно требуется длительная и тщательная подготовка инструкций, причем желательно — до такого простого состояния, чтобы эти функционирующие на огромных частотах модули особенно не «задумывались» над тем, что такая хитрая последовательность байтов означает и куда ее следует направить (проблем у них и без того хватает), то любой исходный машинный код Front-end процессоров превращает перед исполнением в некое внутреннее, упрощенное и «разжеванное», состояние. То есть на этом этапе развития различия между RISC— и CISC-архитектурами почти стираются — просто у RISC’ов декодер, превращающий исходный машинный код в содержимое очередей планировщиков, устроен гораздо проще, чем «расковыривающий» хитро упакованные x86-инструкции CISC-подобный декодер AMD Athlon и Intel Pentium. Так что можно сказать, что фактически все современные x86-процессоры «в глубине души» являются полноценными RISC’ами — ведь исходный x86-код они в любом случае преобразуют на лету во внутреннее RISC-подобное представление. Правда, разной сложностью декодеров дело не ограничивается: все-таки классический RISC-код не только проще преобразовывать, но и результирующий внутренний код из него получается лучше — планировщикам гораздо легче его обрабатывать (в нем меньше зависимостей и операций с оперативной памятью). Вот и появляются в x86 все новые и новые расширенные наборы инструкций (от 3Dnow! до SSE): это всего-навсего «внешняя ширма», упрощающая работу декодерам инструкций и позволяющая им сгенерировать более эффективный внутренний код. Специального блока обработки того же упакованного 128-битного формата SSE нет ни в одном современном процессоре, так что когда в программном коде x86 встречается, скажем, инструкция сложения двух регистров SSE по четыре числа в каждом — декодер банально генерирует код из четырех явно независимых (вот за что боролись!) инструкций сложения, которые планировщику потом будет легко разбросать по исполнительным устройствам. Но какого-либо «специального блока SSE», одновременно выполняющего запрошенные одной инструкцией четыре сложения, ни в Athlon, ни в Pentium 4 нет.

Фактически развитие собственно «архитектуры» x86-процессоров долгое время стояло на месте: что древний Pentium Pro, что новейший Pentium M — все они основаны на одной и той же старой-престарой архитектуре P6. Вылизанной, оптимизированной, но старой — ибо повода для ее смены до сих пор просто не было; «внутреннее представление» x86-кода, несмотря на все внесенные в x86 новации, с тех самых древних времен «чистой IA-32» вплоть до появления технологии AMD64 практически не изменялось.

К сожалению, нет места для рассказа об архитектурах VLIW и Cell — потенциальных претендентов на замену суперскалярных OoO-процессоров, так что о них мы поговорим в следующий раз. А пока рассмотрим самые популярные примеры «классических» подходов — в их видении Intel и AMD.


Блок предсказания переходов

Да-да, именно так называется этот странный блок! Но «гадание на кофейной гуще» здесь ни при чем — переходы предсказываются на основе вполне научных соображений. Обычно используется очень простой способ: в процессоре ведется табличка ранее совершенных переходов — для каждого условного перехода подсчитывается, сколько раз он «сработал», а сколько — «был проигнорирован». Поэтому, скажем, когда процессор встречает переход, замыкающий какой-нибудь цикл, то он быстренько начинает считать: раз переход сработал, два сработал, три сработал — ну, значит, наверное, он всегда будет срабатывать, вот так и будем предсказывать, что переход всегда происходит. То, что мы один раз в конце цикла ошибемся, — не беда, зато ценой максимум двух ошибок мы добьемся точного предсказания во всех остальных случаях. Кстати, на простых циклах процессор, как правило, ошибается еще реже — не более одного раза: по умолчанию, когда не из чего выбирать, считается, что условный переход всегда происходит.

При неправильном предсказании конвейер обычно приходится «сбрасывать», каким-то образом восстанавливая состояние процессора, предшествующее моменту неправильного перехода. А ведь пока исполнялась неправильная ветка, там ого-го сколько всего могло случиться! Неправильный опкод (нераспознаваемая машинная инструкция), обращение к виртуальной памяти (провоцирующее исключение в процессоре), некстати распознанное деление на ноль (тоже ошибка). Все это приходится тщательно отслеживать и проверять, причем это не шутки: одно время из-за ошибки в реализации конвейера процессора AMD K5, программист, написавший конструкцию если x A 0, то y = 1/x, иначе y = 0, запросто мог получить при x @ 0 на, казалось бы, ровном месте ошибку «деление на ноль», вызванную неправильным предсказанием перехода. А в OoO-процессорах ситуация еще сложнее — пока «тормозит» не вовремя отправившаяся за операндами в оперативную память инструкция, процессор успевает пропустить вперед, выполнить и едва ли не сохранить результат вычисления десятков инструкций неправильной ветки: попробуй за всем этим уследить!

