Современная электронная библиотека ModernLib.Net

Путешествия к Луне

ModernLib.Net / Коллектив авторов / Путешествия к Луне - Чтение (Ознакомительный отрывок) (Весь текст)
Автор: Коллектив авторов
Жанр:

 

 


Путешествия к Луне

Посвящается тем, кто мечтал о Луне, и тем, кто побывал на ней.

Предисловие

Завершившийся 2009 год для исследователей Луны особенный: 400 лет назад телескоп Галилея открыл нам Луну как планету с ее оригинальной и до сих пор еще не разгаданной природой; 50 лет назад начался ракетный штурм Луны, а 40 лет назад человек впервые ступил на ее поверхность. Сегодня автоматы исследуют Луну, а люди готовятся к новым – теперь уже долговременным – экспедициям к нашему вечному спутнику. Луна стала первым из внеземных миров, с которым соприкоснулся человек. Первым и до сих пор единственным: дальше пошли только автоматы. И хотя принято говорить, что будущее человечества – в космосе, в действительности это не очевидно. Космическая среда крайне враждебна для человека. Полеты в дальний космос требуют колоссальных ресурсов и пока еще не дают адекватной отдачи. Экспедиции к Луне должны показать, насколько оправданы полеты человека в космос, насколько безопасны они для самого человека и для экологии Земли, и нет ли смысла ограничиться использованием роботов для изучения и эксплуатации космического пространства.

Но как бы ни была решена эта проблема в будущем, мы с вами, уважаемые читатели, навсегда останемся в истории человечества как первое поколение людей, вышедшее в космическое пространство и достигшее иных небесных тел. Авторы посвящают эту книгу тем, кто сделал возможными и сам осуществил первые шаги человечества в космос.

В. Г. Сурдин. Планета Луна

1.1. Луна – наше второе Солнце

«Джентльмены, каждый из вас, конечно, видел Луну или, по крайней мере, слышал о ней», – такими словами президент Барбикен из романа Жюля Верна начал свою знаменитую речь перед членами «Пушечного клуба» в Балтиморе (штат Мэриленд), доказывая целесообразность посылки снаряда на Луну. Не прошло и ста лет с момента публикации замечательного произведения французского мечтателя «С Земли на Луну» (1865 г.), как к Луне действительно были посланы «снаряды», подтвердившие не только идею, но и многие технические детали, рожденные фантазией писателя. А спустя еще полвека, то есть в наши дни, уже ведутся разговоры не только об исследовании Луны, о сооружении на ней постоянно действующих научных станций, но также и об эксплуатации ее ресурсов и даже – чего бы очень не хотелось! – о разделе лунной территории. И это при том, что наши современники, за исключением настоящих любителей астрономии, знают о Луне не больше, чем люди XIX в. Яркое городское освещение мешает многим из нас замечать на небе Луну, так что едкая реплика Барбикена «…или, по крайней мере, слышал о ней» не потеряла актуальности.

А в самом деле, так ли уж важна для городского жителя Луна? Сегодня мы, наверное, и не заметили бы ее исчезновения с небосклона, но еще недавно… Мудрый Козьма Прутков говорил, что Луна важнее Солнца, ибо Солнце светит днем, когда и без того светло… В этой шутке виден глубокий смысл: когда-то Луну называли «ночным светилом»; для многих людей она действительно была, а для некоторых и сегодня остается важнее Солнца. Например, жители южных степей и пустынь высоко ценят лунные ночи, дающие им возможность путешествовать, не страдая от дневного зноя.

Рис. 1.1. Восход полной Луны – незабываемое зрелище! Фото: Stefan Seip.


Чем внимательнее мы изучаем окружающую природу, тем больше пользы замечаем от присутствия Луны рядом с Землей. Биологи даже предполагают, что вызванные Луной морские приливы способствовали выходу жизни из вод на сушу, а значит, и нашему с вами появлению. Астрономические расчеты показывают, что в далеком прошлом Луна была значительно ближе к Земле, чем сегодня, вызванные ею приливы были намного выше и оказывали более сильное влияние на жизнь прибрежной полосы.

Благотворное влияние Луны заметно и в наши дни: астрономы выяснили, что под действием гравитации Луны постоянно замедляется вращение Земли и тем самым удлиняются сутки. В отдаленном прошлом земные сутки длились всего несколько часов. В будущем же Луна обеспечит нам сутки продолжительностью более нынешнего месяца. Если в ту далекую эпоху кофе еще будет в изобилии, то за такой длинный день мы станем успевать многое, а в течение столь же длинной ночи обязательно найдем время, чтобы полюбоваться Луной. Возможно, появятся даже особые туристические маршруты в то полушарие Земли, над которым постоянно будет видна Луна: ведь ее бег относительно земной поверхности в далеком будущем остановится.

Рис. 1.2. Две ночные красавицы – Венера и Луна. Фото: Jay Ouellet.


Прошу у читателя прощения за шутливый тон. Просто я очень люблю эту загадочную планету, волею судьбы расположенную так близко от нас. Впрочем, если вы держите в руках эту книгу, значит, и вам Луна не безразлична. Трудно угадать, когда и как Луна впервые привлекла ваше внимание. Каждый из нас по-своему «лунатик»; у каждого был свой путь к Луне…

Мои сверстники и я выросли в докомпьютерную эпоху, когда никакой «виртуальной реальности» еще не существовало и даже телевизор был редким устройством, а его черно-белое изображение – скверным. Нечасто нам попадались и детские иллюстрированные книги, поэтому с большинством природных явлений мы впервые знакомились, что называется, вживую. Моя близкая встреча с Луной произошла 40 лет назад, когда я смотрел в самодельный телескоп. Испытанное тогда потрясение было одним из мотивов, которые позже привели к выбору профессии астронома и к неугасающему желанию путешествовать по Луне. С тех пор я часто «путешествовал» по ней, сидя у окуляра уже вполне профессионального телескопа, а в последние годы – еще и у монитора, виртуально участвуя в захватывающе увлекательных экспедициях роботов и астронавтов. При этом каждый раз я думаю о том, какое это везение – наличие у Земли такого замечательного спутника. Ведь ничего подобного нет ни у одной из планет земной группы: Меркурий и Венера вообще лишены спутников, а марсианские Фобос и Деймос – просто карлики, никакого сравнения с нашей Луной! К тому же они весьма опасны: как известно, Фобос постепенно приближается к Марсу и со временем упадет на него.

А теперь давайте поговорим о Луне всерьез. В этой книге мои коллеги и я хотим рассказать о Луне самое главное, мы хотим познакомить вас с ней поближе – ведь это ближайшая к нам планета. Правда, мы называем ее спутником Земли, но это еще спорный вопрос – кто чей спутник. Ни у одной из планет, кроме нашей, нет такого относительно крупного спутника: астрономы нередко называют Землю и Луну «двойной планетой». Даже по абсолютным параметрам – размеру, массе – она не так уж сильно уступает Меркурию и Марсу. Так что, не будь она связана с Землей, Луна вполне могла бы встать в один ряд с другими планетами земной группы.

К Луне проявляют особый интерес люди нескольких профессий. В первую очередь планетологи. Ведь Луна – настоящий музей истории Солнечной системы. Вода, ветер и движение земной коры быстро уничтожают на Земле следы космических происшествий и память о собственной «жизнедеятельности» Земли, а на лунной поверхности такие следы сохраняются миллиарды лет. Мы сможем многое узнать о прошлом Земли, если будем внимательно изучать Луну. Не исключено даже, что мы найдем там древние образцы с Земли – ведь обнаруживаем мы на Земле метеориты с Луны. Есть надежда, что на Луне обнаружится и вещество комет, причем не с поверхности их ядер, а из самой их сердцевины: ведь при ударе о Луну ядро кометы должно разрушаться. Планетологи надеются, что по Луне они «прочитают» историю Солнечной системы.

И у астрофизиков свой интерес к Луне. Им, в общем-то, не очень важно, откуда она взялась; главное – ее можно использовать для научных исследований. Во-первых, Луна – отличная заслонка: это знает каждый, кто любовался солнечной короной во время затмения. Луну в качестве «ширмы» астрофизики особенно часто использовали в период развития радиоастрономии, и до сих пор используют в рентгеновской и гамма-астрономии для сканирования тех объектов, тонкую структуру которых не может разрешить телескоп. Даже в оптической астрономии, для которой характерна высокая четкость изображений, Луна еще служит полезным экраном при измерении размеров звезд и структуры тесных звездных систем: скрываясь за краем лунного диска или появляясь из-за него, звезда последовательно демонстрирует разные части своей поверхности. В ближайшее время астро-физики намерены использовать Луну как детектор космических частиц и гравитационных волн, а также для проверки общей теории относительности Эйнштейна и вообще для обнаружения тонких гравитационных эффектов. Ведь сегодня с помощью лазерного луча расстояние до Луны измеряется с точностью до нескольких миллиметров!

Рис. 1.3. Так в конце XIX в. астрономы представляли себе лунный пейзаж. В целом недалеко от истины, хотя крутизна склонов существенно преувеличена. Поверхность Луны очень древняя, поэтому рельеф там выровнялся. Художник верно передал особенность лунного неба: днем на нем можно увидеть звезды. Правда, на фотографиях, доставленных с Луны, звезд не видно: слишком коротка экспозиция. Зато астронавты «Аполлона-16» изучали их (днем!) в телескоп. Рисунок из книги «Recreations in Astronomy» (1879) Н. D. Warren D. D.


Низкая, но все же вполне ощутимая сила тяжести делает Луну привлекательной для космонавтики: там есть сырье для производства и энергия солнечного света, есть возможность укрыться под поверхностью от космической радиации и перепадов температуры. Работать на поверхности или под поверхностью Луны существенно удобнее, чем в открытом космическом пространстве, не имея точки опоры. Поддерживать физическое состояние человека на Луне значительно легче, чем в невесомости. Старт ракеты с лунной поверхности намного проще и дешевле, чем с Земли или даже с околоземной орбиты. Поэтому на начальном этапе освоения Солнечной системы, которое еще впереди, роль Луны будет очень важна.

Как видим, Луна полезна, интересна и загадочна. Но мы до сих пор мало знаем о ней, хотя и начали изучать ее раньше, чем, например, океанское дно.

Рис. 1.4. Кто бы из нас не хотел побродить по террасам этих удивительных кратеров, тем более, что рюкзак будет в 6 раз легче, чем на Земле? На обратной стороне Луны, где расположены эти кратеры (10° ю. ш., 162° в. д.), не ступала пока нога человека и даже не прилунялся ни один автомат. Фото: «Аполлон-10».


Детальные карты видимого полушария Луны были составлены в начале XIX в., а столь же детальные карты дна океанов Земли – только к концу XX в. Однако возможности наземной астрономии по изучению Луны довольно быстро оказались исчерпаны. Наступила эпоха ее прямого изучения с помощью роботов и астронавтов. Это дорогостоящие экспедиции, но результаты себя оправдывают. Важно, что ученые уже поняли: Луна – такой же доступный и интересный объект, как глубоководные разломы или купол Антарктиды. Туда можно планировать экспедиции и находить для них средства.

Не правда ли, странно, что лунные экспедиции стали реальностью практически тогда же, когда исчезли белые пятна на карте Земли? Но если задуматься, и то и другое – в прямом смысле слова дело техники. Сравнительно недавно мы поняли, что по-настоящему недоступных уголков на Земле больше нет. Прошли те жюль-верновские времена, когда кругосветное путешествие за 80 дней казалось почти фантастикой. Сегодня в любую часть Земли простой смертный может попасть всего за несколько дней. Но ведь за несколько дней можно добраться и до Луны! Еще 40 лет назад на экспедицию к Луне – туда и обратно – астронавты тратили всего неделю. Рекордно короткую командировку к Луне осуществил экипаж «Аполлона-13» в 1970 г.: туда и обратно за 5 суток и 23 часа. Правда, астронавты не прочь были бы задержаться там подольше, но так уж вышло…

Разумеется, большинству из нас не доведется побывать на Луне, равно как и в Антарктиде, и на вершинах Гималаев и даже в Новой Зеландии, но все же мы стремимся составить представление об этих экзотических уголках Земли. А вот о соседней планете – о Луне – знаем до обидного мало.

1.2. Знакомство с Луной

Итак, Луна. Кажется, только астрономы, изучающие далекие галактики и слабосветящиеся туманности, не любят ее, особенно в полнолуние: лунный свет делает невидимыми эти объекты. Все остальные жители Земли любят Луну и воспевают ее: вспомните хотя бы картину Куинджи «Лунная ночь на Днепре» или его же «Дарьяльское ущелье. Лунная ночь». Но даже не склонные к романтике естествоиспытатели небезразличны к Луне, которая, как оказалось, в целом весьма благотворно влияет на нашу планету.

Нужно признать, что в современном человеке мало осталось того благоговейного чувства, с которым наши предки относились к Луне. Для них она служила мерой многих вещей. Не случайно на санскрите Луна называется «мас», то есть измеритель, не случайно латинское mensis — месяц – тесно связано со словом mensura – мера. Все древние календари работали от «лунного механизма». Наши месяцы и недели – прямые потомки лунного (синодического) месяца и лунных фаз – так называемых четвертей. Возраст Луны в отдельных фазах от момента новолуния следующий:

первая четверть…….7 суток

полнолуние……….15 суток

последняя четверть……22 суток

Смена лунных фаз вызвана изменением взаимного расположения Луны и Земли при их движении относительно Солнца. Угловое расстояние между направлениями Луна – Земля и Луна – Солнце принято называть фазовым углом. Это один из важнейших параметров в фотометрических исследованиях Луны (см. главу 2). Полный цикл смены лунных фаз называют синодическим месяцем; его продолжительность (29,53 сут.) немного больше периода обращения Луны вокруг Земли (сидерический месяц, 27,32 сут.), поскольку сама система Земля-Луна обращается вокруг Солнца. Период вращения Луны вокруг оси равен периоду ее обращения вокруг Земли, поэтому Луна всегда повернута к Земле одной стороной.

Рис. 1.5. Фотографии Луны в различных фазах: 1 – молодая Луна (лунный серп, полумесяц), своей выпуклой стороной он всегда обращен в сторону Солнца; 2 – первая четверть; 3 – растущая Луна; 4 – полнолуние; 5 – убывающая Луна; 6 – последняя четверть.


Спустя несколько дней после новолуния вечером на западе виден яркий лунный серп. В это время, приглядевшись, можно заметить слабое свечение темной части лунного диска, так называемый пепельный свет Луны: это солнечный свет, отраженный дневным полушарием Земли, слабо освещает темную сторону Луны. Впрочем, этот свет не очень-то слаб: полная Земля освещает Луну примерно в 60 раз сильнее, чем полная Луна освещает ночную Землю. Фактически на видимой стороне Луны не бывает темных ночей. Даже в отсутствие Солнца там можно гулять, читать и работать при свете Земли. Этим видимая сторона выгодно отличается от обратной. Хотя для астрономов по этой же причине привлекательна именно обратная сторона Луны.

Вокруг своей оси Луна вращается с постоянной скоростью, а вот вокруг Земли она обращается по эллиптической орбите неравномерно: в перигее – быстрее, в апогее – медленнее. К тому же экваториальная плоскость Луны наклонена к плоскости ее орбиты в среднем на 6° 41?. А кроме этого, сам наблюдатель движется в результате вращения Земли. Все это приводит, с точки зрения земного наблюдателя, к небольшим видимым покачиваниям Луны по долготе и широте, так называемым либрациям. В результате либраций земной наблюдатель в течение месяца может увидеть почти 60 % площади лунного шара. Но оставшиеся 40 % с Земли не видны никогда.

Рис. 1.6. Последовательные положения Земли и Луны на своих орбитах и соответствующие им фазы Луны с точки зрения земного наблюдателя.


В течение года высота Луны над горизонтом в наших средних широтах заметно меняется: зимой она поднимается значительно выше, чем летом. Вызвано это тем, что Луна перемещается вблизи эклиптики, наклоненной к небесному экватору на 23,5°. Поэтому в фазе полнолуния, когда положения на небе Луны и Солнца противоположны, Луна видна на 23,5° выше экватора зимой и ниже его – летом. К этому добавляется еще небольшой наклон лунной орбиты к эклиптике, примерно на 5°, так что полный размах в высоте Луны над горизонтом достигает у нас ±29°. Отчасти именно этим объясняется известная погодная примета «Луна на небе – к морозу». Летом полная Луна видна недолго, поздно восходит и рано заходит за горизонт, да и поднимается невысоко. Поэтому летом мы ее почти не видим. Зато зимой Луна видна всю ночь и стоит высоко в небе. Прибавьте к этому тот факт, что в ясную ночь, когда Луна видна, земля и воздух быстро остывают из-за потерь тепла в виде инфракрасного излучения. Вот вам и научное объяснение народной приметы.

Еще несколько цифр, характеризующих Луну. Размер Луны почти вчетверо меньше земного. Площадь поверхности лунного шара составляет всего 7,4 % поверхности Земли, то есть незначительно превышает площадь Африканского материка. Сила тяжести на Луне в 6 раз меньше, чем на Земле; это сильно облегчает разведку ее поверхности автоматическими и пилотируемыми экспедициями. Вторая космическая скорость на поверхности Луны 2,4 км/с; именно с такой скоростью падает на нее исследовательский зонд при неуправляемом спуске. Скорость спутника на низкой круговой окололунной орбите 1,7 км/с; именно такую скорость должен набрать взлетающий с Луны аппарат, чтобы выйти на промежуточную орбиту, а чтобы с нее отправиться к Земле, ему придется еще добавить 0,7 км/с. Взлет с Луны облегчается отсутствием у нее атмосферы, но посадка на Луну по этой же причине затруднена: невозможно использовать парашют.

Стоя на ровной поверхности Земли, например на берегу океана, мы видим горизонт примерно на расстоянии 5 км. На Луне же до линии горизонта всего 2,6 км, хотя найти там ровное место труднее, чем на Земле. Близость горизонта затрудняет радиосвязь на больших расстояниях, ведь на отражение радиоволн от ионосферы рассчитывать не приходится. Вообще отсутствие атмосферы осложняет работу на лунной поверхности: требуется защита от солнечного ультрафиолета, космических лучей и микрометеоритов. Не приходится рассчитывать на воздух как на охлаждающий агент, не говоря уже о дыхании. К тому же почти отсутствует рассеянный свет, отчего пейзаж выглядит очень контрастным. В верхнем слое грунта велики суточные перепады температуры: от +(100…120) °С днем до – (150…170) °С ночью. Но лунный реголит – очень хороший теплоизолятор. На глубине более 1 метра ниже поверхности суточные колебания температуры почти не ощущаются: там постоянно -40 °C в средних широтах и -25 °C в районе экватора. Но на полюсах значительно холоднее. Сезонных колебаний «погоды» на Луне нет, поскольку ее экватор лежит практически в плоскости эклиптики, то есть максимальная высота Солнца над горизонтом в течение года не меняется.

Таковы суровые условия на лунной поверхности. Тем не менее приятно то, что эта поверхность оказалась достаточно твердой для работы на ней автоматов и человека; ведь накануне космической эры поверхность Луны представлялась некоторым исследователям как толстый слой пыли, способный поглотить любого, рискнувшего опуститься на него.

1.3. Луна как объект астробиологии

Астрономы полагают, что невидимое полушарие Луны по своему устройству совершенно сходно с видимым… Но что если атмосфера существует именно на той стороне? Что если воздух и вода породили жизнь на этих материках? Что если там еще существует растительность? Что если благодаря всем этим условиям там живет и человек? Сколько интересных вопросов можно было бы разрешить, если бы хоть одним глазком взглянуть на невидимое полушарие! Сколько загадок было бы разгадано на основании подобных наблюдений! И какое было бы наслаждение хоть мельком полюбоваться миром, доселе скрытым от человеческих взоров!

Жюль Верн. Вокруг Луны

Из всех небесных светил только Луна в течение тысячелетий демонстрировала людям свой явный планетный облик; все остальные планеты выглядели как звезды. Появление телескопа и обнаружение с его помощью гор и долин на Луне только укрепило мнение о ней как о месте, подобном Земле. Издревле люди «населяли» Луну душами умерших, а в XV–XVIII вв. появилось немало книг с фантазиями о путешествиях с Земли на Луну и о возможных обитателях Луны – селенитах (от греч. selene, луна).

Улучшение качества телескопов и внимательное изучение с их помощью лунной поверхности, с одной стороны, указало на отсутствие у Луны плотной атмосферы и открытых водных поверхностей, а с другой – выявило множество интересных мелких деталей лунной топографии, например извилистых узких долин, напоминающих речные русла. Чем более мелкие детали становились доступными телескопу, чем большее число наблюдателей напрягало свое зрение в поисках интересных образований на Луне, тем больше было… ошибок и заблуждений. Например, немецкий врач и астроном Франц Паула фон Груйтуйзен (1774–1852) заявил, что 12 июля 1822 г. в центре видимого полушария Луны, под кратером Шрётер, он наблюдал систему прямолинейных стен, расположение и сложность которых внушила ему мысль, что это творение разумных существ. Опубликованное на страницах ежедневных газет, это сообщение разрослось в фантастические рассказы о военных укреплениях, о городе, обнесенном стеной, и все, имевшие зрительные трубы, пытались отыскивать предполагаемые крепости. И действительно их «находили». Первым подтвердил сообщение Груйтуйзена князь Меттерних в Вене, вторым – профессор Боненбергер, а третьим стал известный астроном-любитель Генрих Швабе, по профессии фармацевт, известный тем, что несколько десятилетий регулярно наблюдал Солнце и открыл периодичность количества солнечных пятен. Как видим, даже столь опытные наблюдатели оказались жертвой самообмана. Как пишут Клепешта и Лукеш (1959), «здесь мы имеем доказательство того, как люди могут быть введены в заблуждение и как, основываясь на одном наблюдении, делают совсем не обоснованные выводы».

В 1826 г. Груйтуйзен стал профессором астрономии Мюнхенского университета, а в 1836 г. вышла в свет его книга под названием «Естественная история звездного неба». В ней он рассказывал невероятные вещи – например, что видел на Луне не только укрепления и дороги, но даже звериные тропы, что замечал большие караваны обитателей обратной стороны, движущиеся на место, откуда можно было наблюдать великую луну, то есть нашу Землю. Кстати, обратная сторона Луны, недоступная земному наблюдателю, позволяла некоторым фантазерам «строить замки на песке». В то время как видимая сторона очевидно была безводной и безвоздушной, обратную сторону некоторые считали гораздо более похожей на Землю. Предполагалось, что она напоминает собой болотистые джунгли. Понятно, что жизнь в таких условиях могла процветать.

Если Груйтуйзен верил в существование жизни на Луне, то он был более чем убежден в существовании жизни на Венере. «В те времена уже хорошо было известно, что Венера по своим размерам и массе почти ничем не отличается от Земли. Астрономы знали, что Венера, вращающаяся вокруг Солнца по меньшей орбите, чем земная, должна быть теплее Земли.

Климат и растительность на этой планете должны быть похожи на климат и растительность наших тропиков. Пепельный свет на не освещенной Солнцем Венере Груйтуйзен объяснял как результат «иллюминации во время всеобщего фестиваля в честь восхождения нового императора на трон планеты». Подумать же о явлениях, подобных нашим северному и южному полярным сияниям, было для Груйтуйзена чем-то уж слишком простым» (Лей, 1961, с. 29).

Рис. 1.7. Франц Паула фон Груйгуйзен


Быть может, профессор Груйтуйзен таким оригинальным образом пытался привлечь внимание студентов к астрономии? Современники считали Груйтуйзена «упорным, но некритическим наблюдателем». Вероятно, он был последним из профессиональных ученых, подозревавших разумную жизнь на Луне. А вот о Венере еще не менее 100 лет у астрономов сохранялись совершенно неверные представления.

Отметим, что интерес к Луне в первой половине XIX в. был всеобщим. В поисках сенсаций этим не преминули воспользоваться газетчики. В 1835 г. Ричард А. Локк начал публиковать в «New York Sun» сообщения, якобы полученные им от Джона Гершеля, который в это время в Южной Африке изучал небо при помощи большого рефлектора своего славного отца. Локк весьма детально описывал, каких чудовищ с крыльями летучих мышей видел Гершель на Луне. Нужно признать: мистификация удалась, тираж газеты возрос невероятно. Вообще, в те годы подобные проделки журналистов были в порядке вещей. Многие люди верили этим причудливым рассказам, как теперь часто верят в рассказы об НЛО. Впрочем, газетные фантазии об обитателях Луны и Марса спустя некоторое время переросли в соответствующий литературный жанр, и читатели с удовольствием стали следить за фантастическими приключениями героев Герберта Уэллса («Первые люди на Луне»), Алексея Толстого («Аэлита»).

