Удивительный мир звука
ModernLib.Net / Клюкин И. / Удивительный мир звука - Чтение
(стр. 2)
Интересен анализ процесса отражения звука от объектов произвольной формы. Публикации по этому вопросу не сходят со страниц журнала Американского акустического общества (статьи Джангера, Хиклинга, Дулитла и других). Авторы статей утверждают, что можно классифицировать объект по характеру отражения звука от него. Л. М. Лямшевым еще в 50-х годах было обнаружено и проанализировано явление усиления гидролокационного отражения от пластин в жидкости вследствие возникновения в них продольных волн при падении гидролокационного импульса. Работа Л. М. Лямшева докладывалась в Венгерской Академии наук и получила общее признание. Весьма интересные исследования по теории эхо-локации выполнены в последнее время А. А. Клещевым, У. Нигулом, Е. Л. Шендеровым и другими. Говоря о создании в нашей стране акустических приборов для подводного обнаружения, нельзя не упомянуть о деятельности профессора Военно-морской академии В. Н. Тюлина. Работая, по существу, в одиночку, он еще в 30-е годы сконструировал весьма совершенный по тому времени эхолот и внес вклад в теорию действия шумопеленгаторов. Свою лепту внесли также Л. Я Гутин, А М. Тюрин и С. Я. Соколов-- создатель и руководитель первой в стране кафедры электроакустики. Приближались грозные годы Великой Отечественной войны, и освоение гидроакустической техники нашим подводным флотом было как нельзя более своевременно. Чтобы читатель мог в полной мере ощутить ее роль, приведем два последовавших один за другим эпизода, связанных с подводной лодкой, которой суждено было стать легендарной. В начале 1945 года в результате прорыва советских Вооруженных Сил в Восточной Пруссии была окружена громадная курляндская группировка гитлеровских войск. Из отрезанного Данцига, где находилась немецкая школа подводного плавания, вышел в Киль под усиленным конвоем самый большой немецкий лайнер "Вильгельм Густлов" водоизмещением 25 тысяч тонн. На нем находилось четыре тысячи высококвалифицированных подводников, которых уже ждали в Киле, чтобы укомплектовать ими 70 подводных лодок. Всего же на корабль набилось более шести тысяч человек. В этом районе патрулировала подводная лодка С-13 под командованием капитана 3-го ранга А. И. Маринеско. В январе на Балтике темнеет рано, к тому же шел снег; рассчитывать можно было только на гидроакустику. Около 8 часов вечера гидроакустик И. Шнапцев доложил о далеком шуме винтов и указал пеленг на группу кораблей. Маринеско применил дерзкий маневр: он зашел со стороны берега и выпустил четыре торпеды по главной цели, теперь уже отчетливо выделявшейся среди кораблей охранения. Лайнер быстро пошел ко дну. Лодке удалось уйти от бомбежки и преследования. Узнав о потоплении морского гиганта, Гитлер приказал расстрелять командира конвоя, в Берлине же во второй раз за время войны был объявлен трехдневный траур (первый раз это было после разгрома фашистских войск под Сталинградом). В эфир пошло сообщение, что командир С-13 объявлен "личным врагом Германии". Однако лишь усмешку вызвали эти угрозы у экипажа лодки. На борту еще имелись торпеды, и можно было продолжать поиск противника. Прошло десять дней, и снова ночью, и снова гидроакустики обнаружили шумы большого корабля с охранением и вывели лодку на дистанцию видимости. Новый торпедный залп -и перестал существовать еще один громадный транспорт -- "Генерал Штойбен". Из находившихся на его борту 3600 солдат и офицеров спаслось менее трехсот. Найти в кромешной мгле и отправить на дно моря два гигантских корабля с целой дивизией гитлеровцев за одну декаду -- в этом военном триумфе подводной лодки роль гидроакустиков была не последней. После второй мировой войны гидроакустика начала быстро развиваться во всех странах. Точность пеленга на шумящие или отражающие звук подводные объекты достигла долей градуса, дальность действия станций увеличилась во много раз. Была освоена пассивная и активная локация в зонах вторичного выхода звуковых лучей к поверхности моря, а также в зонах тени для прямого сигнала. Американская донная гидроакустическая система "Цезарь", работающая на низких частотах локации в море, где затухание звука особенно мало, по сообщениям печати, обнаруживает присутствие подводных лодок на расстоянии до 400 километров. Появилась разновидность гидролокационной системы, в которой обнаружение подводных объектов производится с помощью разнесенных под зеркальным углом излучателя и приемника гидролокационных сигналов. Здесь требуется особая точность во взаимодействии носителей излучателя и приемника, но такая система себя оправдывает, так как сила отражения под зеркальным углом наибольшая, и легче обнаружить объект, снабженный защитными средствами. Развертываются глобальные гидроакустические системы. Одна из них под зловещим названием "Морской паук" должна обеспечивать сбор гидроакустической информации чуть ли не со всей акватории Тихого океана и передачу ее через гидроакустические буи искусственным спутникам, быстро доносящим сведения о подводной обстановке в координационные центры, возглавляемые соответствующими отделами Пентагона. Конечно, во всех этих сообщениях много элементов рекламы. Однако если исключить их, приходится все же признать, что достижения современной военной гидроакустической техники весьма впечатляющи. Но, пожалуй, еще более властно заявляет о себе мирная гидроакустика. Применения ее до невероятности многообразны и становятся все более связаны с бурным освоением Мирового океана. Эхолот в традиционном исполнении и с традиционными функциями меньше других морских акустических приборов нуждается в представлении. Едва ли найдется морское судно, не имеющее его. А вот эхолоты-картографы с автоматической цифровой отметкой глубин на карте еще только начинают внедряться на гидрографические суда. Обычный эхолот для контроля глубин под килем судна породил семейство себе подобных и все же различных как по назначению, так и по степени совершенства гидроакустических устройств. Это и приборы с весьма большой мощностью излучения, позволяющие получить отметку не только линии дна, но и отражающих звук грунтовых пород на достаточно большой глубине под поверхностью дна. Это и сканирующие эхо-локационные устройства бокового обзора, их не назовешь иначе, как автоматическими топографами дна водоемов. Мелкие выступы дна высотой с полметра, траншеи, кабели на дне -- все фиксируется ими на специальной бумаге. Рыболокаторы тоже достаточно хорошо известны. Кажется, совсем недавно автор описывал в одной из книг живописную выставку "Инрыбпром-68" в Ленинграде. Прошло семь лет, и вот опять западная стрелка Васильевского острова была окружена множеством ослепительно белых рыболовецких судов всех стран, и флаги их вместе с флагами расцвечивания трепетали над вместительными павильонами. Особенно интересная гидроакустическая поисковая техника на "Инрыбпроме-75" демонстрировалась в советском, японском и немецком разделах выставки. Современный рыбопоисковый гидролокационный комплекс следит за косяком рыбы от момента первичного его обнаружения до момента попадания в трал. Если рыбное скопление изменило, скажем, глубину своего движения, соответствующее устройство меняет и глубину опускания трала, его раскрытие. Интегрирующие приборы позволяют определить суммарный объем встречного рыбного скопления и прогнозировать, таким образом, целесообразность его отлова. Из многообразных областей применения гидроакустических средств при освоении богатств Мирового океана отметим лишь одну, связанную с бурно развивающейся добычей нефти со дна. Совсем недавно бурение дна в нефтеносных районах велось лишь в пределах океанского шельфа, т.е. на глубинах в несколько сот метров. Первенцем подводного бурения дна в открытом море было судно "Гломар Челленджер"; сейчас таких судов насчитываются десятки. По крайней мере две проблемы при подводном бурении решаются с помощью гидроакустики. Первая -- удержание дрейфующего судна над скважиной. Гидроакустические излучатели-маркеры, расположенные на дне около скважины, непрерывно посылают вверх звуковые импульсы. По этим сигналам на судне определяют, в какую сторону его сносит относительно скважины, и соответственно приводят в действие те или иные подруливающие устройства. Вторая задача посложнее. Допустим, необходимо сменить затупившийся бур. Бурильную колонку с новым буром опускают ко дну. Но подводные течения относят эту гибкую и длинную колонку в сторону, как относит ветер паутинную нить с висящим над ней пауком. Приводится в действие гидролокационное устройство, находящееся на конце колонки. На дальних расстояниях от донной скважины излучаемые устройством импульсы имеют относительно большую продолжительность. Это режим поиска. Нащупав по отраженному сигналу скважину, конец колонки начинает приближаться к ней. Наступает режим точного наведения. Импульсы учащаются, становятся короче. В момент подхода к скважине срабатывает соответствующее устройство, и колонка погружается в скважину. Освоение океана немыслимо без глубоководных аппаратов, которых уже теперь насчитывается великое множество. Связываются они между собой и с обеспечивающими надводными судами с помощью гидроакустического телефона, определяют рельеф дна и его глубинную структуру с помощью гидролокационных "щупалец". Больше всего при освоении Мирового океана ученых беспокоит сохранение его биосферы. Великий акванавт нашего времени Жак-Ив Кусто обратил к человечеству такие слова: "Море сохранит свои богатства только в том случае, если будут соблюдены биологические законы... Пора положить предел романтической эпохе "тайн моря". Тайн моря нет, остались насущные проблемы, которые следует разрешить. Мы на пороге новой эры, эры поисков и исследований!" Гидроакустические методы и приборы займут в этих поисках достойное место. ЗВУКИ В КОСМОСЕ? Мы услышим полет всех планет.. А.