Но бороться здесь есть за что: для современных процессоров каждая ошибка предсказания — это десятки вхолостую израсходованных тактов. Сущая катастрофа, если учитывать, что за каждый такт можно было бы исполнить до трех x86-инструкций и совершить кучу вычислений. Если бы блока предсказания не было, то так «тормозил» бы каждый условный переход.

Точность предсказания современных блоков составляет на тестах SPEC порядка 98—99%. Может показаться, что совершенствовать блок не имеет смысла, но это не совсем так. Дело в том, что на производительности гораздо больше сказывается процент ошибок, а не верных предсказаний. А переход от 98-процентной точности к 99-процентной означает двукратное снижение ошибок — с 2% до 1%! Поэтому если вы внимательно почитаете пресс-релизы о новых CPU, то заметите, что «усовершенствованный блок предсказания переходов» упоминается в них почти всегда.

В архитектуре IA-64 техника предсказания переходов сделала значительный шаг вперед — эти процессоры умеют одновременно вычислять несколько веток программного кода. То есть, встретив инструкцию условного перехода, процессор начинает «охотиться за двумя зайцами» — просчитывать оба варианта развития событий вплоть до того момента, пока не станет ясно, какой из них правильный. Поскольку инструкции «разных вариантов» практически не зависят друг от друга, а исполнительные устройства Itanium обычно загружены далеко не полностью, то исполнять побочную ветку нередко удается практически с той же скоростью, что и основную, так что даже при неправильном предсказании условного перехода происходит не остановка процессора на пару десятков тактов, а всего лишь снижение производительности на небольшом участке кода.

Архитектура PowerPC

Последняя из ныне здравствующих процессорных RISC-архитектур — это, конечно же, знаменитая PowerPC, детище альянса Apple, IBM и Motorola (AIM). Сегодня на PowerPC есть четкие спецификации, следуя которым любой желающий может разработать совместимый с ним процессор. Ничего особо интересного в нем нет — это самый что ни на есть классический RISC-процессор без специальных «примочек». Существуют 32— и 64-разрядные версии PowerPC (причем 64-разрядные совместимы с 32-разрядным кодом), а равно и ряд стандартизованных расширений (типа эппловского набора инструкций AltiVec). В то время как MIPS и ARM «специализировались» на тех или иных применениях, PowerPC, подобно x86, позиционировалась в основном для обычных персоналок и серверов. Вплоть до 2001 года x86 и PowerPC развивались более или менее синхронно, однако из-за технологических проблем и неспособности угнаться за процессорами AMD и Intel в «гонке мегагерц» PPC шаг за шагом сдавала позиции. А исчерпав «запас прочности» и застряв на частотах 1,0—1,4 ГГц, она стала стремительно проигрывать архитектуре x86, по-прежнему сохранявшей высокие темпы развития из-за ожесточенной схватки Intel и AMD. Поскольку «отступать» PowerPC было в общем-то некуда (нишу интегрированных процессоров оккупировали ARM и MIPS), то многие посчитали ее верным кандидатом на вымирание. Даже Apple недавно «отреклась» от своей архитектуры, переметнувшись в стан приверженцев x86. Только крайне дорогие серверные процессоры POWER, выпускавшиеся на пределе технологических возможностей Голубого гиганта (Power4, в частности, стали первыми в мире двухъядерниками), еще довольно уверенно чувствуют себя в линейке продуктов IBM.

Однако ситуация, похоже, начала меняться: именно архитектура PowerPC положена в основу будущих многоядерных процессоров всех игровых приставок шестого поколения (от Sony, Microsoft и Nintendo), поскольку ни MIPS, ни тем более ARM на эту роль не годятся; процессоры Intel в их текущем варианте плохо подходят для создания игровых приставок нового поколения; о процессорах AMD и говорить не приходится — компания просто не в состоянии обеспечить достаточный объем их производства. Вот и остается единственным кандидатом на роль нового «суперпроцессора» только всем доступная, технологически более простая, нежели x86, и достаточно производительная архитектура PowerPC. Что еще важнее для PPC, именно она положена в качестве аппаратной основы концепции Cell, которая, возможно, станет следующим шагом в развитии компьютинга. Так что пожелаем РРС удачи — от наличия на рынке множества альтернатив пользователи только выигрывают, и видеть в обозримом будущем абсолютную монополию x86, даже в варианте AMD64, лично мне не хотелось бы.

Устройство процессоров AMD архитектуры K8

Архитектура K8 используется во всех современных серверных, десктопных и мобильных процессорах AMD (Opteron, Sempron, Athlon 64 и Athlon 64 X2). Эффективная длина конвейера[Время в тактах от начала исполнения инструкции до момента, когда результаты выполнения будут записаны в оперативную память] варьируется от 10—12 стадий (для целочисленных, логических вычислений и обращений к оперативной памяти) до 17 стадий (вычисления с плавающей точкой). Количество одновременно исполняемых инструкций за такт в устоявшемся режиме — до трех; тактовые частоты серийно выпускаемых процессоров — от 1,6 до 2,8 ГГц.