Рис. 1.8. Летучие селениты по К. Фламмариону.


В то же время ученые откликнулись на мистификации более внимательным изучением Луны. Наблюдая в 1834 г. заход звезд за лимб Луны, Фридрих Бессель не обнаружил у нее даже следов атмосферы. В 1838 г. астроном обсерватории Берлинского университета Иоганн Мёдлер привел доказательства того, что все «искусственные сооружения» Груйтуйзена есть не что иное, как сочетание скальных стен и впадин, которые при определенной фазе либрации Луны и положении терминатора – границы между светлой и темной сторонами диска – представляются в виде крепостных валов и стен (см. рис. 5.11 и 5.12). К концу XIX столетия, казалось, были отброшены последние надежды встретить на Луне жизнь, но в середине XX в. они появились вновь.

В Солнечной системе Луна, как и Земля, занимает наиболее благоприятное для жизни место. Чуть ближе к Солнцу слишком жарко (пример – Венера), а чуть дальше от Солнца слишком холодно (Марс). И только на орбите Земли – Луны средняя температура поверхности планеты немного выше О °С – идеальная температура для жизни. На Земле жизнь есть. Почему бы ей не быть и на Луне?

Ответ кажется очевидным: для жизни важна не только подходящая средняя температура, но и отсутствие сильных колебаний температуры, а на лишенной атмосферы Луне эти колебания значительно сильнее, чем на Земле. Строго говоря, у Луны все же есть атмосфера: по исследованиям американских астронавтов, концентрация газа в окололунном пространстве в тысячи раз превышает его концентрацию в межпланетном пространстве. В кубическом сантиметре окололунного пространства количество газовых частиц в ночное время превышает 105, а в дневное снижается до 104. Основные компоненты газовой оболочки Луны – водород, гелий, неон и аргон. Напомним, что у поверхности Земли концентрация молекул воздуха равна 2,7х1019 см-3. Иными словами, в литровой банке земного воздуха содержится столько же молекул, сколько в кубическом километре окололунного пространства! Естественно, крайне разреженная атмосфера Луны не способна сгладить разницу дневной и ночной температуры поверхности, и она меняется с амплитудой в 300 °C! Второе неблагоприятное свойство лунной поверхности – отсутствие жидкой или газовой среды: в вакууме живая клетка быстро высыхает, и активные биологические процессы в ней прекращаются.

К началу XX в. были составлены подробнейшие карты лунной поверхности, было уже совершенно ясно, что поверхность Луны безводна и безвоздушна. Но о природе этой поверхности, не говоря уже о ее происхождении, бытовали самые противоречивые суждения. Вот пример всего лишь столетней давности.

Новая гипотеза лунных кратеров

До сих пор происхождение лунных кратеров объясняли различными, главным образом вулканическими, причинами. Немецкий астроном проф. Фойгт дает им новое объяснение, во всяком случае, не лишенное остроумия. Он спрашивает: какой вид имело бы наше морское дно, если бы удалить воду? И он думает, что во многих местах, например у тропиков, оно представляло бы большое сходство с рельефом Луны. Так как «кратеры» морского дна – не более как коралловые постройки, то он думает, что то же происхождение имеют и лунные кратеры. Эта гипотеза построена на том предположении, что и часть Луны раньше была покрыта водой. Против этого, как думают специалисты, никаких теоретических возражений выставить нельзя, и гипотеза Фойгта смело может фигурировать наряду с другими.

«Вестник знания», 1904 г. (Цит. по: Наука и жизнь, 2004, № 3, с. 54)

Кому-то покажется, что эта гипотеза граничит с шуткой. Однако к середине XX в. биологи убедились в высокой приспособляемости жизни, которую удалось обнаружить и в жерлах вулканов, и в глубоководных впадинах, и в стратосфере, и в горячих серных источниках, и в антарктических льдах. Оказалось, что простейшие формы жизни не нуждаются в водной среде. Поэтому вопрос о жизни на Луне вновь стал актуальным, особенно в 1960-е гг., в период подготовки лунных экспедиций. Радиоастрономические измерения показали, что не прикрытая атмосферой поверхность Луны днем нагревается Солнцем до +130 °C, а ночью остывает до -170 °C. Однако под верхним слоем лунного грунта, уже на глубине 1 м, почти не ощущаются колебания температуры: там постоянно около -40 °C. Поскольку нельзя было исключить, что в таких условиях жизнь возможна, то в первых лунных экспедициях соблюдались строгие условия карантина, чтобы не допустить заражения Земли возможными лунными микробами. Например, сразу после возвращения на Землю корабля «Аполлон-11» астронавтов прямо в океане (куда приводнился их посадочный аппарат) одели в биоизоляционные костюмы, перевезли вертолетом на авианосец и поместили в изолированную камеру, в которой и доставили их на берег, где держали еще три недели, чтобы убедиться в отсутствии внеземных форм жизни. Доставленные экспедицией образцы лунного грунта также прошли биологический контроль, доказавший их безжизненность, и лишь после этого попали в руки геологов.

В дальнейшем сотни килограммов лунного грунта были подробно исследованы в лаборатории, но никаких следов органической жизни в них не обнаружилось. Теперь ясно, что еще одна недооцененная ранее функция земной атмосферы – это защита живых организмов от влияния космической радиации. На открытую лунную поверхность беспрепятственно попадают губительные для жизни ультрафиолетовые и рентгеновские солнечные лучи, а также заряженные космические частицы, которые на Земле в основном задерживаются в атмосфере. Поэтому сейчас ученые уверены: на поверхности Луны условий для жизни нет; органическая жизнь не могла там зародиться, и там нет условий для ее поддержания.

1.4. Эпоха первых лунных экспедиций

…Мещанина Никифора Никитина за крамольные речи о полете на Луну сослать в киргизское поселение Байконур…

«Московские губернские новости», 1848 г.

О полетах на Луну человечество (в лице немногих его представителей) мечтало давно, но вплоть до XIX в. эти мечты не были подкреплены техническим расчетом. Успехи артиллерии и астрономии позволили Жюлю Верну создать поразительно правдоподобные романы «С Земли на Луну» и «Вокруг Луны». С этого момента полет к Луне стал лишь проблемой времени. Вопрос о том, нужно ли лететь на Луну и зачем это нужно, вообще не обсуждался – разумеется, нужно! К середине XX в. стало очевидно, что лететь нужно на ракете. Накануне космической эры полет к Луне обсуждался, но пока еще в довольно отвлеченной форме. Например, английские специалисты в книге «Исследование мирового пространства» (Бэйтс, 1959), изданной в Лондоне в 1957 г., за несколько месяцев до запуска первого спутника, в основном обсуждают трудности полета к Луне и относят возможность самого полета «на ближайшие десятилетия». Но сразу после запуска первых спутников возможность полета к Луне уже рассматривалась как реальная перспектива, хотя задачи полета были не совсем ясны. Известный американский знаток ракетного дела и космических исследований Вилли Лей в 1958 г. писал: «Для астрономов идея создания обсерватории на Луне должна быть исключительно привлекательной, так как она позволяет избежать той никогда не прекращающейся борьбы, которую астрономы ведут на Земле с плотной и капризной атмосферой». А что кроме астрономии? Лей осторожен: «Может случиться так, что Луна представит для исследователей столь незначительный интерес, что первый же полет на нее будет последним, по крайней мере до тех пор, пока не будут созданы условия для создания „лунной обсерватории“ и „лунной космической базы“» (Лей, 1961).

Но вот первый человек в космосе, и настроение сразу же меняется: «Каким способом человек высадится на Луну и кто первый добьется успеха – СССР или США, станет, вероятно, известно к концу этого десятилетия» (Гэтленд, 1964). Стремительно сжимается масштаб времени – всем специалистам уже ясно, что не десятилетия, а годы отделяют человечество от первого межпланетного полета.

Достижения Советского Союза в первые годы космической эры были ошеломляющими:

В аналогичных достижениях американцы отставали от нас, бывало, на годы, порой – на месяцы, а иногда – всего лишь на несколько дней. Но спорт есть спорт: кто считает сотые доли секунды, если чемпионом может быть только первый! До 1965 г. достижения американцев были значительно скромнее советских:

Как видим, в прикладных (связь, метеорология) и научных космических исследованиях американцы быстро нас догнали, однако рекорды в пилотируемых полетах долго оставались за СССР. Но затем ситуация изменилась: 21–27 декабря 1967 г. американский экипаж на борту «Аполлона-8» совершил первую экспедицию к Луне, и с этого момента NASA завоевало первенство в глазах мировой общественности, а Советский Союз стал вторым.

В начале 1960-х гг. советская космонавтика была фаворитом, по крайней мере в общественном мнении. В те годы президент США Джон Кеннеди неоднократно предлагал главе СССР Н. С. Хрущеву совместную программу покорения Луны. Хрущев отверг эти предложения. В результате мы проиграли лунную гонку, затратив на нее колоссальные ресурсы и не получив ни научных, ни политических дивидендов. Сегодня ситуация обратная: фавориты в космосе – американцы. По части исследования Луны и планет Россия сейчас не входит даже в лидирующую пятерку. Теперь уже мы предлагаем американцам сотрудничество в организации полетов к Луне, но они отказываются. Жизнь покажет, намного ли это дальновиднее со стороны американцев, чем тогдашний отказ Хрущева. Разразившийся в конце 2008 г. всемирный экономический кризис оказал серьезное влияние на космические программы всех стран. Совместные усилия в этой области были бы, очевидно, ко всеобщей пользе.

Тут самое время вспомнить эпизод «случайного сотрудничества» между СССР и США на первом этапе исследования Луны. Долгие годы его держали в секрете, и лишь спустя 40 лет о нем рассказал участник первых лунных программ Виктор Арсеньевич Ефимов, сотрудник НИИ телевидения, готовивший фототелевизионную камеру «Енисей» для АМС «Луна-3», которая передала на Землю в 1959 г. первые изображения обратной стороны Луны, как говорили тогда – ее второго лица (раздел 5.7). На этой АМС съемка Луны проводилась пленочным фотоаппаратом, затем пленка проявлялась (протягивалась через губки, пропитанные соответствующим химическим раствором); кадры сканировались телекамерой и по радиоканалу передавались на Землю. Скорость передачи была очень низка: вдали от Земли один кадр передавался 30 минут, именно поэтому нельзя было использовать прямую телесъемку Луны, и требовался промежуточный накопитель информации в виде фотопленки.

Так в чем же состояло «сотрудничество» между СССР и США в период их напряженной конкуренции в исследовании Луны? Вот как описывает это В. А. Ефимов.

«История примененной в камере „Енисей“ фотопленки типа АШ шириной 35 мм достаточно забавна. По свидетельству заместителя главного конструктора темы „Енисей“ П. Ф. Брацлавца и ведущего инженера по бортовой камере Ю. П. Лагутина, наша промышленность к тому времени еще не освоила производство фотопленки, удовлетворявшей всем требованиям заказа „Енисей“. Но выручил „господин случай“.

Во второй половине 1950-х гг. США – наш бывший союзник по антигитлеровской коалиции – стали использовать в разведывательных целях воздушные шары. Возможность их применения для разведки основывалась на особенностях воздушных течений над нашей страной – постоянных перемещениях воздушных масс с запада на восток. Шары, снабженные специальной фотоаппаратурой, запускались с военных баз США в странах Западной Европы и, несомые воздушными течениями, появлялись над СССР, фотографируя территорию нашей страны по пути движения. Таких шаров запускалось много. Они создавали угрозу полетам самолетов. Сбито этих злополучных „шариков“ было тоже немало.

Некоторое количество фотопленки с этих шаров-шпионов оказалось в академии им. А. Ф. Можайского, с которой сотрудничал ВНИИ телевидения. После исследования упомянутой фотопленки оказалось, что она по своим параметрам пригодна для использования в бортовой аппаратуре „Енисей“. Тогда было принято втайне от высокого начальства решение разрезать ее на требуемый размер, отперфорировать и применить для фотографирования невидимой стороны Луны. Отсюда становится понятным несколько озорное обозначение типа фотопленки „AШ – „американские шарики“» (Ефимов, 2000).

Рис. 1.9. Так все начиналось: запуск первой ракеты на мысе Канаверал (шт. Флорида). Эту ракету «Фау-2» немецкие инженеры создали под руководством Вернера фон Брауна еще в 1940-х гг. в гитлеровской Германии. Позже она стала американским трофеем, вместе с инженерами. В качестве второй ступени на ней установлена американская жидкостная ракета «ВАК-Кап-рал», которая, отделившись на высоте 32 км, достигла высоты 400 км, неся в головной части датчики температуры и космических лучей. Через два десятилетия отсюда же к Луне летали все пилотируемые экспедиции «Аполлон».


Над этим эпизодом можно посмеяться, а можно и задуматься: неожиданно быстро обратную сторону Луны удалось сфотографировать, результат был получен, и он был бы еще лучше, если бы сотрудничество было не тайным, а открытым. Но в ту эпоху об этом не могло быть речи: мы опережали американцев и желали закреплять свой приоритет. В 1958–1960 гг. предпринимались попытки попасть аппаратом в Луну; с нашими весьма увесистыми АМС «Луна» соревновались маленькие американские «Пионеры» (табл. 3 Приложений). В 1959 г. «Луна-2» достигла цели, а все американские запуски оказались неудачными.

Чтобы попасть в Луну, потребовалось решить множество технических задач. На трассе перелета необходимо было проводить коррекции траектории, а для этого нужно было знать положение аппарата и его ориентацию в пространстве. Удалившийся от Земли аппарат переставал быть заметным для оптического телескопа и радиолокатора. Определять его положение в пространстве помогла идея московского астрофизика И. С. Шкловского (ГАИШ МГУ), предложившего по пути к Луне превращать зонд в «искусственную комету». Для этого на борту последней ступени ракеты-носителя, вместе с которой двигался зонд, имелось устройство, испаряющее 1 кг натрия в течение 5–7 с. Под действием солнечного ультрафиолета расширяющееся натриевое облако ярко излучало в желтой резонансной линии, позволяя измерять положение зонда с помощью наземных телескопов. Впервые эту идею реализовали при запуске «Луны-1»: на расстоянии 113 ООО км от Земли яркость искусственной кометы составила 6m. При полете «Луны-2» искусственная комета была образована на расстоянии около 150 000 км; с Земли ее видели как объект 4–5m в течение 5–6 минут.

Рис. 1.10. «Луна-2» (СССР, 1959) – первый искусственный объект, достигший поверхности Луны. Масса зонда составляла 390 кг.


Решение следующей задачи чуть было не закончилось ядерными взрывами на Луне. Поскольку наши первые аппараты жестко врезались в лунную поверхность и мгновенно разрушались, требовалось доказать, что они действительно достигали поверхности Луны, а не просто переставали функционировать. В 1957 г. академик Я. Б. Зельдович предложил осуществить на поверхности Луны взрыв атомной бомбы, доставленной туда ракетой. Ожидалось, что атомный взрыв будет сопровождаться такой световой вспышкой, что ее легко зафиксируют все обсерватории, которые будут иметь возможность в этот момент наблюдать Луну. Это и станет доказательством попадания ракеты в Луну. Несмотря на настороженное отношение к этому проекту со стороны С. П. Королева и М. В. Келдыша, в ОКБ-1 был изготовлен макет лунного контейнера с макетным атомным зарядом. Конструктивно макет напоминал морскую мину, так как для того, чтобы гарантировать взрыв при любой ориентации контейнера в момент удара о поверхность, он весь был утыкан свинцовыми штырями с гальваническими элементами взрывателей.

Рис. 1.11. Так выглядели «Пионер-3» и «Пионер-4». Первый не вышел на орбиту, а второй пролетел далеко от Луны и стал спутником Солнца. Американцы шутили: «Пионер-4» – это первый американский позолоченный астероид весом 6 кг. Фиберглассовая поверхность аппарата позолочена для лучшей электропроводимости и расчерчена черными полосами для поглощения солнечного света и излучения избытка тепла.


Однако перед окончательным утверждением проекта Я. Б. Зельдович провел дополнительные расчеты длительности и яркости вспышки от ядерного взрыва на лунной поверхности. Получалось, что из-за отсутствия атмосферы она окажется настолько кратковременной, что нет никакой гарантии ее регистрации наземными телескопами. От опасной идеи отказались.

В американской лунной программе успех выпал на долю аппаратов серии «Рейнджер». Правда, поначалу их пытались сделать слишком сложными. Все эти аппараты предназначались для жесткого попадания в поверхность Луны и были снабжены телекамерами, транслирующими на Землю изображения поверхности вплоть до момента удара.

Рис. 1.12. Подготовка «Пионера-3», запущенного 6.XII.1958 в сторону Луны четырехступенчатой ракетой «Джуно II» (на основе баллистической ракеты «Юпитер») с мыса Канаверал во Флориде.

Рис. 1.13. Зонды «Рейнджер-3…5» должны были не только передавать изображения лунной поверхности, но и доставить на нее сейсмометры, заключенные для амортизации удара в шарообразный деревянный контейнер.


Но редко отмечается тот факт, что «Рейнджер-3-5» имели также отделяемую капсулу для доставки на поверхность сейсмометра. Эта капсула имела собственный тормозной двигатель, а сейсмометр для амортизации удара был заключен в толстостенный шар из бальзового дерева (!). При ударе капсулы о поверхность Луны со скоростью 150 м/с аппаратура испытывала ускорение 3000 g, но не должна была пострадать. Предполагалось, что сейсмометр будет передавать на Землю данные в течение 30 суток. Любопытная деталь: чтобы не занести на Луну земные формы жизни, капсулу перед стартом стерилизовали. К сожалению, ни один их этих аппаратов не попал на Луну и даже не передал изображений ее поверхности. Следующие «Рейнджеры» несли только телевизионную аппаратуру и работали вполне успешно.

Настоящая лунная гонка развернулась в 1966–1968 гг. Советские и американские инженеры шли, что называется, ноздря в ноздрю: мягкая посадка на поверхность Луны, искусственный спутник Луны, облет Луны с возвращением на Землю. По каждому из этих достижений американцы отставали от нас на несколько месяцев, но при этом их технические и научные результаты были намного весомее. В конце 1968 г. состоялась первая пилотируемая экспедиция к Луне: «Аполлон-8» совершил 10 оборотов вокруг Луны и вернулся на Землю. В этот момент американцы стали лидерами в глазах общественного мнения и уже не уступали эту позицию.

В конце книги вы найдете таблицы с подробными сведениями о полетах к Луне, в большинстве глав также рассказано об эпизодах некоторых экспедиций, поэтому здесь я лишь дополню информацию отдельными любопытными деталями.

Первое замечание касается научной фантастики. В связи с путешествиями к Луне нельзя не вспомнить поразительный пример, демонстрирующий отличие научной фантастики от ненаучной – фэнтези. Речь идет о знаменитых произведениях Жюля Верна (1828–1905) «С Земли на Луну прямым путем за 97 часов 20 минут» (1865 г.) и «Вокруг Луны» (1870 г.). За 100 лет до первого полета астронавтов к Луне на корабле «Аполлон-8» автор этих увлекательных книг предугадал поразительно много деталей. Правда, запущены были космические корабли разными методами: у Ж. Верна – из пушки, а в жизни – ракетой, но в полете для коррекции траектории и торможения герои Жюля Верна использовали именно ракетные двигатели. Оба космических корабля, фантастический и реальный, стартовали с Земли вертикально вверх, хотя еще в первой половине XX в. инженеры и ученые сомневались в практичности такого старта. А вот вам и совпадения: оба запуска произошли с полуострова Флорида (с местом старта писатель «ошибся» примерно на 170 км); полет произошел в декабре, с экипажем из трех человек; оба космических аппарата были в основном сделаны из алюминия (редкого и дорогого металла во времена Ж. Верна), причем имели почти одинаковый размер и близкий вес (у «Аполлона» – без ракетного топлива). При возвращении на Землю оба аппарата приводнились в Тихом океане!

Мистика? А вы перечитайте Ж. Верна. Во-первых, обнаружите еще множество других удивительных совпадений, и не только технических. А во-вторых, узнаете много интересного о Луне, о телескопах, об артиллерийских орудиях, о перегрузках и невесомости, о национальных особенностях французов и американцев, а главное – сможете оценить глубину проработки автором этих тем.

Рис. 1.14. «Через несколько мгновений из люка на верхушке конуса с торжествующим видом появился секретарь „Пушечного клуба“. За время „опыта“ он еще больше растолстел». Недельный эксперимент по пребыванию в герметически закрытом снаряде «Колумбиады» прошел успешно. Вскоре герои Жюля Верна отправились в этом снаряде к Луне; «…нужен был смелый гений американцев, чтобы возникла мысль о завоевании нашего спутника». (Иллюстрация Henri de Montaut к изданию 1868 г.)


При внимательном прочтении видно, что Жюль Верн не просто угадал будущее, а сделал весьма точный научно-технический прогноз, опираясь на хорошо разработанную к тому времени небесную механику и прочие достижения естественных наук. Кстати, кажется, никто до сих пор не отметил, что Ж. Верн первым предложил изучать Землю из космоса: его герои на пути к Луне пытались наблюдать Северный и Южный полюсы, чтобы узнать, что там находится; ведь в XIX в. люди еще не бывали на полюсах. По глубине научной проработки своих литературных произведений с Ж. Верном мог сравниться только Артур Кларк, предложивший геостационарные спутники и самостоятельно пришедший к идее космического лифта. Это и есть научная фантастика.

Разумеется, не только Ж. Верну удался мысленный эксперимент с полетом к Луне. Замечательно точную картину нарисовал и Константин Эдуардович Циолковский (1857–1935) в своей фантастической повести «На Луне» (1887 г.); в ней он высказал предположения, которые были доказаны лишь много десятилетий спустя.

Рис. 1.15. Корабль «Аполлон» в конфигурации, достаточной для путешествия к Луне без посадки на ее поверхность. По размеру, материалу и экипажу он практически совпадает со снарядом из фантазии Жюля Верна.


Так, он весьма точно описал нагрев и охлаждение поверхности Луны, хотя достоверные сведения о температуре лунной поверхности были получены только в 1920-е гг. А вот фантазия Герберта Уэллса (1866–1946) в его романе «Первые люди на Луне» (1901 г.) разыгралась не на шутку: «Представьте себе рассвет на Луне! Оттаивает мерзлый воздух, оживает и шевелится почва, бесшумно и быстро поднимаются стебли и растут листья». А затем появились злобные селениты, чем-то напоминавшие марсиан из «Войны миров» (1898 г.). Как видим, Уэллс был склонен скорее к социальным, чем к научно-техническим прогнозам.

Рис. 1.16. Командный модуль «Аполлона». Он так же отправился к Луне с полуострова Флорида и вернулся на Землю практически в той же области Тихого океана, что и снаряд жюль-верновской «Колумбиады».


Второе мое замечание касается уже не научной фантастики, а научной космонавтики. Никто не скрывает, что развитие ракетной техники началось и долгое время продолжалось из-за военных нужд. Полеты зондов к Луне и планетам – побочное дитя «холодной войны». Естественное требование к военным разработкам – секретность. Но США нашли возможность очень рано, в самом начале космической эры, в 1958 г. параллельно военным ракетным организациям создать гражданское космическое ведомство NASA, чем и обеспечили свои успехи в изучении Солнечной системы и в развитии внеатмосферной астрономии. У нашей страны не хватило для этого экономической мощи. В нашей космонавтике наука жила и живет «по остаточному принципу», подчиняясь всем традициям оборонной тематики – с ее секретностью и полной безответственностью перед обществом. Правда, в 1992 г. у нас возникло «полугражданское» ведомство – Федеральное космическое агентство (Роскосмос), но по сути у него мало общего с NASA. Поскольку Роскосмос занимается и гражданской, и военной тематикой, легко понять, чему отдается приоритет и чем (и кем) определяется стиль работы.