Блок -- Акустика в космосе? Это что-то новое, -- скажет, возможно, иной... акустик, иронически улыбаясь, -- ведь в космосе нет достаточно плотной газовой среды, в которой могут распространяться упругие колебания. Однако начнем с сигналов из ближнего космоса. Загадочные звуки полярных свечений... Связаны они с перемещениями областей ионизированного газа, но точный механизм их возникновения до сих пор не раскрыт. Иногда они похожи на ударные звуковые волны от сверхзвуковых самолетов. Наблюдались многократные отражения этих звуков от поверхности Земли и от неоднородностей верхних слоев атмосферы. Искусственные спутники и ракеты. Это уже настоящий космос. При прохождении ракеты "Аполлон" над Бермудскими островами на солидной высоте 188 километров, где, казалось бы, плотность атмосферы ничтожна (в 109 раз меньше, чем у поверхности Земли), неоднократно регистрировались на островах низкочастотные сигналы, также похожие на звуковые удары самолетов. А что внутри ракет, космических кораблей? Космонавт А. Николаев при полете на одном из "Союзов" так описывал свои "акустические" впечатления: "При спуске вначале был слышен небольшой шум, свист высокого тона. Этот тон постепенно нарастал и превратился в гул работающего реактивного двигателя, затем он перешел как бы на форсажный режим работы двигателя самолета с сильным рокотом" .. Как видно, в космических устройствах могут встречаться вполне "земные" ощущения. Эта близость к земным ощущениям еще усилится при длительных полетах. Будет надоедать космонавтам постоянный шум двигателей, работа которых необходима для жизнеобеспечения обитателей ракет и выполнения научных и иных операций. Потребуются разнообразные средства борьбы с шумами и вибрациями. Те же вибрация и шум, которые сейчас используются для диагностики и дефектации механизмов, определения степени их работоспособности и надежности, будут сигнализировать о случайных неисправностях в орбитальных лабораториях, например при стыковке космических кораблей. На космических снарядах, в условиях невесомости, будут, как известно, получать новые диковинные сплавы и материалы. Возможно, на помощь придет и ультразвук, смешивающий, раздробляющий малые частицы жидких материалов. Одним словом, земная акустика будет все больше заявлять о себе космоплавателям. Как не заявить, если уже сейчас в некоторых странах разрабатываются проекты лунных городков на сотни и тысячи человек. Прибор, установленный на поверхности Луны, передает по радио на Землю сведения о затухании звука в лунных породах. А что делается снаружи космического корабля, непосредственно вблизи его борта? Уже сейчас здесь действует акустика, работает структурный звук. Выставленная за борт металлическая мембрана воспринимает удары несущихся навстречу микрометеоритов, кусочков космического вещества. Каждый удар частицы о мембрану возбуждает ее колебания, данные о которых с помощью индукционного или иного датчика поступают внутрь корабля на счетную электронную схему либо передаются радиоустройством на Землю. Этим способом канадские ученые оценили значения микрометеоритной активности в функции от высоты ракеты над Землей. Луна, планеты солнечной системы и их естественные спутники. Здесь -раздолье для акустиков-геофизиков, а на тех планетах, где есть атмосфера, -и для атмосферных акустиков. Установленное на Луне американскими астронавтами устройство позволило сделать интереснейшее открытие: время реверберации (послезвучания) колебаний в породах лунного грунта приближается к минуте. Луна звучит, как церковный колокол! Пока еще не дано объяснения этому явлению. Была измерена и скорость распространения звука в лунных породах. Когда-то великий насмешник, мастер парадоксов и иронических сентенций Эразм Роттердамский писал, что "...луна состоит из заплесневелого сыра..." Два европейских геофизика не пожалели времени на то, чтобы измерить скорость продольных волн в ... сырах из Италии, Швейцарии, США, Норвегии. Возможно, как о курьезе, они сообщили, что скорость звуковых волн в этих сырах (от 1,6 до 2,1 километра в секунду) соответствует нижнему пределу скорости распространения звука в лунных породах. Несомненно, уже в ближайшее время будут досконально изучены акустические свойства пород на поверхности Венеры и Марса. А в атмосфере Венеры с ее чудовищной плотностью возможно существование звуков огромной интенсивности. Плазма -- одно из состояний упругого вещества. Уже производились опыты по возбуждению механических звуковых колебаний в плазменных шнурах установок, в которых имеются условия для возникновения термоядерной реакции. Поэтому когда при исследовании пятен на Солнце были обнаружены колебания низкой