Об особенностях организации архитектуры K8, связанных с интегрированным контроллером памяти, линками HyperTransport и неоднородной моделью памяти SUMa мы подробно писали в статье про двухъядерные процессоры; в остальном же — перед нами вполне классический процессор Гарвардской архитектуры. Объем кэшей L1 D-cache (для данных) и L1 I-cache (для кода) — фиксирован и составляет по 64 Кбайт; имеется общий эксклюзивный[Эксклюзивным называется кэш, в котором данные, хранящиеся в кэш-памяти первого уровня, не обязательно должны быть продублированы в кэшах нижележащих уровней. Инклюзивный кэш — когда любая информация, хранящаяся в кэшах высших уровней, дублируется в кэш-памяти нижележащих] кэш второго уровня объемом от 128 до 1024 Кбайт; кэш третьего и более низких уровней не предусмотрен, но в рамках протокола MOESI процессоры в многопроцессорных системах могут обращаться к кэш-памяти других процессоров.

***

Исполнение инструкций на конвейере K8, как и положено, начинается с блока выборки инструкций. За один такт блок выбирает из кэша 16 байт данных и выделяет из них от одной до трех инструкций x86 — сколько в выбранных данных поместилось[Поскольку средняя длина инструкции x86 составляет 5—6 байт, то, как правило, блоку удается выбрать три инструкции за такт]. Чтобы облегчить процесс декодирования, инструкции, хранящиеся в кэшах L1, тегированы — в линейках кэша сохраняется информация о том, как внутри этой линейки распределены инструкции x86. Попутно с помощью блока предсказания переходов в этом же такте определяется адрес блока, с которого начнется выборка в следующем такте. Тегирование производится при выборке данных из кэша L2 в кэш L1 I-cache; при вытеснении данных из L1 в L2 теги сохраняются.

На втором такте работы конвейера свежевыбранные одна-три инструкции x86 распределяются по трем блокам декодирования инструкций. Самые сложные инструкции, требующие декодирования с использованием микрокода процессора, отправляются в декодер VectorPath. Более простые — в декодеры DirectPath: те, что попроще, — в обычный, те, что посложнее, — в сдвоенный DirectPath Double. Начиная с этого момента процессор «забывает» о существовании x86 и переключается на работу с внутренними микроинструкциями (mOP).

Весь дальнейший конвейер строится на том, что работа с mOP’ами происходит тройками инструкций (AMD называет их линиями, line). С логической точки зрения конвейер K8 строится таким образом, что обрабатывает именно линии, а не x86-инструкции или отдельные микрооперации. При этом в одной линии может быть меньше трех микроопераций — тогда «недосдачу» в тройке заполняют специальные пустые операции (null-mOP). При этом со «сложными» vector-инструкциями все элементарно — VectorPath-декодер подставляет на их место прошитые в микрокоде процессора линии; а вот декодирование «простых» инструкций выливается в сложный процесс превращения x86-инструкции в один (DirectPath) или два (DirectPath Double) mOP’а, которые потом перетасовываются и упаковываются в одну линию специальным упаковщиком[В этом упаковщике, который, в частности, научился эффективно управляться с разбивающимися на два mOP’а инструкциями SSE, и скрыто важнейшее усовершенствование конвейера K8 по сравнению с конвейером K7 (процессоры Athlon/Athlon XP). Изменение декодера (и значительное увеличение времени на декодирование), усовершенствование планировщика инструкций — казалось бы, мелочи, но эффект огромный. Кстати, отсюда следует, что конвейер K8 практически не оптимизировался для достижения высоких тактовых частот — неудивительно, что на старом 130-нм технологическом процессе он и не показал существенно более высоких тактовых частот, нежели старичок K7]. На весь процесс в нормальных условиях уходит пять тактов конвейера.

Сгенерированные линии от VectorPath— и DirectPath-декодеров по одной за такт поступают в специальное устройство — Instructions Control Unit (ICU), где подготовленные к исполнению линии накапливаются в специальной очереди (24 линии). О том, что происходит дальше, поясним с помощью аналогии.

Предположим, что наша программа — это книжка, в которой записано, как процессору нужно обрабатывать данные. Что делает процессор? Упоминавшийся блок выборки вырывает из книжки страничку с текстом (будем считать, что странички достаточно маленькие) и выбирает из нее от одной до трех содержательных частей, которые передает декодеру. Декодер читает выделенные фрагменты текста и конвертирует их в четкие инструкции, указывающие, что и в какой последовательности нужно сделать. Инструкции (по одной) он записывает на бумажках (mOP’ах) и упаковывает в конверты — до трех бумажек в один конверт (линию). Конверты поступают в специальную картотеку — ICU, где их вскрывает и прочитывает специальный человек.