Рис. 1.17. Обитатели Луны по Г. Уэллсу.


Девиз NASA – «For the benefit of all» («Для всеобщей пользы»), и это не пустые слова. Все материалы NASA открыты для свободного копирования и воспроизведения. А материалов этих – море, и они отличного качества. Планы NASA выносятся на всеобщее обсуждение. Конечно, космические полеты обходятся недешево: например, программа «Аполлон» стоила 23 млрд долл., это 135 млрд долл. в ценах 2005 г. Как видим, каждый американец заплатил тогда за этот проект по 640 нынешних долларов. Немало, но ведь деньги пошли на развитие науки и техники. Они довольно быстро вернулись в казну в результате продажи лучших в мире технологий. К тому же не весь свой бюджет NASA «выбрасывает в космос». Тратятся большие силы и деньги на создание общедоступных архивов, подготовку материалов для журналистов, популяризацию своей деятельности на разных уровнях – отдельно для ученых, для учителей, для школьников. Это пиар в хорошем смысле слова: космическое ведомство делом доказывает свою необходимость обществу и ждет от него поощрения. В этой книге вы встретите много материалов NASA. Спасибо тем, кто их добыл, сохранил, обработал и сделал доступными «для всеобщей пользы».

Разумеется, нельзя сравнивать возможности современных России и США. К примеру, бюджет Роскосмоса на порядок меньше бюджета NASA, наше географическое положение не способствует космонавтике, и распад СССР отсек от нашей космической отрасли многие важные части. Это объективные причины, но есть и другие. Сколько сил было понапрасну растрачено на гигантские проекты суперракеты Н-1 и космического комплекса «Энергия – Буран»! Не доведенные до ума, брошенные на полпути, они изрядно разорили страну и сломали судьбы тысячам талантливых инженеров, летчиков, космических специалистов. А как мы сможем вырастить новых талантливых инженеров, если в стране нет музеев науки и техники, если мы не сумели сохранить даже то, что когда-то создали? Нужно здраво посмотреть на вещи и решить, хотим ли мы развивать у себя современную, то есть техническую, цивилизацию или же и дальше оставаться на обочине прогресса. Если мы трезво не оценим роль ученого и инженера в современном мире, не начнем культивировать талант и знание, если не будем считать технологию и опыт главным богатством нации, то дорога в будущее окажется не для нас, а Луну мы увидим только в мечтах.

Нужно отметить, что у многих, кто интересуется космическими исследованиями, сложилось неверное впечатление, будто эпоха исследований Луны резко оборвалась в середине 1970-х гг., вместе с прекращением полетов к ней автоматических зондов и пилотируемых экспедиций.

Рис. 1.18. Кратер Коперник. По рисунку Анджело Секки (1818–1878). Из книги: Henry Warren «Recreations in Astronomy», New York, Harper & brothers, 1879.


Действительно, полетов к Луне не было почти 20 лет, но ее исследования активно продолжались. Например, с использованием доставленных на Луну уголковых лазерных отражателей постоянно уточнялась картина движения Луны: если в начале 1970-х гг. расстояние до Луны измерялось лазерным лучом с ошибкой около 15 см, то сегодня ошибка снизилась до нескольких миллиметров. А это уже позволяет делать выводы о внутреннем строении Луны и, кроме того, по ее движению проверять релятивистскую теорию гравитации. Так что Луна, кроме прочего, стала сегодня и точнейшим физическим прибором.

А что касается всеобщей доступности Луны, то сегодня разглядеть ее поверхность для любого из нас стало проще, чем изучить поверхность Земли. У всех нас в последнее время вызывает восхищение сетевой ресурс «Google Earth», позволяющий увидеть через объектив спутника-шпиона и аэрофотокамеры поверхность Земли с разрешением от нескольких метров до 10–15 см! Однако вспомним, что 2/3 поверхности нашей планеты скрыто водой, огромные пространства покрыты лесами и лишь малая часть видна с высоты, да и то – сквозь мутную атмосферу. А поверхность Луны видна вся и без каких-либо преград.

Уже сегодня мы (хотя и не все) можем смотреть прямые телерепортажи с окололунной орбиты: японский спутник «Кагуйя», запущенный в сентябре 2007 г., передает изображение высокого качества (HDTV) с линейным разрешением в 10 м.

Рис. 1.19. Район кратера Коперник. Снимок космического телескопа «Хаббл». Рассмотреть более мелкие детали на лунной поверхности от Земли пока невозможно. Сравнивая этот снимок с предыдущим рисунком, мы видим, что опытный астроном-наблюдатель может поспорить по «зоркости» даже с космическим телескопом.


Его телекамеры в мае 2008 г. смогли заметить на месте посадки «Аполлона-15» площадку, очищенную от пыли газовой струей из двигателя лунного модуля. Недавно у Луны появился еще более зоркий спутник – американский Lunar Reconnaissance Orbiter (NASA). Его телекамеры с разрешением в 0,5 м показали нам сами посадочные ступени лунных модулей «Аполлонов». Но, разумеется, цель детального исследования лунной поверхности состоит не в этом. Аналогичный спутник Mars Reconnaissance Orbiter открыл много нового на поверхности Марса: достаточно напомнить о загадочных «колодцах» диаметром в сотни метров, дна которых до сих пор не удалось увидеть. Кто знает, какие сюрпризы приготовила нам Луна.

А пока японские специалисты, используя данные с зонда «Кагуйя», составили полные карты рельефа Луны и распределения на ее поверхности гравитационных полей. В 2005 г. карта рельефа Луны уже была составлена в США, однако на ней имелись крупные «белые пятна» в районе полюсов и другие недоработки. Зонд «Кагуйя» с помощью лазерного измерителя определил высоту примерно 6,8 млн точек на всей поверхности Луны. Оказалось, что разница между самой высокой и самой низкой точками на Луне составляет 19,8 км – это на 2 км больше, чем предполагалось ранее. «Кагуйя» впервые провел исследования такого рода на обратной стороне Луны. Эти материалы помогут при подготовке новых экспедиций на Луну и при создании там постоянных баз.

На окололунной орбите сейчас работает не только японский, но также индийский и китайский спутники. Для научных исследований Луна стала почти такой же доступной, как Антарктида. И так же, как с Антарктидой, уже понятно, что речь идет не только о научных экспедициях, но и о будущем разделе ресурсов этой планеты.

А для ученых Луна – по-прежнему загадочный и притягательный объект. Планетологи пытаются понять:

– имеет ли Луна металлическое ядро;

– существуют ли на Луне запасы воды;

– насколько велика тектоническая активность Луны; могут ли на ней действовать вулканы;

– почему своим строением и составом Луна так сильно отличается от 4 других тел земной группы (Меркурий, Венера, Земля, Марс);

– как и где сформировалась Луна;

– как Луна повлияла на эволюцию Земли;

– что за странные «временные» явления порой наблюдаются на Луне;

– где остатки вещества комет, которые время от времени должны разбиваться о лунную поверхность. Если это те белые «свирлы», которые видны на фотографиях Луны, то можно считать, что долгожданное вещество из ядер комет уже почти у нас в кармане.

Желая разгадать лунные загадки и освоить лунные ресурсы, мы стоим сейчас перед дилеммой: кто будет исследовать Луну – люди или автоматы? Работа человека в космосе – опасное занятие: мемориалы погибшим космонавтам и астронавтам есть уже не только на Земле, но и на Луне: там его оставил экипаж «Аполлона-15» в виде маленькой фигурки в скафандре и таблички с именами героев. К счастью, на Луне еще никто не погиб, но стоит ли рисковать? Об этом нужно задуматься уже сейчас. В конце концов, важен результат, а не геройские прогулки по Луне. С другой стороны, трудно представить, что нынешние роботы способны заменить человека (см. главу 6). По-видимому, и нынешний, второй этап исследования Луны не обойдется без присутствия там человека.

Рис. 1.20. Табличка с именами погибших космонавтов и маленькая скульптура, оставленные на Луне экипажем «Аполлона-15».


И, наконец, еще одна, неожиданная, возможно, даже преждевременная проблема, но лучше подумать об этом заранее, чем заслужить упреки потомков. Нам нужно позаботиться о сохранении природной среды на Луне.

К счастью, от идеи атомных взрывов там вовремя отказались, но мусор туда мы поставляем регулярно. Все экспедиции доставили с Луны на Землю около 382 кг лунного вещества, а на поверхности Луны уже скопилось более 170 тонн мусора – в основном остатки «Аполлонов» и наших «Лунников». В свое время проблема вывоза мусора встала перед исследователями Антарктиды и покорителями Эвереста. Похоже, в будущем придется строить завод по утилизации мусора и на Луне: не везти же все это обратно на Землю! К счастью, пока это не самая актуальная задача.

1.5. Наблюдаем Луну с Земли

Луна – царица неба. Это знает каждый любитель астрономии. Какой бы оптический инструмент ни появился у желающего полюбоваться ночным небом, в первую очередь он направит его на Луну. Половина нашей книги посвящена «путешествиям к Луне» с телескопом. Прочитав главы 2–5, вы узнаете, кто и когда составил первые карты Луны, кто первым навел на нее телескоп. Обычно первенство в этом приписывают Галилею, хотя исторические изыскания говорят, что он мог и не быть самым-самым первым. Тем не менее именно Галилей был в числе первых двух-трех «астрономов с телескопом», и как никто другой он продемонстрировал возможности этого простого, но удивительно полезного прибора.

<p>1.5.1. Телескоп Галилея</p>

Отмечая 400-летие создания телескопа, мы должны вспомнить о тех временах. Как известно, Галилео Галилей занялся экспериментами с линзами в середине 1609 г., после того как узнал, что в Голландии для потребностей мореплавания была изобретена зрительная труба. Ее создали в 1608 г., возможно, независимо друг от друга голландские оптики Ганс Липперсгей, Яков Мециус и Захария Янсен. Всего за полгода Галилею удалось создать мощный астрономический инструмент и сделать ряд изумительных открытий.

Рис. 1.21. Очки появились за несколько столетий до телескопа.


Успех Галилея в совершенствовании телескопа нельзя считать случайным. Итальянские мастера стекла уже основательно прославились к тому времени: еще в XIII в. они изобрели очки. И именно в Италии была на высоте теоретическая оптика. Трудами Леонардо да Винчи она из раздела геометрии превратилась в практическую науку. «Сделай очковые стекла для глаз, чтобы видеть Луну большой», – писал он в конце XV в. Возможно, хотя этому и нет прямых подтверждений, Леонардо удалось изготовить телескопическую систему.

Оригинальное исследование по оптике линз, зеркал и призм провел в середине XVI в. итальянец Франческо Мавролик (1494–1575). Его соотечественник Джованни Батиста де ла Порта (1535–1615) посвятил оптике два великолепных произведения: «Натуральная магия» и «О преломлении». В последнем он даже приводит оптическую схему телескопа и утверждает, что ему удавалось видеть на большом расстоянии мелкие предметы. В 1609 г. он пытается отстаивать приоритет в изобретении зрительной трубы, но фактических подтверждений этому оказалось недостаточно. Как бы то ни было, работы Галилея в этой области начались на хорошо подготовленной почве. Но, отдавая должное предшественникам Галилея, будем помнить, что именно он сделал из забавной игрушки работоспособный астрономический инструмент.

Рис. 1.22. Схема зрительной трубы (рисунок Леонардо да Винчи): cd – линза объектива, АВ – тубус-бленда объектива, EF – тубус окуляра, тп – хрусталик глаза наблюдателя, расположенный за линзой окуляра.


Свои опыты Галилей начал с простой комбинации положительной линзы в качестве объектива и отрицательной линзы, дающей трехкратное увеличение, в качестве окуляра. Сейчас такая конструкция называется театральным биноклем. Это самый массовый оптический прибор после очков. Разумеется, в современных театральных биноклях в качестве объектива и окуляра применяются высококачественные просветленные линзы, иногда даже сложные, составленные из нескольких стекол. Они дают широкое поле зрения и отличное изображение. Галилей же использовал простые линзы как для объектива, так и для окуляра. Его телескопы страдали сильнейшей хроматической и сферической аберрацией, т. е. давали размытое на краях и не сфокусированное в различных цветах изображение.

Рис. 1.23. Галилео Галилей


Однако Галилей не остановился, подобно голландским мастерам, на «театральном бинокле», а продолжил эксперименты с линзами и к январю 1610 г. создал несколько инструментов с увеличением от 20 до 33 раз. Именно с их помощью он совершил свои замечательные открытия: обнаружил спутники Юпитера, горы и кратеры на Луне, мириады звезд в Млечном Пути, и др. Уже в середине марта 1610 г. в Венеции на латинском языке вышел труд Галилея «Звездный вестник», где были описаны эти первые открытия телескопической астрономии. В сентябре 1610 г. ученый открывает фазы Венеры, а в ноябре обнаруживает признаки кольца у Сатурна, хотя и не догадывается об истинном смысле своего открытия («Высочайшую планету тройною наблюдал», – пишет он в анаграмме, пытаясь закрепить за собой приоритет открытия). Пожалуй, ни один телескоп последующих столетий не дал такого вклада в науку, как первый телескоп Галилея.

Рис. 1.24. Телескоп Галилея – один из величайших научных инструментов всех времен. Сегодня каждый из нас может за вечер сделать такой же оптический инструмент и, взглянув на небо, ощутить себя Галилеем.


Однако те любители астрономии, кто пытался собирать телескопы из очковых стекол, нередко удивляются малым возможностям своих конструкций, явно уступающих по «наблюдательным возможностям» кустарному телескопу Галилея. Порой современные наблюдатели не могут обнаружить даже спутники Юпитера, не говоря уже о фазах Венеры.

Во Флоренции, в Музее истории науки (рядом со знаменитой картинной галереей Уффици) хранятся два телескопа из числа первых построенных Галилеем. Там же находится и разбитый объектив третьего телескопа: его видно на фотографии (рис. 1.25) в нижней части подставки, в центре дорогой виньетки. В начале XX в. эти телескопы были изучены (см. табл.). С ними были даже проведены астрономические наблюдения.


Оптические характеристики первых объективов и окуляров телескопов Галилея (размеры в мм)

Оказалось, что первая труба имела разрешающую способность 20 и поле зрения 15?, а вторая – соответственно 10 и 15?. Увеличение первой трубы было 14-кратным, а второй – 20-кратным. Разбитый объектив третьей трубы с окулярами от первых двух труб давал бы увеличение в 18 и 35 раз. Итак, мог ли Галилей сделать свои изумительные открытия, используя столь несовершенные инструменты?

Именно таким вопросом задался англичанин Стивен Рингвуд и, чтобы выяснить ответ, создал точную копию лучшего телескопа Галилея (Ringwood, 1994). В октябре 1992 г. Стив Рингвуд воссоздал конструкцию третьего телескопа Галилея и в течение года проводил с ним всевозможные наблюдения. Объектив его телескопа имел диаметр 58 мм и фокусное расстояние 1650 мм. Как и Галилей, Рингвуд диафрагмировал свой объектив до диаметра апертуры D = 38 мм, чтобы получить лучшее качество изображения при сравнительно небольшой потере проницающей способности. Окуляром служила отрицательная линза с фокусным расстоянием -50 мм, дающая увеличение в 33 раза. Поскольку в такой конструкции телескопа окуляр размещается перед фокальной плоскостью объектива, полная длина трубы составила 1440 мм.

Самым большим недостатком телескопа Галилея Рингвуд считает его малое поле зрения – всего 10?, или 1/3 лунного диска. Причем на краю поля зрения качество изображения очень низкое. При использовании простого критерия Рэлея, описывающего дифракционный предел разрешающей способности объектива, можно было бы ожидать качества изображения в 3,5–4,0. Однако хроматическая абберация снизила его до 10–20. Проницающая сила телескопа, оцененная по простой формуле (2 + 5 lg D) ожидалась около +9,9m. Однако в действительность не удалось обнаружить звезд слабее +8m.

Рис. 1.25. Телескопы Галилея, хранящиеся в Музее истории науки (Флоренция).


При наблюдении Луны телескоп показал себя неплохо. В него удалось разглядеть даже больше деталей, чем было зарисовано Галилеем на его первых лунных картах. «Возможно, Галилей был неважный рисовальщик или его не очень интересовали детали лунной поверхности?» – удивляется Рингвуд. А может быть, опыт изготовления телескопов и наблюдения с ними был у Галилея еще недостаточно велик? Мне кажется, что причина именно в этом. Качество стекол, отполированных Галилеем собственноручно, не может соперничать с качеством современных линз. Ну и, конечно, Галилей не сразу научился смотреть в телескоп. Имея 40-летний опыт визуальных наблюдений, я могу это утверждать.

Кстати, а почему создатели первых зрительных труб – голландцы – не совершили астрономических открытий? Предприняв наблюдения с театральным биноклем (увеличение 2,5–3,5 раза) и с полевым биноклем (увеличение 7–8 раз), вы заметите, что между их возможностями пролегает пропасть. Современный высококачественный 3-кратный бинокль позволяет (при наблюдении одним глазом!) с трудом заметить крупнейшие лунные кратеры; очевидно, что голландская труба с таким же увеличением, но более низким качеством не могла и этого. Полевой бинокль, дающий приблизительно те же возможности, что и первые трубы Галилея, показывает нам Луну во всей красе, со множеством кратеров. Усовершенствовав голландскую трубу, добившись в несколько раз более высокого увеличения, Галилей перешагнул через «порог открытий». С тех пор в экспериментальной науке этот принцип не подводит: если вам удастся улучшить ведущий параметр прибора в несколько раз, вы сделаете открытие.

Безусловно, самым замечательным открытием Галилея явилось обнаружение четырех спутников Юпитера и диска самой планеты. Вопреки ожиданиям, низкое качество телескопа не сильно помешало наблюдениям системы юпитеровых спутников. Рингвуд ясно видел все четыре спутника и смог, как и Галилей, каждую ночь отмечать их перемещение относительно планеты. Правда, не всегда удавалось одновременно хорошо сфокусировать изображение планеты и спутника: очень мешала хроматическая аберрация объектива. А вот что касается самого Юпитера, то Рингвуд, как и Галилей, не смог обнаружить никаких деталей на диске планеты. Слабоконтрастные широтные полосы, пересекающие Юпитер вдоль экватора, оказались полностью замыты в результате аберрации.

Рис. 1.26. Цейссовский театральный бинокль, оформленный в виде очков, – прямой потомок телескопа Галилея.


Очень интересный результат получил Рингвуд при наблюдении Сатурна. Как и Галилей, при увеличении в 33 раза он увидел лишь слабые вздутия («загадочные придатки», как писал Галилей) по бокам планеты, которые великий итальянец, конечно же, не мог интерпретировать как кольцо. Однако дальнейшие эксперименты Рингвуда показали, что при использовании других окуляров с большим увеличением все же можно различить более ясные признаки кольца. Сделай это в свое время Галилей, и открытие колец Сатурна состоялось бы почти на полстолетия раньше и не принадлежало бы Гюйгенсу (1656 г.).

Рис. 1.27. Полевой бинокль – потомок телескопа Кеплера.


Впрочем, наблюдения Венеры доказали, что Галилей быстро стал искусным астрономом. Оказалось, что в наибольшей элонгации фазы Венеры не видны, ибо слишком мал ее угловой размер. И только когда Венера приблизилась к Земле и в фазе 0,25 ее угловой диаметр достиг 45, стала заметна ее серпообразная форма. В это время ее угловое удаление от Солнца уже было не так велико, и наблюдения оказались затруднены.

Самым же любопытным в исторических изысканиях Рингвуда, пожалуй, явилось разоблачение одного старого заблуждения по поводу наблюдений Галилеем Солнца. До сих пор считалось общепринятым, что в телескоп системы Галилея невозможно наблюдать Солнце, спроецировав его изображение на экран, ибо отрицательная линза окуляра не может построить действительного изображения объекта. Только изобретенный немного позже телескоп системы Кеплера из двух положительных линз дал такую возможность. Считалось, что впервые наблюдал Солнце на экране, помещенном за окуляром, немецкий астроном Кристоф Шейнер (1575–1650). Он одновременно и независимо от Кеплера создал в 1613 г. телескоп аналогичной конструкции.

А как наблюдал Солнце Галилей? Ведь именно он открыл солнечные пятна. Долгое время существовало убеждение, что Галилей наблюдал дневное светило глазом в окуляр, пользуясь облаками как светофильтрами или подкарауливая Солнце в тумане низко над горизонтом. Считалось, что потеря Галилеем зрения в старости частично была спровоцирована именно его наблюдениями Солнца. Однако Рингвуд обнаружил, что и телескоп Галилея может давать вполне приличную проекцию солнечного изображения на экран, причем солнечные пятна видны очень отчетливо. Позже в одном из писем Галилея Рингвуд обнаружил подробное описание наблюдений Солнца путем проекции его изображения на экран. Странно, что этого обстоятельства не отмечали раньше.

Думаю, что каждый любитель астрономии не откажет себе в удовольствии на несколько вечеров «стать Галилеем». Для этого нужно всего лишь сделать галилеев телескоп и попытаться повторить открытия великого итальянца. В детстве я делал из очковых стекол кеплеровы трубы, а лет 15 назад не удержался и соорудил инструмент, похожий на телескоп Галилея. В качестве объектива я использовал насадочную линзу диаметром 43 мм силой в +2 диоптрии, а окуляр с фокусным расстоянием около -45 мм взял от старинного театрального бинокля. Телескоп получился не очень мощный, с увеличением всего в 11 раз, но и у него поле зрения оказалось маленькое, диаметром около 50?, а качество изображения неровное, значительно ухудшающееся к краю. Однако изображения стали значительно лучше при диафрагмировании объектива до диаметра 22 мм, а еще лучше – до 11 мм. Яркость изображений, разумеется, понизилась, но наблюдения Луны от этого даже выиграли.

Как и ожидалось, при наблюдении Солнца в проекции на белый экран мой телескоп действительно давал изображение солнечного диска. Отрицательный окуляр увеличил эквивалентное фокусное расстояние объектива в несколько раз (принцип телеобъектива). Поскольку не сохранилось сведений о том, на каком штативе Галилей устанавливал свой телескоп, я наблюдал, удерживая трубу в руках, а в качестве опоры для рук использовал ствол дерева, забор или раму открытого окна. При 11-кратном увеличении этого было достаточно, но при 30-кратном, мне кажется, у Галилея могли быть проблемы.

Можно считать, что исторический эксперимент по воссозданию первого телескопа удался. Теперь мы знаем, что телескоп Галилея был довольно неудобным и скверным прибором с точки зрения современной астрономии. По всем характеристикам он уступал даже нынешним любительским инструментам. У него было лишь одно преимущество – он был первым, а его создатель Галилей «выжал» из своего инструмента все, что возможно. За это мы чтим Галилея и его первый телескоп.

<p>1.5.2. Прогулки по Луне</p>

Мало кому пришлось и немногим еще придется в ближайшие годы погулять по Луне. Но ведь экскурсия на соседнюю планету может быть и виртуальной. Сегодня «путешествовать» по Луне можно с помощью компьютера, не выходя из дома: детальная масштабируемая карта Луны доступна в интернете (http://www.google.com/moon) и на оптических дисках. Разумеется, это большое удобство – «отправиться к далекой планете» в теплых тапочках и с чашкой чая. Но можете мне поверить: «прогулка по Луне» на свежем воздухе с помощью телескопа даст вам ни с чем не сравнимое удовольствие. Разумеется, чем больше и дороже телескоп, тем интереснее будет прогулка. Но Луна тем и привлекательна, что для первых визитов к ней годится любой оптический прибор. Впрочем, первый «визит» к Луне можно предпринять, даже не вооружая глаз оптикой.

Выберите момент, близкий к полнолунию. Во-первых, вы увидите освещенным почти весь лунный диск. А во-вторых, наблюдать другие объекты в такую ночь почти не имеет смысла: яркий свет полной Луны подавляет слабое свечение звезд и планет. Чтобы быть точным, скажу, что полная Луна в зените создает на поверхности Земли освещенность в 0,25 лк, при которой без труда можно читать крупный типографский шрифт. А безлунное звездное небо освещает Землю с интенсивностью всего лишь в 0,001 лк, то есть в сотни раз слабее.

Рис. 1.28. Рисунок Луны (фаза 0,87), выполненный автором без помощи оптических приборов 7.09.1994.


Для нас, жителей средних широт, имеет значение и сезон года. Наблюдать полную Луну в телескоп удобнее зимой. В это время она значительно дольше видна над горизонтом и поднимается существенно выше к зениту, что делает более тонким слой воздуха между Луной и телескопом. Невооруженным глазом Луну можно наблюдать в любой сезон, но, пожалуй, лучше летом: погода комфортнее и Луна не так высока и поэтому не сильно ослепляет ваше ночное зрение.

Даже не очень зоркий глаз видит своеобразный рисунок на поверхности Луны, так называемый лунный лик (рис. 2.1): крупные темные моря причудливо расположились так, что напоминают добродушное человеческое лицо – глаза, нос, рот… Люди с богатой фантазией утверждают, что выражение этого «лица» меняется: оно кажется им то улыбающимся (у молодой Луны после первой четверти), то испуганным (у старой Луны). Множество красивых мифов и сказаний возникло у разных народов мира в связи с этим обстоятельством. Но вот что странно: среди графического наследия дотелескопических веков мы не находим рисунков или скульптурных изображений лунного лика. А ведь составить грубую карту Луны может каждый из нас без телескопа, даже не имея 100-процентного зрения, как показал опыт автора (рис. 1.28). В целом рисунок верно отражает расположение лунных морей, хотя малые моря Восточного полушария – моря Ясности, Спокойствия, Нектара, Изобилия и Кризисов – слились в одну Я-образную фигуру.

Угловой диаметр лунного диска для земного наблюдателя составляет около 30?. Если принять разрешающую способность зоркого невооруженного глаза равной 1?, то карта Луны, составленная без телескопа, окажется мозаикой размером 30x30 и будет содержать около 700 элементов. Такое изображение Луны мы изготовили искусственно, взяв телескопический снимок лунного диска и ухудшив его качество до разрешения в 1? (рис. 5.2 слева).

Рис. 1.29. Этот прекрасный снимок Луны получен с помощью старенького телескопа-рефлектора Celestron С8 и цифровой зеркалки Pentax. (Фото с сайта http://en.wikipedia.org/wiki/Astrophotography).


Астрономам дотелескопической эпохи практически удалось достичь этого идеала. Посмотрите на рисунок 5.2 (справа), сделанный английским ученым Вильямом Гильбертом (1540–1603). На нем легко угадывается расположение лунных морей, даже тех, которые не заметны на левом фото. Мельчайшие детали на карте Гильберта действительно имеют размер около 1?.

Вы тоже можете представить себя древним астрономом и попытаться разглядеть мелкие детали на Луне без телескопа. Разумеется, вы без труда отождествите большое темное пятно на ее левом полушарии – Океан Бурь. Приоткрытый «рот» лунного лика, примыкающий к Океану справа снизу – это Море Облаков, а «тень под губой» – Море Влажности. Правый (слева от нас) «глаз» – самое большое образование ударного происхождения на нашем спутнике – Море Дождей. Диаметр этого исполинского бассейна около 1000 км! Другой «глаз» Луны образуют Море Ясности и Море Спокойствия, сливающиеся на наш невооруженный взгляд в одно продолговатое пятно.

Рис. 1.30. На фоне фотографии Луны, искусственно размытой до углового разрешения в 1?, показаны объекты из списка Пикеринга.


Будем считать, что эти детали лунного «лицо» видит каждый человек. Но астроном-наблюдатель должен обладать особой зоркостью и умением видеть, которое приходит с опытом. Например, можете ли вы различить белую полоску, разделяющую Море Ясности и Море Спокойствия? Это горная цепь Гем. А замечаете вы светлое пятно между Морем Дождей и Океаном Бурь? Это кратер Коперник с его лучевой системой. Заметить эти детали под силу не каждому. Своеобразный тест на зоркость предложил американский астроном, известный наблюдатель Луны и планет Уильям Генри Пикеринг (1858–1938). Тест Пикеринга служит для оценки зрительных способностей наблюдателя и состоит в том, чтобы разглядеть на Луне невооруженным глазом как можно больше малозаметных деталей. Всего в списке их 12, и каждый следующий объект увидеть труднее, чем предыдущий. Детальное описание списка Пикеринга вы без труда найдете в интернете в статье Олега Угольникова (2001), а здесь мы кратко ее перескажем.

Проверку своих наблюдательных способностей по «шкале Пикеринга» лучше всего проводить во время вечерних или утренних сумерек, поскольку глубокой ночью Луна выглядит слишком яркой и искать мелкие детали на ее поверхности становится трудно, а днем мелкие детали теряются на ярком фоне неба.

Начнем с самого простого объекта: найдите яркое пятно в Океане Бурь неподалеку от границы с Морем Дождей. Это кратер Коперник с его системой светлых лучей – первый объект списка Пикеринга. Следом за ним идет Море Нектара. Чтобы отыскать его, переведите взгляд на восточное полушарие Луны. Вернувшись на западное полушарие, к югу от Океана Бурь вы обнаружите темное пятнышко – Море Влажности. Если вы сумели выделить его на фоне окружающих морей, значит, вы прошли третий этап теста Пикеринга.

Четвертая цель находится к западу от первой (имеются в виду лунные координаты; на нашем небе это означает «к востоку»). Ваша задача – рядом с Коперником увидеть лучевую систему кратера Кеплер; это светлое пятнышко поменьше и послабее, чем Коперник. А теперь вернитесь на юг, к Морю Влажности. Сможете ли вы разглядеть на его северной стороне светлую возвышенность в районе кратера Гассенди, отделяющую Море Влажности от Океана Бурь? Если эта «высота» взята, то перенесите взгляд в северо-восточную часть диска и отыщите горную систему Гем, которая светлым мысом разделяет Море Ясности и Море Спокойствия. Итак, половина пути пройдена! До этой отметки доберутся практически все, кто будет внимательно рассматривать наш естественный спутник. Но вторая половина пути значительно сложнее!

Море Паров имеет большой размер и было бы легко заметным, но оно теряется на фоне трех исполинских темных пятен – Океана Бурь, Моря Дождей и Моря Ясности. Если вы заметили Море Паров, то прошли седьмую ступень теста Пикеринга. А следующая цель находится в Море Облаков. Вам предстоит отыскать светлую область, окружающую кратер Любинецкий. Эта задачка окажется под силу не каждому наблюдателю!

Ну, а для того чтобы вы смогли продвинуться еще дальше по «тропе Пикеринга», вам потребуется не только отменная острота зрения, но и отличная прозрачность атмосферы. Только в этом случае можно попытаться разглядеть на восточном крае Океане Бурь темную область – Залив Центральный, расположенный точно в центре лунного диска. Только не спутайте эту область с Морем Паров! Десятый объект располагается в восточном полушарии Луны, к юго-западу от Моря Нектара. Это едва заметная темная область рядом с кратером Сак-робоско. Она находится прямо над одним из светлых лучей, идущих от кратера Тихо, и видна лишь как небольшое, едва заметное потемнение окружающего фона.

Рис. 1.31. Фотомозаика из снимков европейского зонда «Смарт-1» области южного полюса Луны. На врезке и стрелкой показан кратер Шеклтон в разные моменты лунных суток. На дно этого кратера никогда не заглядывает Солнце, это «холодная ловушка», где долго может сохраняться водяной лед. Именно там собираются основать одну из научных баз будущие исследователи Луны.


Предпоследний объект списка находится на пределе возможностей зоркого невооруженного глаза. Это небольшое понижение яркости в середине крупнейшего лунного горного хребта Апеннины, отделяющего Море Дождей от Моря Ясности и Моря Паров. Ищите едва заметное падение яркости – маленький залив Моря Дождей, вдающийся в Апеннины. Что же касается последнего, двенадцатого объекта из списка, то сам Пикеринг полагал, что он находится за пределами возможностей нормального человеческого зрения. Это Горы Рифей, расположенные в южной части Океана Бурь. Поэтому не расстраивайтесь, если вам не удастся их увидеть. Ведь десять, а тем более одиннадцать «покоренных» объектов Пикеринга – это безусловная победа, и вы с полным правом можете считать себя очень зорким человеком!

А если увлечение книгами и компьютером не позволило вам сохранить острое зрение, то советую не расстраиваться, а просто взять бинокль или подзорную трубу и спокойно найти все 12 объектов Пикеринга и еще тысячи других красивейших деталей на поверхности нашего естественного спутника. Вооружившись самым скромным оптическим инструментом, вы будете поражены тем, насколько больше деталей с его помощью можно увидеть на Луне. Искренне жаль древних наблюдателей, не имевших этой возможности.

Рис. 1.32. Карта Луны из микроброшюры Ленгауэра (1941), изданной ленинградским Домом занимательной науки. Обратите внимание на своеобразный перевод некоторых латинских названий морей и кратеров, отличающийся от современного.


Наблюдая Луну в телескоп, вы обнаружите, что удобнее пользоваться перевернутой картой (рис. 1.32), которые часто публикуются именно для этой цели. Если увеличение вашего инструмента невелико, то поверхность Луны может выглядеть излишне яркой. В этом случае можно воспользоваться окулярным светофильтром, например оранжевым, которые нередко входят в комплект бинокля или подзорной трубы. А начинающему наблюдателю не повредят еще два «завета» – надежный штатив и теплая одежда. Проведя несколько часов в неподвижности у окуляра телескопа, вы поймете, что даже летние ночи весьма холодны. Что же касается штатива, то даже наблюдения в простой бинокль требуют опоры для рук, а при увеличении более 20 крат надежный штатив совершенно необходим. Впрочем, только начните наблюдать, и опыт быстро научит вас всем премудростям этого увлекательного занятия.

Рис. 1.33. Любительский снимок кратеров Гиппарх диаметром 138 км (вверху) и Аль-Баттани диаметром 114 км. Фото: Stefan Lammel, 2 апреля 2009 г., 10-дюймовый телескоп системы Ньютона (http:// lpod.wikispaces.com/April+24,+2009).


Не бывает любителей астрономии, не умеющих фотографировать. Современные цифровые фотокамеры с автоматической фокусировкой и экспозицией позволяют легко делать снимки через окуляр телескопа, просто приблизив к нему объектив фотоаппарата. Правда, высокого качества такой метод не дает. Но если специально заняться астрофотографией, используя хороший любительский телескоп и цифровую зеркальную камеру, то результаты могут быть потрясающими, не хуже, чем у профессиональных астрономов. Вы и сами в этом убедитесь, если заглянете на сайт Lunar photo of the day (LPOD): http://lpod.wikispaces.com/2009 или на сайт The-Moon Wild http://the-moon.wikispaces.com.

Рис. 1.34. Планетные самоходные аппараты в едином масштабе. Советский «Луноход» был первым, но до сих пор своими размерами и массой существенно превосходит все более поздние подвижные лаборатории. Оснащенный современной научной аппаратурой, он мог бы и в наши дни стать отличным исследователем Луны.


Отмечая в 2009 г. юбилей телескопа (400 лет), юбилей открытия обратной стороны Луны (50 лет) и юбилей первой посадки на Луну астронавтов (40 лет), мы не менее широко отмечали еще один «двойной» юбилей: 200 лет назад родился Чарлз Дарвин, и 150 лет назад он опубликовал свой великий труд «Происхождение видов». В связи с этим задумаемся, почему из рядового млекопитающего человек очень быстро стал хозяином нашей планеты, чем отличался он от прочих претендентов на это место. Быть может, любознательностью и авантюризмом?

Ну зачем современному человеку вершина Эвереста или Марианская впадина? Зачем ему Луна? Да он и сам не знает! Зов предков говорит ему, что только так можно выжить на этой лучшей из планет. Она слишком хороша, чтобы отдавать место на ней без борьбы. В разные эпохи ее хозяевами становились самые сильные, самые крупные, самые плодовитые, самые кровожадные… Но пришел самый любознательный, самый умелый – и стал ее полновластным хозяином. Значит, это качество посильнее клыков и когтей. Поэтому человек подчиняется ему, порой безоглядно: ведь любознательные – хозяева Вселенной!

Литература

Архипов А. В. Неразгаданные тайны Вселенной. М.: Вече, 2004.

Архипов А. В. Селениты. М.: Новация, 1998. (Поиск артефактов на Луне; археология лунной поверхности.)

Бережной А. А., Сурдин В. Г. Луна // Солнечная система. М.: Физматлит, 2008. С. 69–102.

Бэйтс Д. Р. (ред.) Исследование мирового пространства. М.: Физматлит, 1959.

Гэтленд К. Космонавтика ближайших лет. М.: Воениздат, 1964.

Ефимов В. А. Как были получены первые фотографии обратной стороны Луны // Новости космонавтики, 2000. № 10. С. 70–72. (Более полная версия – в журнале «Информация из космоса», 2005, № 4; http://www.infocosmo.ru)

Клепешта Й., Лукеш Л. Й. Карта Луны. Прага: Центр, упр. геодезии и картографии, 1959.

Копал 3. Луна. М.: Изд-во иностр. лит., 1963.

Кратковременные лунные явления (Lunar transient phenomenon – LTP): http://en.wikipedia.org/wiki/Transient_lunar_phenomenon.

Лей В. Ракеты и полеты в космос. М.: Воениздат, 1961.

Ленгауэр Г. Г. Карта Луны. Л.: ДЗН, 1941.

Лунариум. Сост.: Е. Парнов, Л. Самсоненко. М.: Молодая гвардия, 1976.

Перельман Р. Г. Цели и пути покорения космоса. М.: Наука, 1967.

Родионова Ж. Ф. и др. Морфологический каталог кратеров Луны / Под ред. В. В. Шевченко. Координаты, диаметр и морфологический тип 14 923 кратеров диаметром не менее 10 км.

http://selena.sai.msu.ru/Home/Moon_Cat/moon_cat.htm

Угольников О. С. Список Пикеринга // Звездочет. 2001. № 10. С. 44–45.

Jules Verne «From the Earth to the Moon», http://jv.gilead.org.il/pg/moon

Ringwood S. D. A Galilean telescope // The Quarterly Journal of the Royal Astronomical Society. 1994. Vol. 35. № 1. P. 43–50.

Список лунных кратеров:

http://en.wikipedia.org/wiki/List_of_craters_on_the_Moon

Виртуальный атлас Луны: http://ap-i.net/avl/ru/start

Статистическая проверка существования эффекта лунатизма: http://en.wikipedia.org/wiki/Lunar_effect

Искусственные объекты (земного происхождения!) на Луне:

http://en.wikipedia.org/wiki/List_of_artificial_objects_on_the_Moon

Разоблачение теории мистификации программы «Аполлон»:

http://en.wikipedia.org/wiki/Apollo_Moon_Landing_hoax_theories

Поход «Лунохода-1»:

http://selena.sai.msu.ru/Home/Spacecrafts/Lunokhodl/lunokhodle.htm

Поход «Лунохода-2»:

http://selena.sai.msu.ru/Home/Spacecrafts/Lunokhod2/lunokhod2e.htm Хроника работы «Луноходов»: http://galspace.spb.ru/indexllO-l.html

Сайт Сергея Павловича Хлынина (историография и книги по космонавтике): http://epizodsspace.airbase.ru

Отлично документированную информацию об экспедициях «Аполлон» можно найти на сайте Эрика Джонса (Eric Jones) «Apollo Lunar Surface Journal»: http://www.hq.nasa.gov/office/pao/History/alsj/frame.html, а также на сайте Кипа Тегю (Kipp Teague) «Project Apollo Archive»: http://www.apolloarchive.com/apollo_archive.html

Там же находится очень удобный архив снимков «Apollo Image Gallery»: http://www.apolloarchive.com/apollo_gallery.html

Хорошо структурированный архив фотографий с краткой технической информацией «Apollo Image Atlas» (Lunar and Planetary Institute), а также ссылки на другие лунные фотоархивы: http://www.lpi.usra.edu/resources/apollo/

Фотооборудование экспедиций «Аполлон», включая УФ-телескоп/спектрограф: http://www.myspacemuseum.com/apollocams.htm

NASA History Division: http://www.hq.nasa.gov/office/pao/History/

Архив станции связи, работавшей по программе «Аполлон» – Honeysuckle Creek Tracking Station (Canberra, Australia).

Переговоры с астронавтами и их расшифровка; фотографии, телерепортажи с Луны: http://www.honeysucklecreek.net/msfn_missions

Сайт GRIN (Great Images in NASA) – удобно структурированная фототека по астронавтике, каждое изображение в которой доступно с разным разрешением (вплоть до 3000x3000) и снабжено описанием: http://grin.hq.nasa.gov/subject-space.html

Сайт «SpaceAholic.com» содержит множество редких технических деталей, касающихся американских лунных программ: http://www.spaceaholic.com/index.htm

Лазерная локация Луны:

http://en.wikipedia.org/wiki/Lunar_laser_ranging_experiment

http://www.physics.ucsd.edu/~tmurphy/apollo/lrrr.html

Научные эксперименты на Луне, выполненные по программе «Аполлон»: http://www.honeysucklecreek.net/msfn_missions/ALSEP/index.html

Ю. Г Шкуратов. Луна, какой она видна издалека

2.1. Начало селенографии

Селенография – наука, изучающая лунную поверхность, – зародилась задолго до изобретения телескопа, ведь на лунном диске даже невооруженным глазом видно много деталей.

Наскальные рисунки, напоминающие силуэт Луны, относятся к очень древней эпохе: например, возраст тех, что найдены в Ирландии, составляет более 5000 лет. Вероятно, в доисторические и античные времена люди не раз пытались изобразить вид лунного диска, однако документированных данных об этом нет. Сохранились словесные «карты» Луны в мифах древних китайцев и американских индейцев. Интересно, что и те, и другие народы, несмотря на огромное расстояние, разделяющее их, видели в очертании лунных морей кролика. Вероятно, это первый пример «астрономического открытия», сделанного независимо на разных континентах. Хотя расположение серых пятен на диске Луны не меняется век от века, разные поколения интерпретировали эту картину по-разному. Многим людям полная Луна напоминает добродушную физиономию, другие видят на Луне силуэты каких-то животных, а религиозно настроенные звездочеты Средневековья, отличавшиеся богатым воображением, уверяли, что на Луне запечатлены фигуры Иуды и Каина.

Пытаясь проникнуть в суть вещей, древнегреческие философы высказывали разные суждения о природе деталей лунного диска. Великий Аристотель (IV до н. э.) полагал, что поверхность Луны зеркальна, а пятна на ее диске – не что иное, как отражение земных морей и континентов. Авторитет Аристотеля был почти абсолютным, так что эта точка зрения в том или ином виде продержалась до начала XVII в. Но в науке всегда есть место альтернативным гипотезам: другие древнегреческие философы, например Эпименид (VI до н. э.), Фалес (VI до н. э.) и Анаксагор (VI до н. э.), говорили о Луне как о «горной земле». Почти за два века до Аристотеля философ и математик Пифагор допускал мысль о том, что Луна во многом подобна Земле, а последователь Пифагора Демокрит (V–IV до н. э.) считал, что причиной видимых различий на Луне служат тени, создаваемые неровностями ее поверхности.

Рис. 2.1. Лунный лик многим напоминает добродушное женское лицо. Некоторые даже угадывают в нем загадочный образ леонардовской Моны Лизы.


Мысль о схожести лунного и земного ландшафтов приводила некоторых философов к фантастическим идеям. Так, александрийский философ Прокл (V до н. э.) утверждал, что на Луне «возвышаются многочисленные горы и помещается большое количество городов и жилищ». А пифагорейцы заявляли, что «Луна есть Земля, подобная обитаемой нами, но с той разницей, что она населена животными гораздо большими и деревьями гораздо лучшими: лунные существа своим ростом и силой в пятнадцать раз превосходят земные». Как видим, уже в те времена многие ученые считали Луну соседним миром, похожим на Землю, а наиболее романтические из них даже населяли Луну разумными существами – селенитами (Зигель, 1976).

Рис. 2.2. Один из рисунков Луны из записных книжек Леонардо да Винчи.


Первые (из того, что сохранилось) качественные зарисовки Луны в полной фазе были сделаны Леонардо да Винчи (1452–1519) в период между 1505 и 1508 гг., уже после создания портрета Моны Лизы – «Джоконды» (ок. 1503 г.). На них хорошо отождествляются крупные моря восточной части лунного диска. Ни кратеров, ни лучевых систем на зарисовках да Винчи нет. Это означает, что Леонардо никогда не видел Луны в телескоп. Такое замечание не кажется излишним, несмотря на то, что да Винчи жил на столетие раньше, чем Галилео Галилей, которому обычно приписывают изобретение телескопа.

Рис. 2.3. Ганс Липперсгей (1570–1619), изобретатель телескопа.


Действительно, история изобретения телескопа довольно запутанна. Всё необходимое для этого изобретения было в наличии задолго до начала XVII столетия – времени, когда, как считается, и был изобретен этот инструмент.

Увеличительные и уменьшительные свойства соответственно выпуклых и вогнутых стекол были известны с античных времен. В конце XIII в. мастера Венеции и Флоренции научились делать выпуклые линзы хорошего качества; появились очки для коррекции дальнозоркости. В середине XV столетия в Италии стали делать очки с вогнутыми линзами для исправления близорукости. С этого времени телескоп как простая комбинация выпуклого и вогнутого стекол мог быть изобретен. Вероятно, это случалось неоднократно в разных местах Европы, однако такие изобретения, не получив должной оценки и применения, забывались. В частности, в 1570-х гг. в Англии Леонард и Томас Диггесы сделали инструмент, состоящий из выпуклой линзы и зеркала, который можно рассматривать как прототип телескопа (уже в наше время некто Колин Ронин умудрился даже воссоздать такой инструмент по чертежам Томаса Диггеса). Не исключено, что в Италии в конце XVI в. также были мастера, владевшие секретом телескопа. В частности, некоторые историки считают, что телескопическое свойство линз открыл в 1589 г. Джамбатиста делла Порта из Неаполя.

По критериям патентоведения изобретателем телескопа должен считаться Ганс Липперсгей, голландский очковых дел мастер из Миддельбурга. В конце сентября 1608 г. он пытался официально зарегистрировать свое открытие зрительной трубы в правительстве Соединенных Штатов Нидерландов. За поддержание патента он соглашался платить немалые деньги. Претензии Липперсгея, правда, вызвали протесты нескольких мастеров-оптиков, которые сообщали в Гаагу, столицу Нидерландов, что они также владеют этим секретом. В частности, некто Яков Метиус всего несколькими днями позже Липперсгея подал аналогичное прошение в Гаагу на выдачу патента. (Интересно, что ни Липперсгей, ни Метиус не получили патента; официальный ответ был таков: «Это слишком просто для того, чтобы быть сохраненным в секрете»!) В архивах хранятся документы, из которых следует, что другой гражданин Миддельбурга, Захариас Жансен, примерно в то же время пытался без лишнего шума продать телескоп на Франкфуртской ярмарке. Липперсгей был знаком с Жансеном, что дало повод некоторым современникам утверждать, что Липперсгей украл идею телескопа у Жансена. Сам же Липперсгей говорил, что на эту идею его случайно натолкнули дети, игравшие линзами в его оптическом магазине.

Начало исследований Луны с помощью телескопов относят обычно к 1609–1610 гг. Однако история первых наблюдений Луны столь же непроста, как и история изобретения телескопа. Взглянуть на Луну через телескоп могли значительно раньше. Разве нельзя предположить, что первым на Луну посмотрел еще в 1589 г. итальянский ученый Джамбатиста делла Порта, на которого ссылается один из современников Липперсгея как на «истинного» изобретателя телескопа? Это мог быть и Ганс Липперсгей, и Яков Метиус, и Захариас Жансен или другие мастера-оптики, чьи имена не сохранились. Наконец, это мог быть и граф Мауриц – глава федерального правительства, командующий вооруженными силами Нидерландов, которому Ганс Липперсгей в сентябре 1608 г. привез свой телескоп для демонстрации полезности этого изобретения в военном деле.

В конце 1608 г. Липперсгей и другие мастера изготовили несколько телескопов, которые быстро разошлись по Европе. В частности, один из них, вероятно, в апреле 1609 г. попал в Италию в качестве подарка папе римскому Павлу V. В то время в Риме существовала коллегия ученых-иезуитов, одной из задач которой было давать заключения по поводу важнейших научных достижений с точки зрения их соответствия церковным догмам. Известно, что упомянутый телескоп Липперсгея оказался в руках ученых этой коллегии, и они немедленно начали наблюдения неба. В их числе оказался иезуит Клавий (Христоф Клау, 1537–1612), известный ученый и преподаватель, прослывший «Эвклидом своего времени», поскольку его «Геометрия» стала наиболее распространенным учебником в школах Западной Европы XVI–XVII столетий. Клавий также был одним из инициаторов замены юлианского календаря григорианским.