Что дальше? Претендентов на декодированные инструкции два — блок целочисленных вычислений (ALU) и блок вычислений с плавающей точкой (FPU). Когда блоки готовы принять очередную инструкцию, они сообщают об этом человеку в картотеке; человек копается в своих конвертах и выбирает из них в произвольном порядке, как ему удобнее, до трех бумажек-инструкций, которые и раздает ALU и FPU. Единственное ограничение, которое при этом накладывается, — человек никогда не передает ALU и FPU те инструкции, выполнение которых зависит от еще не переданных. Блоки ALU/FPU каким-то хитрым образом выполняют полученные инструкции, но результаты отсылают не во «внешний мир», а в нашу картотеку-ICU, где их кладут в тот же самый конверт, в котором лежали инструкции. Даже если происходит ошибка выполнения, процессор не сообщает о ней сразу, а сперва записывает информацию об ошибке на конверте; когда настанет пора вскрыть конверт — вот тогда он про нее и сообщит. Чтобы потом эти данные использовать — применяется довольно хитрая техника (та самая, из сноски 4), позволяющая вновь выполняемым инструкциям обращаться к еще «официально несуществующим» данным. Когда для конверта все инструкции оказываются выполненными, а конверт стоит первым в очереди и больше не содержит инструкций, но лишь результаты их исполнения — то полученные результаты «объявляются официальными», а конверт выбрасывается (отставка линий). Иногда, если при вскрытии очередного конверта выясняется, что ранее была допущена ошибка при предсказании условного перехода или при выполнении содержащейся в конверте инструкции, дело до этого и не доходит — конвейер приходится «сбрасывать», то есть смотреть на последнем конверте адрес того самого неудачного перехода, выкидывать всю накопленную к текущему моменту картотеку со всеми ее результатами и начинать выполнение с того самого места, где произошло неверное предсказание перехода. Благодаря тому, что результаты выброшенных конвертов еще не были «объявлены официальными», а «рвем» мы конверты строго в той же очередности, в которой они к нам в очередь поступали — допущенная ошибка «никому не станет известна» — результаты выполнившихся «вперед батьки» инструкций автоматически будут аннулированы.

Если теперь вернуться к технологическому описанию конвейера, то изложенный выше процесс с конвертами происходит следующим образом. Из очереди в 24 линии по три mOP’а в каждой ICU выбирает в наиболее удобной для исполнения последовательности один-три mOP’а и пересылает их либо на ALU, либо на FPU — в зависимости от типа микрооперации. В случае ALU микрооперации сразу же попадают в очередь планировщика (шесть элементов по три mOP’а), который подготавливает необходимые для исполнения микрооперации ресурсы, дожидается их готовности и только потом отправляет mOP вместе со всеми необходимыми данными на исполнение. Причем при исполнении одного mOP’а на самом деле может происходить исполнение сразу двух действий — несложных арифметических вычислений, которые часто возникают при обращении к оперативной памяти (ими занимается блок Address Generation Unit, AGU), и «сложных», требующих вмешательства «полновесного» ALU, — соответствующая «двойка» микроинструкций (ROP) закладывается в mOP еще на стадии декодирования. Подготовка данных в планировщике занимает (в идеальном случае) один такт, исполнение — от одного (подавляющее большинство инструкций) до трех (при обращении к оперативной памяти) и даже пяти (64-битное умножение) тактов.

С блоком FPU все чуточку сложнее. Для начала вышедшие из ICU mOP’ы проходят две стадии по подготовке их операндов. Затем — накапливаются в планировщике FPU (двенадцать элементов по три mOP’а), который, по аналогии со своим целочисленным собратом, дожидается, пока данные для этих mOP’ов будут готовы, а исполнительные устройства освободятся, и разбрасывает накопленные mOP’ы по трем исполнительным устройствам. Но в отличие от целочисленной части конвейера (где содержатся по три одинаковых блока ALU и AGU), исполнительные устройства FPU «специализированы» — каждое производит только свой специфический набор действий над числами с плавающей запятой. Время выполнения: два такта на переименование и отображение регистров, один такт (в идеале) на планирование и ожидание операндов, четыре такта на собственно исполнение.

Финал же у всех закончившихся микроопераций один — они «возвращаются» в ICU с полученными результатами, и ICU, по мере готовности линий, потихоньку производит их отставку. На все про все в идеальных условиях у нас ушло 10—17 тактов, причем за каждый такт мы исполняли по три mOP’а (это обычно 1,5—3 инструкции x86).


  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10