Естественно, наблюдения иезуитов не слишком афишировались, поскольку главной задачей монахов этого ордена была отнюдь не наука, а борьба с Реформацией. Существуют указания, что астрономы-иезуиты открыли неровности на поверхности Луны раньше, чем это сделал Галилей, однако никаких зарисовок лунной поверхности того периода пока не найдено.

Рис. 2.4. Томас Хэрриот (1560–1621) провел первые документированные наблюдения Луны с помощью телескопа.


Неизвестно, сколько инструментов, изготовленных Липперсгеем и, возможно, другими голландскими мастерами, разошлось в конце 1608 и начале 1609 гг. по Европе «неофициально». В частности, главный астроном Ансбаха Симон Мариус (1573–1624) пишет, что приобрел телескоп у некого голландца и с лета 1609 г. начал исследовать небо.

Однако результаты этих исследований пока не обнаружены.

Перечисленные выше первые наблюдения Луны в телескоп являются лишь историческими предположениями. К тому же следует различать ситуации, когда человек просто взглянул на Луну через телескоп первым и когда он первым начал изучать ее систематически, например, делать зарисовки увиденного.

Первые документированные наблюдения Луны провели 26 июля 1609 г. (по нашему календарю это было 5 августа 1609 г.) английский математик Томас Хэрриот и его помощник Кристофер Тук. Слухи об изобретении Липперсгея, дошедшие из Голландии осенью 1608 г., побудили Томаса Хэрриота (а также Галилея) построить собственный телескоп. Хотя Томас Хэрриот узнал об изобретении телескопа почти на полгода раньше Галилео Галилея, оба этих ученых построили собственные инструменты почти одновременно, в начале лета 1609 г. Это несколько странно, поскольку Томас Хэрриот, в отличие от Галилея, был оптиком с большим практическим опытом. Он раньше Снеллиуса открыл закон преломления света. Он рассчитал положение первой радуги от водяных капель, измерил показатели преломления воды, стекла, спирта и некоторых других веществ, составив подробные таблицы. Об этом он рассказал в своих письмах Иоганну Кеплеру еще в 1606 г.

Роль Хэрриота в первых телескопических исследованиях Луны малоизвестна. В основном это связано с тем, что он почти не публиковал свои труды, хотя и оставил большой научный архив – около 10 ООО страниц! Между прочим, Хэрриоту мы обязаны математическими символами > и <. Телескоп, с помощью которого он начал наблюдения Луны, был, вероятно, не очень совершенным. Во всяком случае, он имел увеличение не более 5–7 раз. Первая зарисовка Луны, сделанная Хэрриотом 26 июля 1609 г., почти не содержит деталей. Кратеров на ней не изображено, хотя линия терминатора показана неровной, с несколькими выступами. Это говорит о том, что Хэрриот, вероятно, видел лунные горы. Томас Хэрриот возобновил телескопические наблюдения и зарисовки Луны только через год и то, возможно, под влиянием слухов о замечательных открытиях Галилея.

Галилео Галилей узнал об изобретении телескопа голландцами в июне 1609 г., о чем он пишет в своем «Звездном вестнике». Галилей быстро разобрался в сути открытия и уже в июле начал создавать свои первые инструменты: он был владельцем небольшой мастерской. В конце августа 1609 г. он демонстрирует свой телескоп в Венеции знатным гражданам города и главе правительства, дожу Леонардо Донато. Свои первые регулярные наблюдения Луны Галилей, вероятно, начал вести с 30 ноября 1609 г., хотя в «Звездном вестнике» он указывает дату первых наблюдений 7 января 1610 г. К тому времени он уже имел инструмент, позволяющий достичь примерно двадцатикратного увеличения.

Важно, чтобы ученый, идущий к открытию, был профессионально и психологически подготовлен к нему. Возможно, подобное имело место с Галилеем при открытии лунных кратеров. Галилео не был чужд изящных искусств, ведь он был сыном Винченцо Галилея – музыканта и композитора, чьи произведения исполняются и в наше время. Галилео изучал теорию перспективы и тени по книге Альбрехта Дюрера «Обучение системе мер» (1528 г.), был членом академии художеств Флоренции и имел множество друзей среди художников. Его способности к рисованию помогли ему правильно понять и квалифицированно отобразить на бумаге то, что он увидел на поверхности Луны. О том, как непросто было изобразить Галилею увиденное, говорят его первые зарисовки Луны (рис. 2.5). Крупный кратер на терминаторе однозначно не отождествляется: возможно, это Альбатениус, но некоторые считают, что это Птолемей. Во всяком случае, его относительный размер на рисунке заметно больше истинного. Дело в том, что поле зрения телескопа Галилея было слишком малым, чтобы наблюдать всю Луну; он мог только приблизительно соразмерить увиденное в телескоп с полным диском Луны.

Рис. 2.5. Зарисовки Луны, опубликованные Галилеем в его «Звездном вестнике» (март 1610 г.). На двух нижних и левом среднем рисунках на терминаторе ниже центра, вероятно, изображен кратер Альбатениус или Птолемей. В любом случае относительный размер этого кратера преувеличен.


Галилей не только открыл неровности лунной поверхности; он также, говоря современным языком, сделал этому открытию и другим своим астрономическим результатам быструю и солидную рекламу, опубликовав спустя всего несколько месяцев после начала наблюдений книгу «Звездный вестник». Галилей первым описал лунные кратеры – наиболее распространенный тип поверхностных структур не только Луны, но и других тел без атмосферы. Он считал, что хорошо видимые на Луне даже без телескопа темные пятна могут быть участками безводных низин. Он первый использовал метод определения высоты возвышенности по длине тени применительно к лунным горам и дал правильное объяснение тому, что Луна в полной фазе выглядит плоской за счет шероховатости ее поверхности.

Рис. 2.6. Карта Луны, авторство которой приписывается Уильяму Гильберту, жившему до изобретения телескопа.


В некоторых источниках утверждается, что применительно к Луне слова «море» и «материк» были впервые использованы Иоганном Кеплером. Однако можно определенно говорить, что эти названия стали применяться значительно раньше, со времен Древней Греции. До сих пор темные участки лунной поверхности традиционно называют морями, а более светлые области – материками, хотя все понимают условность этой терминологии.

Начала лунной картографии теряются в веках. Если картой считать схематическое изображение крупнейших альбедных неоднородностей лунного диска с данными им названиями, то можно говорить, что первые карты Луны появились до изобретения телескопа. Известны зарисовки полной Луны с названиями нескольких образований, сделанные примерно в 1603 г. Уильямом Гильбертом (1544–1603) – первооткрывателем земного магнетизма. К сожалению, эти зарисовки были опубликованы лишь в 1651 г. На рисунке Гильберта можно угадать знакомые очертания лунных морей. Некоторым из них Гильберт дал названия. Например, область «Regio Magna Orientalis» легко отождествляется с Морем Дождей, a «Britannia» – с Морем Кризисов.

Рис. 2.7. Фрагмент карты Яна Гевелия, опубликованной в 1647 г.


Первые удачные попытки составить карты Луны в разных фазах по зарисовкам с помощью телескопа предприняли фламандский математик Мишель ван Лангрен и польский астроном Ян Гевелий. Оба они положили начало номенклатуре лунных образований. Однако до наших дней сохранились только названия Яна Гевелия, и то всего лишь шесть. В частности, он дал названия крупнейшим горным образованиям видимого полушария Луны – Апеннины, Альпы, Кавказ и Карпаты. На рис. 2.7 изображены Море Ясности и Море Спокойствия, которые на карте Яна Гевелия имеют общее название Pontus Euxinus, это латинское название Черного Моря.

Современная номенклатура лунных кратеров восходит к итальянскому астроному-иезуиту Джованни Баттиста Риччоли (1598–1671). Используя подробную карту Луны, вычерченную Франческо Гримальди (1618–1663), Риччиоли присвоил многим кратерам имена ученых Древней Греции и своих современников. Карта Гримальди – уникальный исторический документ. В частности, в верхней ее части имеется надпись: «Луна необитаема, ни одна душа не бродит там»; это, вероятно, наиболее надежный научный факт, установленный селенологами за последние 360 лет.

Сохранилось около 200 наименований, данных Риччоли. В частности, он назвал в честь Клавия огромный лунный кратер диаметром около 230 км. Кроме того, Риччоли дал имя опального Коперника одному из самых красивых кратеров на Луне, обладающему яркой лучевой системой. Однако некоторые современники Риччоли оказались им незаслуженно забыты. Сейчас кажется странным, что в честь Галилео Галилея назван лишь небольшой кратер, диаметром около 15 км, расположенный, кстати, неподалеку от кратеров Риччоли (диаметр 165 км) и Гримальди (диаметр 222 км). Ганс Липперсгей и Томас Хэрриот пострадали еще больше: именем первого назван скромный 7-километровый кратер к юго-западу от Прямой стены, а второй и того не имеет.

Надежные топографические карты Луны появились лишь в XIX столетии. Отметим карту Иоганна Мёдлера (1794–1874), составленную им совместно с В. Бером в 1834–1836 гг., на которой нанесено около 6000 деталей. Эта карта была построена по результатам визуальных наблюдений, равно как и более поздняя карта Юлиуса Шмидта (1825–1884), содержащая более 34 000 деталей. Названия многим деталям лунной поверхности дал в начале XIX в. известный немецкий астроном Иоганн Шрётер (1745–1816), собственную обсерваторию которого сожгли войска Наполеона в 1813 г. Немало названий принадлежит и Мёдлеру.

Решение об упорядочении номенклатуры объектов лунной поверхности принял Международный астрономический союз (MAC) в 1929 г. Результатом этого стал каталог лунных деталей Мэри Блэгг и Карла Мюллера. Позднее этот каталог не раз дополнялся и расширялся, в частности, за счет наименований объектов на обратной стороне Луны. В настоящее время имеют собственные имена несколько тысяч лунных деталей. Создано много топографических карт Луны с хорошей селенографической (координатной) привязкой, например «Полная карта Луны», изданная под редакцией В. В. Шевченко (ГАИШ МГУ). Следует отметить, что до сих пор существует проблема с точностью координатных систем различных топографических карт Луны. В частности, координатная система мозаик изображений, созданных по данным съемки космического аппарата «Клементина», в отдельных районах расходится с координатами существовавших до нее карт на десятки километров.

Здесь уместно сделать замечание об исчислении селенографических долгот. За начальный принят меридиан, проходящий через центр видимого полушария Луны. Вправо от него (для наблюдателя Северного полушария без телескопа!) идут восточные долготы, а влево западные, пока не встретятся в центре обратного полушария на меридиане 180°.

Рис. 2.8. Участок лунной поверхности с кратером Платон. Изображение заимствовано из фотографического атласа Койпера.


Историческим моментом в исследованиях Луны (в том числе картографических) стало начало применения фотографии. Первый фотоснимок, а точнее – дагерротип Луны сделал в 1840 г. англо-американский ученый Джон Уильям Дрэпер (1811–1882). Он так писал об этом:

«С помощью линзы и гелиостата я сфокусировал лунные лучи на пластинке. Линза имела три дюйма в диаметре. Через полчаса было получено очень отчетливое изображение» (Дариус, 1986). По сути, это была первая в мире астрофотография.

Даже Солнце сфотографировали лишь несколькими годами позже.

С тех пор получение изображений, передающих распределение того или иного физического параметра лунной поверхности, например яркости (обычная фотография), является важнейшим методом исследования Луны. Применение фотографии дало сильный импульс развитию лунной картографии. Были созданы фотографические атласы Луны, например знаменитый атлас Пикеринга. Вершиной фотографических исследований Луны с помощью наземного телескопа стал фотографический атлас, изданный под редакцией Джерарда Койпера в 1960 г. В нем участки, покрывающие все видимое полушарие Луны, сняты при разных условиях освещения. Пространственное разрешение некоторых изображений доходит до 800 м. Более высокой четкости изображений при наблюдении с Земли добиться очень сложно из-за атмосферного замытия изображений. В свое время атлас Койпера сыграл большую роль в развитии селенографии и космических исследованиях Луны. На рис. 2.8 показан фрагмент изображения из этого атласа, включающий кратер Платон с ровным дном. Диаметр кратера около 100 км; внутри него видны детали размером около километра.

В последние годы, благодаря появлению цифровых панорамных приемников высокого качества (ПЗС-матрицы и т. п.) и развитию методов обработки изображений, получение снимков высокого разрешения стало доступным любителям астрономии. Некоторые из любительских снимков превосходят по качеству даже фотографии из атласа Койпера. Так, на рис. 2.9 показано изображение кратера Платон, полученное любителем астрономии Крэйгом Зербе (он профессиональный дирижер) с помощью цифровой фотокамеры и небольшого телескопа. Это изображение – результат суммирования нескольких десятков снимков высокого качества, отобранных из большой серии, и небольшой корректировки пространственного спектра результирующего изображения; оно действительно имеет более высокое пространственное разрешение, чем фотографии из атласа Койпера.

Рис. 2.9. Изображение кратера Платон, полученное американским любителем астрономии Крэйгом Зербе.


Справедливости ради отметим, что и до появления цифровых камер любителям астрономии часто удавалось получать изображения довольно высокого качества. На рис. 2.10 показан снимок южного материка (в верхней половине изображения виден кратер Клавий), сделанный автором этой главы летом 1969 г. с помощью самодельного кассегреновского рефлектора с главным зеркалом диаметром 26 см (Пиркули, ШАО АН Азербайджана). В то время автор был молодым любителем астрономии, занимавшимся в астрономическом кружке Дворца пионеров и школьников в Баку, которым руководил замечательный педагог С. И. Сорин.

Рис. 2.10. Любительский снимок кратера Клавий.


Вернемся к лунной номенклатуре. Имена лунным деталям продолжают присваиваться и в наши дни. Причем иногда речь идет о присвоении новых имен даже крупным образованиям. Так, недавно, в номенклатурной группе MAC обсуждался вопрос о переименовании самого крупного ударного образования на Луне, известного как бассейн Южный полюс – кратер Эйткен. Это длинное и довольно неуклюжее название предлагалось заменить названием Бассейн Шумейкера, по имени Юджина Шумейкера – известного астронома и геолога, много сделавшего для подготовки научных программ космических экспедиций «Аполлон». Шумейкер трагически погиб в Австралии в нелепой автомобильной катастрофе; небольшая часть его праха в капсуле была отправлена на Луну на борту аппарата «Лунар Проспектор». Этот аппарат завершил свою научную программу падением в кратер вблизи южного полюса.

Таким образом, Юджин Шумейкер оказался первым человеком, погребенным на Луне (правда, точное место захоронения еще предстоит обнаружить). По ряду причин бассейн Южный полюс – кратер Эйткен так и не был переименован в его честь.

Рис. 2.11. Юджин Шумейкер (1928–1997), известный американский планетолог.


До полетов космических аппаратов к Луне человечество не знало, как выглядит обратная сторона Луны. Существовало много разных прогнозов на этот счет – от совершенно спекулятивных до методически корректных, основанных на экстраполяции «узора» деталей, видимых на обращенной к нам стороне Луны в зоне лимба.

Вспомним некоторые из наиболее интересных предположений относительно вида обратной стороны Луны. Известный исследователь Луны Юлиус Франц (1847–1913) писал: «…На задней стороне Луны… находится обширная, светлая, богатая кратерами возвышенность, лишенная морей». Это предсказание оказалось правильным. Правда, он же писал, что за юго-восточным лимбом Луны, возможно, расположено большое морское образование, частью которого является Море Смита. Этот прогноз Франца подтвердился не полностью.

Рис. 2.12. Видимая (слева) и обратная (справа) стороны Луны по данным зонда «Клементина» (1994 г., NASA). Проекция прямая ортографическая, т. е. лунный шар виден, так если бы мы смотрели на него с большого расстояния. Разрешение изображения низкое, примерно 30x30 км. Заметная полосатость картинки вдоль направления север – юг вызвана тем, что съемка поверхности велась с полярной лунной орбиты виток за витком. Каждая полоса снята на одном орбитальном витке.


Поверхность обратной стороны Луны впервые сфотографировал космический аппарат «Луна-3» в 1959 г. Это была большая победа советской науки. В настоящее время благодаря снимкам, сделанным астронавтами в ходе экспедиций «Аполлон», а также снимкам зонда «Клементина» обратная сторона Луны изучена топографически не хуже, чем видимая.

Хорошо видно, в частности, что морей на обратной стороне Луны значительно меньше по сравнению с видимой стороной.

2.2. Вид поверхности для наблюдателя с телескопом

Невооруженный глаз хорошо различает на лунном диске такие образования, как Океан Бурь, Море Дождей, Море Ясности, Море Спокойствия, Море Кризисов и некоторые другие крупные детали. С помощью даже слабого телескопа или бинокля на лунном диске становится видимым множество деталей; прежде всего глаз замечает крупные кратеры. На рис. 2.13 приведено изображение лунного диска с обозначением некоторых деталей. Оно составлено из фотографий первой и последней четверти Луны. Это сделано для того, чтобы лучше был виден кратерный рельеф, который за счет длинных теней четко проявляется вблизи терминатора.

В западной части лунного диска расположен Океан Бурь – крупнейшее на Луне образование морского типа. Его площадь (S) составляет 2100 тыс. км2. К югу от Океана Бурь лежат два моря – Море Влажности (S= 110 тыс. км2) и Море Облаков (S = 250 тыс. км2). На севере Океан Бурь граничит с Морем Холода (S = 430 тыс. км2) и Морем Дождей (S = 830 тыс. км2). Море Дождей очень неоднородно по цвету, а значит, и по составу. В центре лунного диска находятся небольшие образования морского типа – Залив Зноя (S = 40 тыс. км2) и Море Паров (S = 80 тыс. км2). Восточную часть диска украшают Море Ясности (S = 300 тыс. км2) и Море Спокойствия (S = 420 тыс. км2). У восточного лимба расположено Море Кризисов (S = 180 тыс. км2). На юг от Моря Спокойствия находятся Море Изобилия (S = 330 тыс. км2) и Море Нектара (S = 100 тыс. км2). Все лунные моря представляют собой впадины, заполненные застывшими лавами. Их темный цвет обусловлен отличием химического состава лав от окружающего материкового вещества; в морских лавах содержится большее количество хромофорных (поглощающих свет) элементов, главным образом железа и титана.

Рис. 2.13. Составное изображение лунного диска с обозначениями некоторых образований: А – Океан Бурь, В – Море Влажности, С – Море Облаков, D – Море Холода, Е – Море Дождей, F – Залив Зноя, G – Море Паров, Н – Море Ясности, I – Море Спокойствия, J – Море Кризисов, К – Море Изобилия, L – Море Нектара, S – Криптоморе (кратер Шиккард). 1 – кратер Тихо, 2 – кратер Коперник, 3 – кратер Аристарх, 4 – горы Апеннины, 5 – горы Альпы, 6 – кратер Платон, 7 – образование Рейнергамма, 8 – кратеры Теофил, Кирилл и Катарина (сверху вниз), 9 – кратеры Птолемей, Альфонс и Арзахель (сверху вниз), 10 – кратер Прокл.


Моря заполнялись не одновременно. Из оценок количества кратеров на единицу площади (кратерной плотности) следует, что самое старое – Море Спокойствия (ок. 3,5 млрд лет). Океан Бурь – наиболее молодой (ок. 2,5 млрд лет).

Рис. 2.14. Изображение кратера Тихо, заимствованное из фотографического атласа Койпера.


На Луне были найдены так называемые криптоморя. Это очень древние морские образования, которые были скрыты материалом выбросов при образовании крупных бассейнов, например бассейна Моря Восточного. Признаками криптоморя служат кратеры, имеющие темное гало, что является признаком наличия на некоторой глубине темного вещества, вероятно, базальтового состава. Классическим примером криптоморя является область, включающая кратер Шиккард.

Опишем детальнее некоторые интересные кратеры. Это самая распространенная форма рельефа на Луне. Старых кратеров очень много; они зачастую накладываются друг на друга. Молодые кратеры представляют наибольший интерес для изучения.

В южной части диска видимой стороны Луны расположен кратер Тихо (диаметр D = 80 км, глубина 3 500 м, высота вала над окружающей местностью около 2000 м). При большом фазовом угле этот молодой кратер ничем не отличается от соседних кратеров, однако в полнолуние он обнаруживает яркую лучевую систему. Эта система самая мощная на Луне; один из его лучей хорошо прослеживается даже в Море Ясности. Лучевая система Тихо возникла при образовании кратера и является результатом взаимодействия ударных выбросов с лунной поверхности. Причиной необычных фотометрических свойств лучевых систем молодых кратеров является в основном вскрытие нижележащего (более светлого) материала вторичными ударами выброшенного из кратера вещества. Кратер Тихо окружен темным кольцом-ореолом, хорошо заметным вблизи полнолуния. Это кольцо имеет небольшой избыток красного цвета. Снимки более высокого разрешения показывают, что вал этого кратера заметно разрушен, хорошо видны террасы, рельеф в окрестности кратера в масштабе десятков и сотен метров очень сложен.

Кратер Коперник (D = 90 км) также является очень заметным образованием на лунном диске. Он старше кратера Тихо, но тоже имеет лучевую систему, хотя и более слабую, чем у Тихо. Лучевая система Коперника также хорошо видна при малых фазовых углах, т. е. вблизи полнолуния. Глубина ровного дна и высота вала кратера Коперник относительно окружающей местности составляют соответственно 1600 и 2200 м. Изображения высокого разрешения показывают, что вал этого кратера сильно террасирован. Как и у Тихо, это террасирование имеет гравитационно-тектоническую природу. Террасы представляют собой гигантские осовы (мегаоползни) шириной в километры и протяженностью в десятки километров, смещенные друг относительно друга по вертикали на сотни метров. С помощью спектральных измерений в материале вала и днища кратера Коперник были обнаружены типичные для лунного материкового вещества ассоциации минералов: полевошпатовый материал с преобладанием низкокальциевого пироксена. Однако на трех участках довольно разрушенной центральной горки пироксен не был найден (по крайней мере, его меньше 5 %); в качестве главного компонента здесь выявлен оливин. Источник материала центральной горки, по-видимому, находится глубже, чем источники материала других частей кратера.

Рассмотрим еще несколько замечательных образований на лунной поверхности, которые хорошо видны в телескоп даже небольших размеров.

Начнем с района, где расположен знаменитый кратер Аристарх (D = 35 км). Он сравнительно молод и образовался на морской поверхности. При его рождении был пробит слой затопления морским материалом и вскрылась материковая подложка, т. е. более яркое материковое вещество было вынесено на морскую поверхность. Благодаря этому кратер Аристарх имеет сравнительно высокое альбедо и выглядит как очень контрастная деталь на лунном диске. Поверхность внутри кратера неоднородна по составу и имеет сложную структуру. Возможно, из-за этого вид деталей внутри этого кратера очень изменчив – он сильно зависит от условий освещения. Ранее такая изменчивость часто интерпретировалось как свидетельство проявления современной активности Луны. На рис. 2.15 приведена телескопическая фотография кратера Аристарх (он справа). Левее и ниже расположен кратер Геродот. Хорошо видна извилистая Долина Шрётера.

Рис. 2.15. Любительский снимок кратеров Аристарх (справа) и Геродот вблизи терминатора. Хорошо виден рельеф плато Аристарх.


Значительно более детальные изображения района кратера Аристарх получены с помощью космического телескопа «Хаббл». Он позволяет издалека делать снимки Луны очень высокого разрешения. Заманчиво было бы использовать «Хаббл» для спектрозональной съемки всей площади видимого полушария Луны, однако специалисты, контролирующие распределение времени на этом телескопе, избегают наблюдать Луну: это слишком яркий объект для такого телескопа. Кроме того, исследования далеких объектов Вселенной имеют гораздо более высокие приоритеты для этого инструмента. Космический телескоп «Хаббл» находится на околоземной орбите уже около 20 лет. За это время он смотрел на Луну лишь два раза. На рис. 2.16 показан снимок кратера Аристарх, сделанный телескопом «Хаббл» в синих лучах при малом фазовом угле; пространственное разрешение около 200 м. Внутри кратера видно много ярких деталей.

Рис. 2.16. Изображение кратера Аристарх, полученное с околоземной орбиты космическим телескопом «Хаббл».


Кратер Аристарх образовался рядом с замечательной областью, которая называется плато Аристарх или пятно Вуда (на рис. 2.16 оно над кратером Аристарх). Предполагается, что эта область является останцом, сохранившимся при затоплении лавами бассейна Океана Бурь. Об этом говорит приподнятость плато Аристарх над уровнем окружающего моря и больший возраст (определенный по числу мелких кратеров на единицу поверхности) некоторых участков этого образования. Плато Аристарх пересекает Долина Шрётера. Ее длина примерно 170 км, а ширина около 7 км. Было множество сообщений о нестационарных (временных) явлениях в Долине Шрётера, но их достоверность трудно оценить.

Необычным является материал, покрывающий поверхность плато Аристарх. В видимой части спектра его альбедо довольно низкое. Этот материал имеет аномально сильное ультрафиолетовое (УФ) поглощение. Это заметил еще известный физик Роберт Вуд в 1911 г., когда получил свои первые фотографии Луны в УФ-диапазоне спектра. На фотографиях Вуда плато Аристарх выделяется очень сильно (поэтому его и называют пятном Вуда). Рыжеватый оттенок этого образования отмечался гораздо раньше Яном Гевелием. Отметим, однако, что границы ультрафиолетового пятна Вуда не всегда буквально следуют топографическим границам плато Аристарх. Роберт Вуд предполагал, что причиной возникновения УФ-поглощения в пятне служат отложения серы или ее соединений, сопровождающие вулканическую деятельность. Но сейчас считают, что аналогом материала поверхности пятна Вуда является необычный грунт, найденный в районе посадки экспедиции «Аполлон-17». Этот грунт содержит много стеклянных шариков оранжевого цвета. Образцы такого грунта показывают сильное УФ-поглощение. Предполагается, что оранжевые шарики имеют вулканическую природу – они возникли при распылении в вакууме фонтанирующей лавы в окрестности места ее выхода на поверхность. Среди геологов нет согласия в том, когда могли происходить такие извержения, но, скорее всего, их возраст велик. На снимках плато Аристарх, сделанных современными цифровыми фотокамерами, хорошо различаются цвета: плато имеет выраженный рыжеватый оттенок в сравнении с окружающими морскими областями.

Рис. 2.17. Телескопическое изображение горной системы лунных Апеннин.


Следующий объект нашего рассмотрения – лунные горы.

Горная цепь Апеннин – одна из самых мощных горных систем на Луне. Высота некоторых пиков доходит до 5–6 км. Эта цепь обрамляет Море Дождей с юга и юго-востока. Ее происхождение связано с ударным образованием бассейна этого моря. Северные склоны Апеннин, обращенные к Морю Дождей, более крутые, чем южные (рис. 2.17). Однако эта крутизна относительна – типичные наклоны поверхности на севере Апеннин редко превышают 10° на базе в 1 км. У северо-западного подножия Апеннин находится извилистая Борозда Хэдли (Гадлея), имеющая длину около 100 км, среднюю ширину 1,5 км и глубину 300–400 м. В районе этой борозды совершил посадку «Аполлон-15».

Рис. 2.18. Борозда Хэдли.

Рис. 2.19. Астронавт рядом с лунным электромобилем вблизи Борозды Хэдли.


Альпы – менее мощная горная система, обрамляющая Море Дождей с северо-востока. Здесь самая высокая вершина (разумеется – Монблан) имеет высоту около 3500 м. Удивительным образованием в этом районе Луны является Долина Альп, которая как бы прорезает горную систему Альп от Моря Холода до Моря Дождей (рис. 2.20). Эта долина прямолинейна; ее длина около 150 км, а средняя ширина около 10 км. Когда-то допускалось, что такая структура могла образоваться при косом (скользящем) ударе крупного тела о лунную поверхность. Простые оценки показывают невозможность такого сценария. В данном случае мы имеем дело, вероятно, с древним разломом, залитым лавой. На снимке Крэйга Зербе хорошо видна узкая трещина в середине долины. На космических изображениях высокого разрешения на этой трещине видны кратеры. Вероятно, они моложе трещины и попали на нее случайно. Но следует отметить, что на трещинах могут возникать так называемые димпловые кратеры: за счет просыпки грунта в трещину образуется воронка.

Рис. 2.20. Изображение Долины Альп, полученное Крэйгом Зербе с помощью цифровой камеры.


В Море Дождей имеются структуры останцового типа, например Прямой хребет длиной 80 км или пик Тенериф. При взгляде в телескоп, когда эти структуры освещены скользящими лучами, они кажутся грандиозными крутыми горами. На самом деле все обстоит не столь уж драматично. Например, пик Тенериф при высоте чуть более 2,4 км имеет размер у основания 15x20 км, что дает средний наклон поверхности пика менее чем 1/6. Конечно, локальные наклоны могут быть большими.

Рис. 2.21. Телескопическое изображение она Прямой Стены.

Рис. 2.22. Участок Моря Дождей, включающий пик Тенериф и Прямой хребет.

Рис. 2.23. Изображение кратера Варгентин, заимствованное из атласа Койпера.


Примечательным объектом лунной поверхности является также Прямая Стена. Это линейная сбросовая структура. Ее длина 110 км. Большая часть Стены возвышается на 600 м над равниной. Стена асимметрична – ее западный склон гораздо более крутой. Однако даже там крутизна склонов редко превосходит 30° на базе в сотни метров.

Рис. 2.24. Кратер Рейнер (справа) и светлая формация Рейнер-гамма. Телескопический снимок.


Среди уникальных образований на поверхности Луны особое место занимает кратер Варгентин диаметром 85 км. Его часто называют «столовой горой Варгентин». Он находится вблизи юго-западного лимба недалеко от кратера Шиккард. Кратер Варгентин заполнен лавой до уровня вала. Поверхность этого лавового поля сравнительно ровная. Это удивительный пример затопления кратера без прорыва вала – мощности лавового источника хватило ровно на то, чтобы заполнить чашу до краев, не разрушив ее.

Рис. 2.25. Телескопическое изображение кратеров Теофил, Кирилл и Катарина.


Отметим еще раз замечательный кратер Платон (D = 100 км), залитый лавой. Его очень легко найти на Луне вблизи полной фазы с помощью телескопа, поэтому этот кратер иногда используют в качестве стандартной детали для спектрофотометрических привязок при наблюдениях планет. Высота вала этого кратера достигает 2 км, однако из-за кривизны лунной поверхности даже такой вал не будет виден из центра этого кратера (см. рис. 2.8 и 2.9). Заметим также, что вещество этого вала и примыкающих к нему с севера внешних областей необычно по составу, о чем свидетельствует нетипичный для таких образований избыток красного цвета.

Рис. 2.26. Кратеры Птолемей и Альфонс вблизи терминатора (свет падает сбоку).


В Океане Бурь расположена небольшая формация, именуемая Рейнер-гамма. Она имеет форму вытянутого кольца, но это не кратер. Рис. 2.24 позволяет сравнить это образование с кратером Рейнер, который находится в правой части изображения. Образование Рейнер-гамма считается классическим примером свирла – структуры, возникающей при падении распавшейся кометы или компактного метеороидного роя на лунную поверхность. В рельефе эта область не выделяется – это чисто альбедное образование, имеющее детали причудливой формы.

Рис. 2.27. Кратеры Птолемей и Альфонс в эпоху полнолуния (свет падает отвесно).


С этой формацией связана также магнитная аномалия. Формация Рейнер-гамма имеет необычные фотометрические свойства, они указывают на то, что поверхность этого образования очень молодая, а ее микрорельеф более сложный, чем в окружающих морских областях.

На западном побережье Моря Нектара расположена последовательность крупных кратеров: Теофил (D = 100 км), Кирилл (D = 90 км) и Катарина (D = 100 км). Кратер Теофил – более молодой; он перекрыл вал кратера Кирилл. Замечательная особенность кратера Теофил – его центральная горка, у которой несколько вершин. Иногда астрономы-любители проверяют качество телескопического изображения по тому, разрешается ли горка кратера Теофил или нет: если не разрешается, то наблюдать на небе что-либо точно не стоит.

Кратер Птолемей – один из самых крупных на Луне (D = 225 км). Кривизна его заполненного лавой днища хорошо видна на изображениях, близких к терминатору (рис. 2.26). На дне этого кратера видны неровности, вероятно, обусловленые рельефом подстилающей поверхности или связаные с многоэтапностью заливки морской лавой этого небольшого бассейна. Правее и немного ниже кратера Птолемей находится кратер Альбатениус, который, как считается, изображен на одной из первых зарисовок Луны, сделанных Галилео Галилеем.

По-своему уникален кратер Альфонс (D= 125 км). Его центральная горка возвышается почти на километр. У вала хорошо заметны признаки внутреннего обрушения (он как бы двоится). Через середину кратера проходит геологический разлом. В кратере расположено несколько темных пятен, заметных в телескоп среднего размера при хорошем качестве изображения. Это мелкие кратеры с темными ореолами; некоторые из них ассоциированы с трещинами того же простирания, что и центральный разлом. Происхождение темных ореолов не совсем понятно. Вероятно, здесь произошло ударное вскрытие темного материала, как в случае криптоморей. Нельзя не отметить, что в кратере Альфонс, возможно, наблюдались нестационарные явления (см. ниже).

Интересен молодой кратер Прокл, находящийся в восточной части лунного диска. В полнолуние хорошо видна его лучевая система; она асимметрична. Такое возможно при очень косом ударе налетевшего тела по лунной поверхности.

В заключение этого раздела отметим: каждый район и каждая деталь лунной поверхности, имея общие для всей Луны особенности формирования и эволюции, почти всегда демонстрируют также и замечательные индивидуальные черты. Это делает интересным и захватывающим изучение практически любого района лунной поверхности.

2.3. Нестационарные явления

Исследованию нестационарных, временных явлений на лунной поверхности и окружающем ее пространстве уделялось некогда большое внимание. Это было в период подготовки космических программ изучения Луны. Сейчас такого рода наблюдения чаще проводятся любителями астрономии, хотя встречаются публикации на эту тему авторитетных профессиональных наблюдателей, таких как французский астроном Одуэн Дольфюс. В последнее время интерес к этой проблеме несколько возрос в связи с обнаружением на ночной стороне Луны вспышек, вызванных ударами метеоритных тел.

Как правило, сообщения о кратковременных явлениях малодоказательны. Можно думать, что подавляющая часть таких сообщений вообще не является достоверной. При проведении новых исследований следует иметь в виду, что проблема доказательства реальности нестационарных явлений и скептицизм научной общественности будут постоянно сопутствовать работам, ведущимся в этой области. Данный раздел посвящен обзору наиболее достоверных результатов.

Проблема поиска возможных изменений, происходящих на лунной поверхности, очень старая. Такие изменения пытались обнаружить многие астрономы-наблюдатели, начиная с Галилея. Известный английский астроном Джон Гершель сообщал в позапрошлом столетии о видимых им на затененной части лунного диска ярких точках, которые он считал лунными вулканическими извержениями. Сейчас понятно, что никаких действующих вулканов на Луне нет, но тогда эти сообщения авторитетнейшего наблюдателя будоражили умы. Следует отметить, что и до изобретения телескопа проблема нестационарных явлений на Луне была актуальна. В частности, лет 20 назад на страницах уважаемого научного журнала «Nature» обсуждалось сообщение о том, что в 1178 г. некоторые очевидцы наблюдали явления, возможно, связанные с рождением на обратной стороне Луны, вблизи лимба, кратера Джордано Бруно. Дело в том, что в Англии (Кентербери) в церковных архивах, датированных XII столетием, обнаружились записи показаний пяти человек о «странном» поведении Луны: на ней были видны искры, а верхний конец ее серпа вдруг раскололся на две части (тень от выброса?). Кто знает, не отмечали ли слишком усердно эти люди семейный праздник? А может быть, они видели случайно спроецированный на Луну болид, сгоревший в атмосфере Земли? Или все же это событие связано с Луной? Кратер Джордано Бруно (D = 20 км) действительно один из самых молодых на Луне. Однако его изображения, полученные с высоким разрешением, показывают, что в нем присутствует достаточно много мелких кратеров. Это означает, что молодость этого объекта относительна – его образование едва ли можно датировать XII веком.

Существуют каталоги нестационарных явлений на поверхности Луны. В частности, в 1960-е гг. Берли и Мидлхерст изучили литературу, охватывающую несколько сотен лет, в которой упоминается о примерно 200 случаях наблюдений на Луне ярких вспышек, изменений цвета и прочих преходящих явлений. Эти наблюдения были сопоставлены с солнечной активностью (зависимости не обнаружилось) и с приливным действием Земли. Оказалось, максимальное число явлений приходится на перигей и апогей лунной орбиты. Отсюда был сделан вывод, что явления, наблюдаемые на Луне, возможно, вызваны внутренними причинами, происходящими в Луне в периоды максимальных изменений приливных напряжений.

Позднее Камерон составила каталог более 1500 лунных временных явлений. Они связаны с примерно 100 объектами лунной поверхности; интересно, что на область кратера Аристарх попадает 30 % всех явлений. Распределение этих объектов показывает, что преходящие явления чаще наблюдаются по краям морей. Обработка каталога не дала корреляции этих явлений ни с одним физическим фактором. Корреляция с приливами, указанная ранее Берли и Мидлхерст, оказалась выраженной очень слабо. Вполне возможно, что многие события в каталогах Мидлхерст и Камерон просто недостоверны.

Особенно интенсивно проблема нестационарных явлений изучалась перед началом реализации космической программы «Аполлон». Например, для выявления кратковременных цветовых явлений на Луне в конце 1960-х гг. была создана сеть из 12 станций в США и двух в Англии. Выполнялось «блинкование» Луны – быстрое сравнение двух полученных последовательно изображений, позволяющее заметить их различие. Это делалось при помощи небольших телескопов, снабженных вращающимися обтюраторами, которые имели красный и синий светофильтры. Станции работали в течение нескольких лет, однако не дали результатов, которые достоверно подтверждали бы нестационарные цветовые эффекты. Позднее к явлениям такого рода возникло устойчивое скептическое отношение. Появились работы, в которых разбирается ошибочность некоторых данных о временных явлениях на Луне. Например, это касалось сообщений, появившихся 22–28 февраля 1975 г., когда в Западной Европе господствовал глубокий антициклон с температурной инверсией. Дисперсия света при преломлении в такой атмосфере могла дать окраску альбедно контрастных лунных деталей.

Согласно работе Яна, опубликованной в 1972 г., все наблюдавшиеся временные явления на Луне делятся на три типа: 1) очень быстро проходящие яркие вспышки; 2) длительные, до нескольких часов, бесцветные свечения или затемнения районов размером во многие квадратные километры; 3) красные или голубые свечения. Первая группа явлений может быть как лунного, так и не лунного происхождения. В последнем случае вспышки могут объясняться случайным проецированием на лунный диск картины сгорания метеоров в земной атмосфере. Другим «не лунным» объяснением вспышек, наблюдаемых в наше время, могут быть блики от солнечных панелей искусственных спутников, в большинстве своем уже утерянных и потому находящихся в бесконтрольном полете. Однако теоретически возможны и вспышки, связанные с Луной. В частности, в некоторых работах 1970– 1980-х гг. обсуждается механизм электрического разряда в разреженном газе, который, как считается, может выделяться из трещин в лунной поверхности при освобождении напряжений. То, что процесс выделения газов из недр Луны реален, сомнений не вызывает – это экспериментальный факт, установленный в ходе орбитальной съемки лунной поверхности, проведенной на космическом корабле «Аполлон-16» с помощью ?-спектрометра. Были обнаружены вариации потока ?-частиц, порождаемых радиоактивным распадом очень летучего газа радона, который выделяется из лунных недр вместе с другими компонентами. Проблема состоит в количестве газа, необходимого для поддерживания разряда, – согласно измерениям «Аполлона-16», газа на много порядков меньше, чем необходимо.

В последнее время заметный импульс получили исследования вспышек на лунной поверхности, которые вызваны ударами метеоритов. Такие вспышки надежно наблюдались в 1999–2002 гг., когда Луна пересекала метеорный поток Леониды. Однако этим наблюдениям предшествовали теоретические работы, которые стимулировали экспериментальные исследования. В частности, расчеты, выполненные российским физиком И. В. Немчиновым и его коллегами, показали, что удар о лунную поверхность метрового метеороидного тела, летящего со скоростью 15–30 км/с, может дать вспышку, регистрируемую с Земли. Наибольший интерес в таких исследованиях представляли бы детальные спектры вспышек. Они могли бы дать информацию о составе материала, вовлеченного в ударное испарение. Однако световой поток от этих событий должен быть весьма слаб. При образовании импактного (ударного) кратера в энергию световой вспышки преобразуется лишь малая доля кинетической энергии ударника, всего 10-4-10-5. Однако удары тел размером порядка 1 м могут быть зарегистрированы с помощью телескопов с зеркалом диаметром около 1 м.

Серьезной проблемой, ограничивающей наблюдательные возможности, является длительность вспышек. Чем меньше упавшее на Луну тело, тем короче вспышка. Для тел размером 1 м длительность вспышки составляет всего одну секунду. Тем не менее детектирование таких вспышек вполне возможно, что, как уже отмечалось, было подтверждено с помощью наблюдений Луны во время пересечения ею метеорного потока Леониды.

Рис. 2.28. Любительская фотография лунной поверхности со случайно спроецировавшимся самолетом.


Патрулирование импактных вспышек проводилось синхронно с использованием инструментов, находящихся на значительном расстоянии друг от друга, чтобы отделить вспышки на поверхности Луны от вспышек, вызванных отражением солнечных лучей от спутников или сгоранием метеоров в земной атмосфере. Удивительные случайные проекции действительно порой происходят при наблюдениях Луны. Так, на любительской фотографии (рис. 2.28) можно видеть лунную поверхность, на которую спроецировался летящий самолет.

Метеорный поток Леониды наблюдается каждый год примерно 17–18 ноября, когда Земля пересекает орбиту кометы 55Р/Темпеля – Тутля; вдоль этой орбиты движется множество пылевых и более крупных фрагментов кометы. Движение потока по отношению к движению Земли почти встречное, поэтому скорость соударения частиц потока с Луной очень высока, примерно 70 км/с. Поток неоднороден, поэтому количество ударных событий может год от года сильно варьироваться. Ноябрь 2001 г. был очень благоприятным для регистрации вспышек на ночной стороне Луны. Американские любители астрономии и профессиональные астрономы надежно зарегистрировали не менее шести вспышек на темной части лунного диска. Это были одновременные наблюдения из разных мест, документированные видеосъемкой, причем измерение проводились в такое время, когда большинство искусственных спутников, способных дать случайно проецирующийся блик, находились в глубокой тени.

В ноябре следующего, 2002 года, пересечение Луной потока Леонид происходило при полнолунии, что сделало регистрацию вспышек практически невозможной. Леониды – очень неоднородный поток: в нем есть уплотненные и разреженные области, орбиты его частиц возмущаются Юпитером. Обычно усиление потока наблюдается с периодом в 33 года, но это правило может и не выполняться. Ближайшее благоприятное пересечение Луны с этим потоком прогнозируется лишь на 2099 г., так что придется терпеливо ожидать новых результатов.

Отметим сравнительно свежее ударное событие в Море Облаков, которое произошло 2 мая 2006 г. Вспышку удалось снять на видео ученым NASA, ведущим патрульные наблюдения Луны. Вспышка длилась 0,4 секунды; мощность взрыва оценивается эквивалентом 4 тонн тротила. Расчеты показали, что лунную поверхность ударило тело диаметром около 25 см, которое двигалось со скоростью примерно 40 км/с. Должен был образоваться кратер диаметром около 15 м и глубиной около 3 м, но с Земли его заметить невозможно.

Если причины вспышек на ночной стороне Луны довольно понятны, то глобальные изменения яркости (если они действительно происходят) на больших площадях освещенной части лунной поверхности интерпретировать довольно трудно. Учитывая, что яркость таких преходящих явлений должна быть сравнима с яркостью освещенной Солнцем лунной поверхности, механизм свечения должен быть очень мощным. В работе Гарлика и его коллег 1977 г. предполагается, что это может быть связано с временными возмущениями поверхностного пылевого слоя, нарушающими когезию частиц (т. е. связь между молекулами разных частиц при их соприкосновении), что усиливает диффузное отражение света. Причинами таких нарушений считаются: 1) спорадический выход газов; 2) лунотрясения; 3) электростатическая левитация пыли, типа той, что наблюдалась по свечению горизонта при заходе Солнца на снимках космических аппаратов «Сервейор-7» и «Луноход-2». Роль этих механизмов трудно анализировать, не имея достаточно надежных характеристик самих явлений. Понятно, однако, что при нынешней активности недр Луны первые два механизма едва ли можно обсуждать всерьез. Третий механизм, вероятно, также слишком слаб, чтобы создать эффекты, которые наблюдались бы с Земли. Однако он все же не кажется вовсе безнадежным, и его продолжают исследовать.

Недавно сотрудница НИИ астрономии Харьковского национального университета им. В. Н. Каразина Л. В. Старухина вновь рассмотрела возможность временного потемнения лунной поверхности во время мощных солнечных вспышек. Под действием ионизирующих излучений, сопровождающих вспышку, в твердых материалах могут возникать дефекты, приводящие к дополнительному поглощению света в видимом и ультрафиолетовом диапазоне. Способность радиационно-индуцированных центров поглощения к термо– и фотообесцвечиванию делает возможным последующее восстановление отражательной способности реголита. Расчеты показали, что если радиационная чувствительность материала лунной поверхности равна максимальной чувствительности прозрачных силикатных стекол, то эффект потемнения можно наблюдать на пределе чувствительности астрономических приборов и только после наиболее мощных солнечных вспышек, таких как события 1959–1960 гг. и августа 1972 г.

Рис. 2.29. Спектрограммы кратера Альфонс во время предполагаемого события (верхняя) и после него (нижняя).


В связи с обсуждением нестационарных явлений на Луне нельзя не отметить открытие, сделанное Н. А. Козыревым совместно с В. И. Езерским при наблюдениях в Крымской астрофизической обсерватории 3 ноября 1958 г. Оно касается истечения газа в кратере Альфонс. Хотя авторов этого открытия двое, боролся за свою правоту в дальнейшем лишь Н. А. Козырев. А бывший в свое время директором Харьковской астрономической обсерватории В. И. Езерский в доверительном разговоре с автором этой главы не раз эмоционально высказывал свое крайне скептическое отношение к полученным результатам, не приводя, впрочем, никаких существенных доводов против них. Хотя спектрограммы Козырева выглядят более или менее убедительно (рис. 2.29), следует сказать, что имеется много работ, в которых они обоснованно критикуются. Так, известный наблюдатель комет С. Арпиньи критиковал отождествление полос в спектре кратера Альфонс с системой полос Свана С2, наблюдающейся в кометных спектрах. В спектре кратера есть ряд деталей, отсутствующих в спектрах комет. Детали спектра кратера в отличие от полос системы Свана имеют резкие края с коротковолновой стороны. Все это действительно заставляет сомневаться в отождествлении деталей в спектре кратера Альфонс с полосами Свана С2. Позднее Н. А. Козырев не раз сообщал о своих наблюдениях подобных явлений, однако никто не подтвердил их достоверность независимо.

Трудность и неоднозначность задачи детектирования нестационарных явлений на лунной поверхности может быть проиллюстрирована еще двумя историями, случившимися в эпоху первых космических полетов к Луне. Было заранее известно примерное время и место падения на лунную поверхность советской АМС «Луна-2». Однако исследования Луны, выполненные независимыми наблюдателями, дали странные результаты. Оказалось, что темные (по другим данным, светлые) облака от падения аппарата наблюдались в разное время как минимум в четырех точках лунной поверхности, разделенных тысячами километров. Очевидно, что часть сообщений (а может, все?) просто недостоверна, хотя наблюдения проводились в основном профессиональными наблюдателями. Другой пример связан с аналогичной попыткой наблюдать падение космического аппарата «Рейнджер-6» в 1964 г. Была выполнена специальная программа слежения за падением этого аппарата с помощью двух телескопов Ликской обсерватории. Она не дала положительных результатов – никаких надежных признаков падения зарегистрировано не было.

Следует рассказать и более свежую историю. Программу зонда «Лунар Проспектор» было решено завершить ударом аппарата о поверхность вечно затененного участка, расположенного на южном полюсе Луны. Предполагалось, что такой удар позволит извлечь из слоя реголита лед Н2O, ударное испарение и последующая фотодиссоциация которого даст обнаружимое с Земли свечение газа. К сожалению, проведенные наблюдения (в том числе с использованием космического телескопа «Хаббл») дали отрицательный результат – никаких признаков падения аппарата обнаружено не было. Таким образом, даже когда заранее было известно о предстоящих нестационарных явлениях на Луне (удары космических аппаратов), их регистрация дала отрицательные или противоречивые результаты.

Миссия космического аппарата «Смарт-1» с этой точки зрения оказалась более результативной. Утром 3 сентября 2006 г. этот аппарат завершил свою программу ударом о лунную поверхность в точке с координатами 46,2° з. д. и 34,4° ю. ш. Это вызвало короткую вспышку, которая была уверенно зарегистрирована инфракрасным канадско-французским телескопом на Гавайях на длине волны 2,12 мкм. Было видно даже облако пыли, которое очень быстро рассеялось.

Лет десять назад сотрудница знаменитой Лаборатории реактивного движения Бонни Буратти попыталась исследовать возможные нестационарные явления на лунной поверхности, используя изображения, полученные космическим аппаратом «Клементина». В огромном массиве данных, переданных этим зондом, удалось найти изображения четырех участков поверхности, полученные до и после нестационарных явлений, которые на этих же участках наблюдались с Земли любителями астрономии. Ни на одном из четырех снимков не было найдено никаких изменений, которые можно было бы отнести к проявлению нестационарных явлений. Этот «скучный» вывод дался Буратти нелегко, ведь ранее она же сообщала об открытии с помощью данных космического аппарата «Клементина» надежных признаков нестационарных явлений на Луне. Однако четыре года спустя, после критики коллег, Буратти признала, что результат ее ранней работы был ошибочным.

Как видим, вопрос о реальности временных явлениях на лунной поверхности все еще не вышел за рамки научной дискуссии. Исключение составляют лишь работы последних лет, связанные с регистрацией ударных вспышек на ночной стороне. С одной стороны, можно понять скептиков, которые ссылаются на плохую документированность преходящих явлений и низкую квалификацию большинства наблюдателей, из-за чего возможны откровенные фальсификации данных и/или тенденциозное толкование понятных явлений, происходящих, например, в ближайшей окрестности Земли. С другой стороны, нет принципиальных запретов на то, чтобы нестационарные явления происходили на самой Луне и наблюдались бы с Земли.

Таким образом, дальнейший поиск преходящих явлений следует продолжать, хорошо, однако, понимая, что доказательство реальности этих явлений и их приуроченности к Луне требует не меньше усилий, чем само их обнаружение.

Литература

Дариус Дж. Недоступное глазу. М.: Мир, 1986.

Зигель Ф. Ю. Лунные горизонты. М.: Просвещение, 1976.

Шкуратов Ю. Г. Луна далекая и близкая. Харьков: ХНУ им. В. Н. Каразина, 2006.

Дарлинг Д. Кратковременные лунные явления. Руководство наблюдателя.

http://www.astronomer.ru/library.php?action=2&sub=2&gid=54

Луна продолжает удивлять.

http://www.astronomer.ru/news.php?action=l&nid=334

Первые рисунки лунной поверхности:

http://physics.ship.edu/~mrc/pfs/110/inside_out/vul/Galileo/Things/moon.html

В. И. Чикмачев. Путешествия к Луне с телескопом

До сих пор только двенадцати землянам посчастливилось совершить прогулки по Луне. Это было давно – 40 лет назад. Но и до этих экспедиций «Аполлонов» и после них тысячи профессионалов и любителей астрономии еженощно отправлялись и отправляются «на Луну» с помощью своих телескопов. К счастью, для таких экспедиций подходит любой телескоп, а для начала – даже бинокль. Вооружайтесь оптикой и картами, одевайтесь потеплее – и в путь!

3.1. Море Кризисов

Нашу первую экскурсию по Луне мы проведем в северо-восточном секторе ее видимого с Земли полушария. Здесь расположено крупное образование лунного рельефа – Море Кризисов. Как и многие другие лунные моря, оно одновременно является и древним кратерным бассейном, и лунным морем. Около 3,9 млрд лет назад, когда Солнечная система находилась на ранней стадии развития, громадный метеорит упал на эту часть Луны. В результате удара образовались глубокая выемка диаметром 570 км и сложный насыпной вал шириной 200 км, состоящий из крупных и мелких частиц раздробленной породы. Этот удар вызвал также серию трещин и разломов внутри лунной коры. В течение последующих 300–500 млн лет базальтовая лава постепенно вытекала через эти трещины, заполняя впадину и образуя морскую поверхность. Образцы пород, доставленные на Землю советской автоматической станцией «Луна-24», подтвердили, что Море Кризисов заполнялось лавой именно в этот период. И вот теперь, через 3,3 млрд лет, мы можем наблюдать эту поверхность.

Рис. 3.1. Вперед, к Луне! Снимок с борта космического корабля «Аполлон-11».


Если вы хотите рассмотреть ландшафт Моря Кризисов достаточно подробно, то для этого необходимо воспользоваться небольшим телескопом, например рефрактором диаметром 60–80 мм. С помощью такого инструмента вы сможете наблюдать кратеры диаметром до 5 км, морские гряды, лавовые поля, пирокластические отложения (породы вулканического происхождения), разломы и даже сможете найти районы прилунения двух советских лунных станций. Естественно, самих станций вы не увидите даже в самый большой современный телескоп.

Особенности рельефа лучше всего видны вблизи терминатора – границы между темной и освещенной частями лунной поверхности. В этом случае наклонное освещение удлиняет тени, которые особенно хорошо подчеркивают детали рельефа, невидимые при вертикальном падении солнечных лучей. Поэтому район Моря Кризисов лучше всего наблюдать, когда там происходит восход Солнца – через 2–4 дня после новолуния, или на заходе – через 2 дня после полнолуния.

Рис. 3.2. Море Кризисов с прилегающими областями.


Кроме того, наилучшим временем для наблюдения Моря Кризисов является период максимальной положительной либрации по долготе, когда Луна так поворачивается по отношению к Земле, что все детали видимого полушария Луны сдвигаются максимально к западу от ее восточного лимба. В телескоп ясно видно, что в некоторые дни Море Кризисов отходит дальше от края диска, а в другие дни (при отрицательной либрации по долготе) оно приближается к краю. При этом горы и другие детали поверхности, расположенные у самого лимба, то скрываются за краем диска, то выходят на обращенное к нам полушарие. Все это происходит так, как если бы лунный шар медленно покачивался относительно некоторого среднего положения (рис. 3.3). Описанное явление получило название «либрация» от латинского слова libra — весы, качели, и в переводе как раз и означает «покачивание».

Рис. 3.3. Либрации Луны по долготе происходят в силу ее неравномерного движения по орбите. В районе апогея орбиты (точка А) Луна движется медленнее, чем в районе перигея (Р). Но вокруг своей оси она вращается с постоянной скоростью. Это позволяет земному наблюдателю в течение лунного месяца немного заглядывать за восточный и западный края «видимого» полушария Луны, которое на схеме отмечено дугой cab. Полушарие, видимое наблюдателю в данный момент, показано светлым, а скрытое – серым.


Подобно другим лунным морям, дно Моря Кризисов, в общем-то очень ровное и плоское, при подробном рассматривании в телескоп оказывается усеянным множеством кратеров разных размеров и типов. Кроме того, на поверхности Моря можно заметить системы протяженных морских гряд. Предполагают, что гряды образовались в процессе заполнения моря лавой. Вообще говоря, расположение морских гряд в плане напоминает сеть трещин растяжения, для которых характерно отсутствие пересечений. Вероятно, в процессе охлаждения морская поверхность местами растрескивалась. Длинные и глубокие трещины постепенно заполнялись расплавленным веществом из-под поверхности, которое могло переливаться через их края, что и проявилось в виде образований разного типа. Некоторые трещины на части их протяжения превращались в гребень, в другой части – в борозду, а в промежутках они заполнились расплавленным веществом до уровня поверхности.

Детальное знакомство с районом Моря Кризисов мы начнем с северо-восточной его части. Здесь окружающее это море материковое кольцо расступается и открывает путь к скалистой территории, где расположен кратер Эймарт, а также и неправильная равнина – Море Змеи. Эймарт – неглубокий, слегка удлиненный кратер с наибольшим диаметром 46 км. У него плоское морское дно и внутренний вал с террасами. Южнее расположено Y-образное Море Змеи – участок, затопленный базальтовыми лавами, которые «просочились» из Моря Кризисов.

Наклонное освещение вблизи терминатора позволяет обнаружить две длинные системы морских гряд, простирающихся с севера на юг вдоль восточной границы моря. Самая верхняя из них – Гряда Тетяева — простирается на 150 км. Южная система, названная Грядами Харкера, имеет длину свыше 200 км.

Рис. 3.4. В момент восхода или захода Солнца длинные тени подчеркивают даже мелкие детали рельефа. Фото: «Аполлон-12», NASA.


Отдельные элементы этих систем представляют собой отчетливо выраженные в рельефе узкие (шириной 0,5–2,0 км) вытянутые возвышенности высотой 0,1–0,3 км и крутыми склонами. Смещаясь вдоль Гряд Харкера на юг, мы выйдем к месту посадки станции «Луна-24» – третьей и последней из серии советских автоматических станций, успешно доставивших образцы лунного грунта на Землю. С помощью небольшой буровой установки этот аппарат пробурил слой реголита на глубину 225 см. Полученная при бурении колонка лунного грунта была загружена в возвращаемый отсек станции, который 22 августа 1976 г. доставил ее на Землю.

Место посадки для «Луны-24» было выбрано на морской поверхности в 18 км к юго-востоку от кратера Фаренгейт, имеющего 6 км в диаметре и около 1,3 км в глубину. Севернее места посадки находится пологая возвышенность, входящая в систему Гряд Харкера. Посадочная ступень находится у подножья этой возвышенности. Таким образом, чтобы найти район посадки «Луны-24», достаточно отыскать кратер Фаренгейт, который с помощью телескопа диаметром 60–80 мм вы сможете увидеть только в условиях наклонного освещения и хорошей видимости. Он будет выглядеть как точечный объект на темной поверхности моря. При наклонном освещении также должны быть заметны и Гряды Харкера, южная оконечность которых укажет на положение места посадки.

Если продолжить путь вдоль Гряд Харкера далее на юг до пересечения с материком, то мы окажемся у Пика Усова. Это очень невысокие горы, едва выступающие над окружающей морской равниной и имеющие в длину не более 15 км.

Западнее Пика Усова можно найти еще одну выступающую морскую гряду. Она обозначается на картах как Гряда Термmе. Как и две предыдущие системы гряд, она ориентирована с севера на юг, простираясь в длину на 90 км. Особенно хорошо ее видно в течение нескольких дней после полнолуния. Направьте телескоп в точку южного окончания Термье, где морская гряда как бы сливается с поверхностью моря. Здесь находится район жесткой посадки советской станции «Луна-15», куда она упала 13 июля 1969 г. На орбите искусственного спутника Луны станция проводила испытания новых навигационных систем и совершила 52 оборота вокруг нашего спутника. Ориентиром для отыскания места падения «Луны-15» может также послужить кратер Шепли (диаметр 23 км), расположенный юго-западнее, в самой южной точке береговой линии моря. Кратер заполнен лавой из Моря Кризисов, имеет четкий вал и неровное дно с множеством горок.

Продолжая движение вдоль береговой линии на запад, а затем на север, вы встретите четыре хорошо заметных на морской поверхности кратера: Лик, Гривз, Йеркс и Пикар. Гривз (14 км) и Пикар (23 км) – простые чашеобразные кратеры, причем Пикар имеет особенно отчетливую форму хорошо сохранившегося вала. Кратеры Лик (31 км) и Йеркс (36 км) затоплены лавой из Моря Кризисов. Осмотритесь вокруг: вы увидите еще несколько подобных выступающих кратеров, которые образовались, когда лава заполняла бассейн Моря Кризисов, переливаясь через стенки кратеров или проникая снизу. После того как извержения лавы прекратились и она успокоилась и отвердела, на поверхности остались только наиболее высокие части некоторых затопленных кратеров. Еще севернее, тоже на дне моря, легко можно обнаружить незатопленные кратеры Пирс (18,5 км) и Свифт (11 км) – чашеобразные кратеры, которые так же, как Гривз и Пикар, образовались уже после того, как лава в Море Кризисов застыла.

Но давайте вернемся к Йерксу. Западнее его на береговой линии выделяются два затопленных мыса или крутых холма, выступающих над равниной моря. Они значатся как Мыс Оливий (севернее) и Мыс Лавиний (южнее). Одно время считалось, что эти два образования связаны перемычкой, так как в моменты до восхода или после захода Солнца эти структуры одинаково освещены. Но тщательное изучение показало, что за перемычку были приняты остатки двух разрушившихся кратеров.

Еще западнее, в материковой части бассейна, вы легко найдете уникальный лучевой кратер Прокл (28 км). Он является вторым по яркости объектом на лунной поверхности после кратера Аристарх. Прокл легко отыскать по яркой лучевой системе, связанной с ним. В отличие от других особенностей рельефа, системы светлых лучей лучше всего видны вблизи полнолуния и почти исчезают в других фазах. Действительно, при косом освещении Прокл выглядит обычным кратером, ничем не выделяющимся среди других; его структура проявляется только при отвесном освещении Солнцем. Лучевую систему Прокла лучше всего наблюдать за 4–5 дней до наступления полнолуния.

Лучи не отбрасывают теней, их выдает только светлая окраска. Они не прерываются ни лунными горами, ни какими-либо другими топографическими деталями. Ясно, что это следы вещества, разлетевшегося из больших, относительно недавно образовавшихся ударных кратеров. Поэтому Прокл должен быть относительно молодым образованием. Оно возникло в тот же период, что и кратер Коперник, – менее чем 50 млн лет назад. Заметно, что его лучи простираются во всех направлениях, за исключением юго-западного, доказывая, что упавшее и образовавшее кратер тело подошло с юго-запада под очень малым углом к поверхности, а взрыв разбросал вещество во всех направлениях от траектории падения.

3.2. Море Изобилия

В ясную ночь, когда на небе светит Луна в возрасте от 4 до 17 суток, в юго-восточном секторе ее видимого полушария можно увидеть крупное образование с благозвучным и многообещающим названием – Море Изобилия. Оно находится прямо под хорошо заметным овалом Моря Кризисов, недалеко от восточного края лунного диска. Это темное пятно с размытыми очертаниями краев, площадь которого почти вдвое больше, чем у Моря Кризисов, является одним из самых древних многокольцевых бассейнов на Луне, возникшим 4 млрд лет назад.

Внешние границы Моря Изобилия почти полностью стерты более молодыми структурами рельефа, а его первичная поверхность перекрыта материалом выбросов от ударов, образовавших гигантские воронки окружающих его морей, таких как Море Кризисов, Море Нектара, Море Ясности и Море Дождей. В результате затопления впадин вулканической лавой образовался тот темный слой на поверхности морей, который мы видим в настоящее время. Продолжавшаяся ударная бомбардировка привела к появлению мириад кратеров и баллистически перераспределила как базальтовый материал морей, так и подстилающий материал ранее сформировавшихся бассейнов.

Пытаться понять указанные процессы на Луне невозможно без результатов исследования образцов лунного грунта, доставленных на Землю космическими аппаратами. Бассейн Моря Изобилия был опробован дважды, причем в обоих случаях советскими автоматическими станциями: «Луна-16» доставила на Землю капсулу с лунным грунтом из морского района бассейна в сентябре 1970 г., а «Луна-20» отобрала поверхностный материал в материковой его части в феврале 1972 г. Мы обязательно попытаемся отыскать места посадок обеих станций, но вначале для ориентировки осмотрим крупные образования, легко заметные даже в небольшой телескоп.

Восход Солнца в Море Изобилия начинается на третьи сутки после новолуния. В это время на восточном берегу моря уже видны три крупных кратера: сверкающий Лангрен (диаметр 132 км), темный Венделин (161 км) и величественный Петавий (177 км). Они выстроены в ряд с севера на юг и высокой контрастностью (яркие пики гор и черные тени под ними) отличаются от однородных серых равнин – освещенных участков морской низменности. Относительно молодой, возрастом менее 1 млрд лет, кратер Лангрен выделяется светлым дном, окруженным крутыми стенками внешнего вала, и лучевой системой. Постарайтесь разглядеть у него центральную горку, довольно маленькую для столь крупного кратера. К югу от него темнеет Венделин — сравнительно древний кратер, имеющий мощный разрушенный вал, неровное дно и цепочки на нем. Находящийся у юго-восточной оконечности моря Петавий обладает массивным сложным центральным пиком и приподнятым дном с трещинами и грядами. На дне вдоль стенок кратера заметны области с незначительным заполнением лавой. Селенологи предполагают, что подобные участки поверхности Луны являются источниками гигантских лавовых труб, пустоты которых могут послужить безопасным и удобным убежищем для будущих космонавтов.

Рис. 3.5. Море Изобилия с прилегающими областями.


Ранним утром солнечный свет делает видимыми длинные и низкие сложные системы гряд, ориентированные в море с севера на юг. Одной из первых появляется система Гряд Андрусова (общая протяженность 160 км), затем западнее – Гряда Гейке (240 км) и южнее – Гряды Маусона (180 км). Следом за ними Солнце освещает гряды, простирающиеся вдоль западного побережья моря, и крупный молодой кратер Тарунций (диаметр 56 км). Он расположен в северной части бассейна в переходной зоне море – материк и характеризуется наличием небольшой лучевой системы и приподнятого, как у Петавия, неровного дна, на котором видны ударный расплав, горка и трещины. На крупномасштабных снимках Тарунция и Лангрена можно заметить, как поверхность Моря Изобилия пересекают радиально расходящиеся от них скопления и цепочки мелких кратеров, возникшие вследствие ударов, образовавших эти кратеры.

Северо-восточная часть Моря Изобилия в виде залива полукруглой формы вдается в материковую область. В связи с успешной миссией «Луны-16» он назван Заливом Успеха. Но место посадки находится за пределами залива, южнее, приблизительно на половине расстояния между Тарунцием и Лангреном, и представляет собой относительно ровный участок морской поверхности, не содержащий кратеров крупнее 1 км в диаметре. Объекты таких размеров находятся на пределе разрешения крупных телескопов. Но здесь начинается система морских Гряд Андрусова, которая простирается на 160 км к югу. Поэтому, чтобы найти место посадки «Луны-16», достаточно отыскать начало Гряд Андрусова.

Восточнее Залива Успеха, следом за небольшим участком морской поверхности, там, где кончается Море Изобилия, начинается область рельефа материкового типа, окружающая так называемое Море Пены — небольшое морское образование лапчатой формы, которое своими размерами и формой больше походит на лунные озера.

К северу от Залива Успеха, в южной части относительно узкой полосы горной материковой области, расположенной между морями Изобилия и Кризисов, взяла пробу грунта «Луна-20». Место ее посадки находится на внешнем склоне вала кратера Амегино (диаметр 10 км), приблизительно в 35–40 км от северной кромки Моря Изобилия и в 120 км по прямой на север от места посадки «Луны-16» (граница моря и материка находится как раз на полпути между этими двумя точками прилунения). Материк в исследуемом районе представляет собой возвышенное плато, осложненное большим количеством кратеров, а также холмами и грядами. Кратер Амегино – один из наиболее крупных на этой территории. Его образование относится ко времени около 1 млрд лет назад, а морфологические характеристики близки к характеристикам других относительно свежих кратеров такого диаметра. Форма кратера близка к чашеобразной, глубина – порядка 2 км. Хотя облик кратера выражен в рельефе достаточно четко, лучевой системы у него нет, а выбросы, находящиеся за пределами вала, внешне практически не отличаются от окружающей поверхности. Поэтому кратер Амегино непросто увидеть в небольшой телескоп. При освещении высокими лучами Солнца он выглядит как светлое пятно.

К замечательным объектам на поверхности Моря Изобилия относятся два небольших, но очень четких, одинаковых по размеру несимметричных кратера Мессье (больший диаметр 12 км). Они расположены на морской поверхности северо-западнее предполагаемого геометрического центра бассейна на одной из гряд, спускающихся из района Тарунция. Восточный из них – отдельный вытянутый в западном направлении кратер, образованный косым ударом метеорита. Его глубина 2 км, а дно частично покрыто темным материалом, обрушившимся со стенок. Второй, западный кратер состоит из двух концентрических кратеров, наложенных друг на друга (молодой – на старый).

На темной поверхности Моря Изобилия кратеры Мессье хорошо видны в телескоп практически в любое время лунного дня (особенно хорошо в возрасте 15 дней). Интересно проследить за изменением их внешнего вида при разных фазах Луны. Замечено, что если при вертикальном освещении кратеры выглядят одинаково, то при косом один из них кажется то больше, то меньше другого. На север, юг и запад из кратеров исходят радиальные лучи и выбросы. В полнолуние особенно хорошо виден двойной луч Мессье, похожий на хвост кометы, который простирается вплоть до западного берега моря и упирается в такой же по размеру кратер на материке. Вероятно, схожие размеры и двойной луч, на котором расположена эта «странная парочка», – случайные совпадения.

Двигаясь от Мессье на юг вдоль западного побережья Моря Изобилия и отложив примерно такое же расстояние, как от Мессье до Тарунция, мы придем к вытянутому кратеру Гоклений (наибольший диаметр 72 км), расположенному на краю морской поверхности. По его темному дну наряду с другими трещинами проходит грабен (опущенный по разломам участок коры), секущий поверхность Моря и названный Бороздой Гокления (общая протяженность 240 км). Основываясь на принципе наложения при образовании кратеров, можно смело заключить, что Борозда Гокления моложе одноименного кратера.

Западнее его, уже на материковой поверхности бассейна, находится кратер Гутенберг (диаметр 74 км) с мощным внешним валом. На его неровном дне, тоже заполненном лавой, виднеются центральный пик, много горок и цепочка кратеров. У западной окраины Гутенберга начинаются одноименные Борозды Гутенберга (общая протяженность 330 км), которые продолжаются вплоть до южного берега Моря Спокойствия, такого же древнего, как и Море Изобилия (вопрос о том, какой из этих бассейнов образовался раньше, еще обсуждается). Узкая прерывистая полоса материковой местности с небольшими высотами, простирающаяся от Борозд Гутенберга до Тарунция, служит границей между Морями Изобилия и Спокойствия. От Гутенберга, но уже в противоположном направлении (южнее), начинается горный хребет Пиренеи, являющийся кольцевым валом сравнительно молодого бассейна Моря Нектара.

Близ полнолуния в Море Изобилия можно проследить за областями различных лавовых полей, которые несколько различаются по своей отражательной способности. Молодые области выглядят темнее, древние – светлее. На третьи-четвертые сутки после полнолуния в пределы Моря Изобилия вступит вечерний терминатор. Следя за его перемещением, вы можете повторить изучение деталей рельефа при косом освещении, но уже с противоположным направлением падения солнечных лучей.

3.3. Моря на краю Луны

Хотя считается, что Луна всегда повернута к Земле одной стороной, на самом деле благодаря либрации (см. выше) она чуть-чуть «покачивается», позволяя нам немного заглянуть то за один свой край, то за другой, и мы можем наблюдать около 10 % обратной стороны Луны. При этом лунные образования, распложенные близ края видимой стороны, то появляются, то вновь прячутся за лимбом.

Астрономы различают либрацию по долготе (покачивание влево-вправо) и по широте (вверх-вниз). Когда Луна в наибольшей восточной либрации по долготе, нам становятся видны ее области, лежащие к востоку от видимого полушария, а когда в западной – западные. Северная и южная либрация по широте дает возможность изучать соответственно северные и южные области Луны.

В период между новолунием и полнолунием в условиях благоприятной восточной либрации по долготе с помощью телескопа или бинокля на крайнем востоке видимого полушария Луны можно обнаружить несколько крупных морей. Самое северное из них – Море Гумбольдта – расположено на широте Моря Холода, справа от него. (Указывая направления – налево, направо, – мы имеем в виду нормальную карту Луны, а не ее перевернутое телескопом изображение.) Два других моря – Краевое и Смита – находятся в экваториальной зоне, восточнее морей Кризисов и Изобилия. И, наконец, самое южное – Море Южное – находится юго-восточнее Моря Нектара, на широте 40° к югу от экватора.

Рис. 3.6. Восточная часть лунного шара (снимок получен космическим аппаратом). Слева от центра – Море Изобилия с крупным светлым кратером Лангрен на восточном краю. Выше центра – почти круглое Море Кризисов. Правее центра – круглое Море Смита, а над ним – Море Краевое. Бледная темная область внизу – Море Южное.


То, что эти большие темные пятна представляют собой самостоятельные кольцевые структуры, а не заливы расположенного на обратной стороне Луны обширного океана лавы, стало ясно лишь в октябре 1959 г., после того, как советская автоматическая станция «Луна-3» впервые сфотографировала невидимую сторону нашего естественного спутника. Главной тайной, которую она тогда открыла, стало практически полное отсутствие морей на обратной стороне Луны. Вместо морей на ней обнаружились хорошо сохранившиеся кольцевые образования, практически не затопленные лавой. Более того, по снимкам последующих советских, а затем и американских космических аппаратов в центральной части обратной стороны Луны была найдена крупная депрессия (впадина), размеры которой сравнимы с размерами Океана Бурь, а глубина превышает максимальную глубину земного Мирового океана. Удивительно, но эту депрессию диаметром около 2500 км тоже причисляют к многокольцевым бассейнам, образовавшимся в результате ударов гигантских метеоритов.

Наряду с обширной территорией обратной стороны Луны указанная депрессия включает и районы южного полюса, которые никогда не освещаются Солнцем и где царит вечный холод с температурой ниже -153 °C. Данные аппарата «Клементина» (NASA), исследовавшего Луну с орбиты в 1994 г., подтверждают, что в этой низине, вероятно, находятся залежи водяного льда, которые в будущем могут быть использованы лунными колониями и пилотируемыми космическими кораблями, направляющимися к Марсу. Если южная «полярная шапка» Луны действительно существует, то это место становится самым перспективным для создания долговременной базы. В период благоприятной (южной) либрации по широте вы тоже с помощью телескопа сможете заглянуть на южный полюс и увидеть освещенный Солнцем внешний вал кратера Амундсен диаметром 105 км, дно которого постоянно находится в тени и, видимо, состоит из ископаемого льда. А пока вернемся в восточную краевую зону видимого полушария Луны и продолжим ее обследование.

Море Гумбольдта располагается близ северо-восточного края видимого диска, поэтому наиболее благоприятное время для его наблюдений наступает, когда в результате восточной либрации по долготе и северной либрации по широте центр видимого диска Луны максимально смещается к северо-востоку. В этот период Море Гумбольдта «отодвигается» от лимба, и его можно рассматривать в более удобном ракурсе. В такие дни хорошо видны внутренняя часть бассейна диаметром 160 км, заполненная лавой, и два кольцевых хребта, диаметрами 300 и 600 км, окаймляющие центральную впадину. Кроме того, вы сможете проследить за некоторыми выбросами и цепочками, исходящими из Моря Гумбольдта. Особенно выделяется цепочка вторичных кратеров, начинающаяся от внешнего кольца бассейна и простирающаяся на 600 км в юго-западном направлении – к Морю Кризисов.

Лучшим ориентиром для отождествления Моря Гумбольдта является хорошо заметный концентричный кратер Эндимион диаметром 125 км, который лежит на полпути между морями Холода и Гумбольдта. Он обладает мощным четким валом и ровным темным дном, заполненным лавой, и поэтому всегда хорошо виден на фоне материковой местности, разделяющей эти два моря. Эндимион моложе бассейна Гумбольдта, так как перекрывает отложения последнего. Когда Море Гумбольдта из-за либрации оказывается на невидимой стороне Луны, кратер Эндимион занимает место у самого края видимого диска. Подобным образом, и это хорошо видно даже невооруженным глазом, моря Кризисов и Изобилия приближаются к краю лунного диска в период западной либрации по долготе и удаляются от него при восточной. В последнем случае с помощью любой зрительной трубы легко заметить, что к северу и востоку Море Изобилия переходит в изолированные мореподобные пятна, которые объединяются в небольшие моря Пены и Волн. Темные пятна продолжаются и далее в краевую зону к морям Краевое и Смита.

Море Краевое протяженностью около 360 км имеет неправильную, вытянутую вдоль экватора форму. Ясно выраженных кольцевых образований и выбросов вокруг него не наблюдается, поэтому существует подозрение, что оно не является самостоятельным ударным бассейном. Зато Море Смита диаметром 360 км – одно из немногих, имеющих четкую правильную форму замкнутого круга. По топографическим и другим характеристикам оно очень похоже на Море Кризисов. В бассейне Моря Смита можно проследить за внешним кольцевым валом диаметром 840 км. Выбросов и отложений здесь не наблюдается.

При низком Солнце (вскоре после новолуния) путь к Морю Южному вам укажут цепочки кратеров и долины, тянущиеся на юго-восток от южных окраин Моря Нектара. Среди них особенно выделяется немного изогнутая Долина Рейта протяженностью 500 км и шириной 30 км. Это цепочка вторичных кратеров, возникшая при образовании бассейна Моря Нектара. Сравните ее с цепочкой кратеров в бассейне Моря Гумбольдта, о которой упоминалось выше. Они очень похожи.

Чем выше поднимается Солнце, тем хуже видны цепочки и долины на поверхности Луны, а вблизи полнолуния они и вовсе теряются из виду. В этом случае ориентиром при поисках Моря Южного могут служить крупные лучевые системы кратеров Фурнерий и Стевин, расположенные к юго-востоку от Моря Нектара, на полпути к Морю Южному.

Либрация по широте, подходящая для наблюдений Моря Гумбольдта, неблагоприятна для наблюдений Моря Южного, и наоборот, потому что эти моря находятся на противоположных высоких широтах. Но даже несмотря на оптимальную для наблюдений Моря Южного максимальную либрацию (восточную по долготе и южную по широте), вы все равно не увидите его полностью: часть моря останется на обратной стороне, вне пределов видимости с Земли. В целом это обширное образование представляет собой слабо затопленный кольцевой бассейн, состоящий из отдельных заполненных лавой участков и кратеров. Диаметр внешнего кольца, опоясывающего его, – 880 км. Промежуточные кольца выражены слабо. Выбросов и отложений не наблюдается.

Если время ваших наблюдений совпало с максимальной западной либрацией по долготе в период между фазами полнолуния и новолуния, направьте телескоп на освещенный западный край видимого диска Луны. Здесь вы увидите образования, расположенные в западной либрационной зоне, в том числе и небольшой участок Моря Восточного в экваториальной области. Море Восточное является антиподом Моря Смита, и по многим характеристикам они очень похожи друг на друга. Их бассейны почти одинаковы по размеру и глубине – удивительный на первый взгляд факт, если учесть различие возрастов этих образований. Оба моря содержат до краев заполненные лавой кратеры, причем в Море Смита таких кратеров, как и кратеров других типов, насчитывается больше, вероятно, из-за его более древнего возраста. Интересная особенность этих морей – оба они содержат гравитационные аномалии. По своему территориальному положению, сырьевым ресурсам и потенциалу научных задач моря Смита и Восточное считаются наиболее перспективными районами для создания лунной базы. Одновременно на лунном диске вы их не увидите: в момент полнолуния, когда с Земли видно Море Смита, из-за либрации не видно Море Восточное, и наоборот.

3.4. Следы в Море Ясности

14 сентября 1959 г., в 0 час 2 мин 24 с по московскому времени советская автоматическая станция «Луна-2» впервые в истории коснулась нашей небесной соседки. Залив Лунника – так был назван участок морской поверхности протяженностью 100 км, расположенный между хорошо заметными кратерами Аристилл, Архимед и Автолик, куда «Луна-2» доставила вымпелы с изображением герба Советского Союза.

Здесь, в центральной части видимого полушария Луны соединяются, почти касаясь друг друга, два крупных круговых бассейна – Море Ясности и Море Дождей. Оба эти бассейна образовались около 4 млрд лет назад, когда падения крупных тел на поверхность Луны были значительно более частыми, чем сегодня. Сначала ударил метеорит, образовавший гигантскую круглую воронку Моря Ясности диаметром 740 км, а затем падение еще более крупного тела образовало бассейн Моря Дождей, выбросы из которого нарушили правильность формы краев Моря Ясности и частично засыпали его. Заполнение образовавшихся гигантских впадин вулканической лавой происходило в течение последующих нескольких сотен миллионов лет и имело сложную историю.

Рис. 3.7. Море Ясности.

Рис. 3.8. Панорама лунной поверхности, привезенная экспедицией «Аполлон-17».


А теперь приглашаю вас на прогулку по окрестностям Моря Ясности.

Сейсмическое зондирование на месте посадки «Аполлона-17» показало, что дно бассейна Моря Ясности находится на 1500 м ниже лавовой поверхности на западе и на 2000 м – на востоке. Проведенные измерения показали также, что Море Ясности имеет промежуточный слой на глубине около 1000 м, и этот факт свидетельствует о том, что море заполнялось по крайней мере в два отдельных этапа.

За последние 3 млрд лет на Луне не происходило сколько-нибудь заметных событий, лишь продолжали падать на поверхность метеориты, хотя в значительно меньшем количестве и значительно меньших размеров, чем прежде. А после того, как гигантские камни километровых размеров образовали кратеры Коперник и Тихо, никакие крупные тела уже не сталкивались с Луной. Поэтому безвоздушная и безводная поверхность нашей космической соседки навечно запечатлела следы древних событий, происходивших в Солнечной системе.

Между тем после полета «Луны-2» рукотворные тела нарушали покой в окрестности Моря Ясности еще несколько раз. В июле 1971 г. южнее Залива Лунника опустилась кабина «Аполлона-15» с двумя астронавтами на борту – Д. Скоттом и Дж. Ирвином. Они посадили свой корабль вблизи Борозды Хэдли, известной уже тем, что ее можно увидеть с помощью наземного телескопа. Ее ширина составляет около 1 км, а длина – около 100 км (см. рис. 2.18). Борозда извивается по юго-восточному краю Болота Гниения приблизительно параллельно краю Апеннинских Гор, которые возвышаются на 1–2 км над поверхностью окружающих морей. Для передвижения по Луне астронавты использовали четырехколесный электромобиль. С его помощью Скотт и Ирвин проехали около 10 км, собрали 78,6 кг образцов горных пород и грунта, установили на поверхности научную аппаратуру.

Рис. 3.9. Эти следы, оставленные астронавтами и их аппаратурой на поверхности Луны, сохранятся в течение миллионов лет.


А в декабре 1972 г., теперь уже на восточном краю бассейна Моря Ясности, в горной Долине Тавр-Литтрова, расположенной между двумя хорошо заметными в телескоп кратерами: Витрувий диаметром 29 км и Литтров диаметром 30 км, – высадились астронавты «Аполлона-17» X. Шмитт и Ю. Сернан. На поверхности Луны они провели более 22 часов и помимо проведения различных экспериментов собрали 110 кг образцов лунного грунта. Для передвижения они тоже использовали электромобиль.

Наконец, в январе 1973 г. вновь на восточной окраине Моря Ясности, в южной части кратера Лемонье, совершила посадку одна из последних советских автоматических станций – «Луна-21» с «Луноходом-2» на борту. В непосредственной близости от места этой посадки расположена холмистая область, к востоку и югу переходящая в материковую местность и далее в горные массивы Тавр. С января по май «Луноход-2» прошел более 37 км, включая участки с весьма сложным рельефом, сыпучим грунтом и каменными россыпями.

Во всех указанных случаях на поверхности Луны были оставлены отработанные посадочные ступени, средства передвижения, инструменты и научные приборы. Эти атрибуты космической техники, которые из-за их малых размеров нельзя увидеть в наземный телескоп, будут храниться в условиях лунной среды многие и многие миллионы лет. Простой расчет, основанный на том, что слой реголита толщиной в несколько метров формировался на Луне в течение нескольких миллиардов лет, приводит к следующей оценке средней интенсивности обновления поверхности нашей соседки: миллиметровый слой за миллион лет. Это значит, что следы космонавтов или луноходов сантиметровой глубины сохранятся на поверхности Луны в течение нескольких миллионов лет!

При первом взгляде в телескоп Море Ясности представляется широким простором однообразных серых тонов. Но при более внимательном рассмотрении здесь обнаруживается множество интересных деталей, их красочных вариаций и подробностей. С каждой новой фазой при соответствующей либрации вам будут открываться все новые и новые особенности рельефа.

При возрасте Луны в пять дней терминатор проходит через моря Нектара и Спокойствия и достигает мощной горной системы Тавр. В это время на восточном краю Моря Ясности понемногу появляются из темноты кратеры Витрувий, Литтров, Лемонье и большой красивый Посидоний, входящие в состав горной цепи Тавра. К северу от последней вплоть до соединения с западной оконечностью Моря Холода расстилаются гладкие равнины Озера Сновидений и Озера Смерти.

Лемонье — невыразительный, древний, затопленный лавой кратер диаметром 61 км, вал которого частично разрушен. На берегу моря он образовывает большую губу, так как обращенная к морю стенка кратера полностью скрывается под морской поверхностью.

В отличие от Лемонье, Посидоний приоткроет вам много интересных особенностей своей истории. Расположенный в северо-восточной части Моря Ясности, немного севернее Лемонье, он имеет диаметр 95 км и глубину 2 300 м. Дно его приподнято и находится на том же уровне, что и примыкающая лавовая поверхность моря. Но по отражающей способности Посидоний и поверхность Моря Ясности разительно отличаются друг от друга, что указывает на различие в их химическом составе. Наблюдения с Земли и из космоса показали, что спектральные характеристики Посидония соответствуют породам горных районов Тавра. Поэтому, вероятнее всего, его дно состоит из материковых пород бассейна и не затоплялось лавой.

В условиях хорошей видимости, возможно, уже на пределе разрешения вашего телескопа, вы увидите, что кратер имеет несколько центральных пиков. Они обычно затенены длинными грядами, которые извиваются в спирали, начинаясь от внутренних его стенок. Похоже, что эти гряды являются верхними краями гигантских оползней. Сети борозд, пересекающих дно кратера, то появляются, то исчезают вновь в поле зрения в зависимости от прозрачности земной атмосферы и возможностей вашего телескопа. Особенно выделяется длинная борозда, которая с севера на юг рассекает дно на две части.

На шестой день от новолуния терминатор уже проходит через середину Моря Ясности, и поэтому становятся отчетливо видны морщинистые гряды, украшающие его поверхность. Так же хорошо выступает рельеф узкого перешейка между морями Спокойствия и Ясности, в состав которого входят кратеры Дауэс, Плиний, а также Мыс Архерузий. Дауэс — свежий 18-километровый кратер. К югу от него расположен большой кратер Плиний, имеющий диаметр 43 км и глубину 2300 м. Он хорошо террасирован и выставляет напоказ необычный центральный пик, поэтому в условиях освещения утренними лучами Солнца выглядит как двойной кратер.

По мере подъема Солнца вы легко заметите, что восточные и южные окраины поверхности Моря Ясности имеют различные оттенки, и что его темный материал проникает на различные расстояния в окаймляющие Море горы. Раньше считали, что этот темный материал, который является обогащенной железом и титаном лавой, моложе, чем светло-серые лавы в центре моря. Но образцы, привезенные экспедицией «Аполлон-17», и подробные исследования плотностей числа мелких кратеров на фотографиях, полученных с лунной орбиты, показали, что темные лавы на самом деле старше.

Перемещаясь по южному берегу Моря Ясности мимо Мыса Архерузия на запад, вы приблизитесь к яркому кратеру Менелай диаметром 26 км, который входит в состав хребта Гем. На темной поверхности моря почти всегда хорошо виден светлый луч, исходящий от Менелая в виде заметной белой полосы, которая разделяет Море Ясности на две равные части. Полоса проходит через такой же яркий, как Менелай, кратер Бессель диаметром 16 км, расположенный примерно на половине расстояния между Менелаем и геометрическим центром Моря Ясности. А в условиях освещения высокими лучами Солнца за этой светлой полосой в Море Ясности можно проследить и дальше – к северу в направлении Озера Смерти и восточной границы Моря Холода и в юго-западном направлении по материковым районам лунного шара вплоть до кратера Тихо. На месте посадки «Аполлона-17» были обнаружены вторичные кратеры, порожденные ударами тел, выброшенных из Тихо во время его образования почти 110 млн лет назад. Это подтвердило предположение о том, что светлый луч в Море Ясности, проходящий по Менелаю и Бесселю, пересекающий весь центральный материк и простирающийся аж на 4000 км, принадлежит к системе лучей Тихо!

Другим замечательным свежим следом на лике Луны в Море Ясности является небольшой яркий кратер Линней, расположенный в западной части территории морской поверхности, напротив пролива, соединяющего моря Ясности и Дождей. Впервые это светлое образование было замечено в 1823 г. и интерпретировано как дно кратера диаметром от 6 до 11 км. Но в 1866 г. астроном Ю. Шмидт неожиданно обратил внимание на то, что кратер пропал, и на его месте появилось белое пятно. Затем последовали сообщения о других изменениях, и Линней стал одним из самых знаменитых загадочных кратеров на Луне.

Ясность наступила лишь после получения фотографий с «Аполлона-15», которые показали, что Линней – это очень молодой, но при этом самый обычный ударный кратер. Оказалось, что наблюдаемое в телескоп светлое пятно состоит из небольшого кратера диаметром 2450 м и глубиной 600 м, окруженного светлым ореолом из выбросов, яркость которых подвержена значительным изменениям в течение лунного дня. Очевидно, что именно оптические эффекты несут ответственность за загадочные изменения вида Линнея. Пусть эта история станет уроком для некоторых любителей, предпочитающих легко и произвольно интерпретировать наблюдения лунных объектов, находящихся на пределе разрешения небольших телескопов.

Фаза первой четверти, когда терминатор проходит через центральные части лунного диска, очень благоприятна для изучения района, откуда мы начали свое путешествие: горных хребтов, обрамляющих Море Ясности с запада, а также части Апеннин, охватывающих с юго-востока Море Дождей. В восточной части последнего в это время понемногу появляются из темноты кратеры Аристипп (55 км), Автопик (39 км), а несколько позднее – Архимед (82 км). Особенно хорошо видна лучевая система, исходящая во все стороны от Аристилла: можно заметить, как на грубой поверхности Кавказских Гор лучи исчезают и появляются вновь уже на дне Моря Ясности.

3.5. Коперник и его окрестности

Вскоре после первой четверти, когда возраст Луны составляет 8–9 суток, утренний терминатор вступает в Море Дождей – самую замечательную и наиболее хорошо сохранившуюся кольцевую структуру видимой стороны Луны. Изучение разнообразных и любопытных объектов, связанных с этим морем, составляет одну из главных задач наблюдателя при этой фазе. Сегодня мы отправимся на экскурсию в район знаменитого кратера Коперник, расположенного к югу от гор, окружающих этот бассейн.

Рис. 3.10. Южная часть Моря Дождей. Кратер Коперник


Первоначальная кольцевая структура Моря Дождей возникла при падении крупного метеоритного тела около 3,85 млрд лет назад и является одной из самых молодых на Луне. С юго-востока Море Дождей охватывает дугообразный горный хребет Апеннины. Это крупнейшее горное образование на Луне протяженностью 600 км. Крутым уступом он обрывается к поверхности Моря и полого спускается на его внешнюю сторону.

Продолжением Апеннин являются Карпаты, окаймляющие Море Дождей с юго-запада. Это сравнительно невысокая цепь разрозненных вершин и коротких горных гряд протяженностью 400 км. Непосредственно к югу от Карпат и располагается главный герой нашего рассказа – великолепный Коперник, один из красивейших кратеров на всей лунной поверхности. Его диаметр составляет 93 км, а глубина – только 3,8 км. Но в момент удара первоначальная глубина кратера была больше и составляла 7–8 км. Вопреки обыкновению, в его центре возвышается не одна горка, а целая группа вершин, так как немедленно после удара кора оказала обратное действие, выбросив вверх сразу три центральных пика, которые являются образцами более глубоких частей лунной коры.

Коперник – один из самых молодых кратеров подобного размера. В связи с этим его именем был назван последний геологический период Луны. Коперниковский период продолжается и в настоящее время. Сейсмометры, установленные на Луне экспедициями «Аполлон», подтвердили, что метеоритные удары по поверхности происходят до сих пор. Статистика показывает, что в течение 10 млн лет на Луне образуется по крайней мере от одного до трех новых кратеров диаметром до 10 км. Поэтому вполне может случиться, что, в очередной раз наведя свой телескоп на нашу космическую соседку, вы обнаружите на ней новый кратер!

Свежие и молодые кратеры, возникшие в Коперниковскую эпоху, отличаются ярко выраженным рельефом, не очень большими размерами, светлой окраской и наличием лучевых систем. Естественно, что более молодые по времени возникновения кратеры частично разрушают ранее существовавший ландшафт. Это хорошо видно на примере Коперника, слой выбросов из которого сравнительно недавно, 800 млн лет назад, перекрыл южную часть бассейна Моря Дождей. Вот почему Карпаты так невысоки по сравнению с другими элементами внешнего кольца Моря Дождей (Альпами, Кавказом и Апеннинами) – они были частично засыпаны в результате удара, образовавшего Коперник.

Любителям астрономии следует помнить, что Коперник – благодатный объект для наблюдений с любым инструментом. Даже самый маленький телескоп представит вам панораму кратера, которая заметно меняется от ночи к ночи, каждый раз, шаг за шагом, открывая все новые и новые особенности этого уникального образования. Первые лучи Солнца касаются пиков кратерного вала на десятые сутки после новолуния. Буквально за не сколько часов освещенные области увеличиваются и превращаются в светлое кольцо – даже незначительное изменение высоты Солнца здесь резко меняет ситуацию.

Рис. 3.11. Кратер Коперник.

Рис. 3.12. Кратер Коперник, сфотографированный во время взлета лунной кабины экспедиции «Аполлон-17»


Быстро убывающие тени говорят о том, что вал Коперника имеет небольшую высоту и достаточно отлогие склоны. Восход Солнца – лучшее время для наблюдений вторичных кратеров Коперника, хорошо заметных при косом освещении. Они образовались при падении крупных фрагментов породы, выброшенных во время ударного взрыва. Некоторые из вторичных кратеров располагаются в виде цепочек, вытянутых по направлению от Коперника. Особенно много их к северу и востоку от главного кратера. При спокойной атмосфере вы можете разглядеть, что эти цепочки состоят из почти прилегающих друг к другу куполов или небольших кратеров. А в моменты особенно хорошей видимости в поле вашего зрения могут внезапно появиться сотни мелких воронок, создавая потрясающий эффект, вознаграждающий терпение наблюдателя.

Обратите внимание на сложный узор из небольших кратеров к востоку от Коперника. Этот узор накладывается на затопленный морским материалом кратер-призрак Стадий диаметром 69 км. Когда-то он был «нормальным» кратером, но сейчас почти полностью залит лавой из Залива Зноя, в котором расположен. Это доказывает, что Стадий – древний кратер; он образовался до того, как более трех миллиардов лет назад произошло затопление бассейнов Моря Дождей и Залива Зноя базальтовой лавой. Незатопленной осталась лишь небольшая дуга северо-восточного края кратера, в том месте, где Стадий сливается с группой холмов вблизи Эратосфена.

Кратер Эратосфен, расположенный у юго-восточной оконечности Апеннин, имеет диаметр 58 км и очень похож на кратер Коперник, хотя и уступает ему в размерах. Оба они молоды, так как возникли после образования лунных морей и обладают свежими и интенсивными покровами выбросов и полями вторичных кратеров. Правда, в отличие от Коперника, у Эратосфена нет светлой лучевой системы.

Конец бесплатного ознакомительного фрагмента.

  • Страницы:
    1, 2, 3, 4, 5, 6, 7