частоты с длиной волны порядка 2500 километров и на основании некоторых данных было высказано предположение, что эти волны имеют звуковое, а не магнитное происхождение, то эта версия не встретила у ученых особых возражений. Как видим, в акустических проблемах в космосе уже сегодня нет недостатка. Первую страницу космической акустики можно считать открытой. Но пытливый ум исследователей углубляется в совсем уже не изведанные просторы мироздания. Один японский журнал в 1973--1974 годах опубликовал цикл статей о генерации звука ни много ни мало как в первичной турбулентности... расширяющейся Вселенной; едва ли кто-нибудь задумывался раньше о возможности сочетания акустики и космогонии. ЗВУКОВАЯ ЭНЕРГИЯ УШЛА, А ГРОМКОСТЬ ЗВУКА ВОЗРОСЛА?? По-видимому, отзвук (эхо) существует всегда, но не всегда отчетливо выражен Аристотель. О душе Говоря об удивительном в мире звука, нельзя обойти вниманием своеобразные, кажущиеся на первый взгляд парадоксальными явления на границах сред с сильно разнящимися акустическими сопротивлениями. Хотя мы не хотели бы докучать читателю формулами, но без нескольких простейших определений основных акустических величин все же не обойтись. Когда волна продольная, то есть направление колебаний частиц среды совпадает с направлением распространения волны, то переменное (звуковое) давление в ней р связано с колебательной скоростью частиц v выражением р = Zv, где коэффициент пропорциональности Z представляет собой акустическое сопротивление среды, равное произведению плотности среды на скорость распространения звука в ней (не путать со значительно меньшей по величине v!). Электроакустики склонны именовать приведенное выражение "акустическим законом Ома", хотя оно появилось раньше работ Ома. "Удобнее запоминать", -утверждают они. Может быть, это и справедливо для современного общества, в которое электротехника внедрилась весьма широко. Вторая формула относится к определению интенсивности или, что то же, силы звука, представляющей собой поток звуковой энергии через единицу площади фронта волны в единицу времени: J=0,5p2/Z=0,5v2Z Вооруженные этими двумя начальными буквами акустической азбуки, приступим к интересующему нас вопросу о явлениях на границах разнородных сред. Пусть звук произвольной частоты падает по нормали из среды с малым акустическим сопротивлением (например, воздушной) на границу среды с большим акустическим сопротивлением (вода, кирпичная кладка и т. п.). Одним из интересных, хотя, быть может, еще и не поражающих нас феноменов, является то, что в эту вторую среду передается переменное (звуковое) давление, почти вдвое превышающее звуковое давление в первой среде. Несложный физико-математический вывод подтвердил бы это. Но, быть может, читателя убедит совсем уж простая демонстрация (имеющая, согласимся, скорее мнемонический, чем физический характер). Демонстратор, которым может быть всякий лектор, обходится самыми что ни на есть элементарными средствами (их можно было бы назвать подручными, если бы вместо рук здесь не фигурировали ноги). Человек, на время перевоплотившийся в звуковую волну (почему бы и не вообразить такое?), быстро приближается в комнате к капитальной стене. У нее он мгновенно поворачивается кругом, изображая теперь уже отраженную волну. Но чтобы не удариться о стену какой-либо чувствительной частью тела, он упирается в нее подошвой ноги. Ясно, что материал стены испытывает при этом довольно значительный импульс давления, которое распространяется с определенной скоростью от места возмущения. Акустическое сопротивление воды приблизительно в 3600 раз больше акустического сопротивления воздуха. И здесь следует ожидать увеличения звукового давления по сравнению с давлением в воздушной среде. М. А. Исакович в своем курсе акустики указывает на температурные и иные явления, препятствующие удвоению давления во второй среде. То или иное увеличение звукового давления все же наблюдается экспериментально. Но раз возросло давление, то увеличилась и громкость звука, ибо слуховые аппараты большинства живых существ реагируют именно на величину звукового давления, а, например, не звуковой энергии. Таким образом, дан ответ на одну из частей заголовка главы, хотя можно признать, пожалуй, что ничего особенно удивительного мы пока еще не узрели. Это удивительное усматривается из сопоставления полученного результата с величиной звуковой энергии, прошедшей во вторую среду. Вторая из приведенных выше формул сразу дает нужный ответ. Пусть звуковое давление увеличится даже в 2 раза, тогда числитель в выражении интенсивности звука возрастет в 4 раза. Но ввиду того что знаменатель одновременно уменьшится в тысячи раз, звуковая энергия во второй среде будет ничтожной. Так, в воду из воздуха проходит лишь малая доля процента энергии падающей волны, а, например, в скалу, в бетонный массив -- и того меньше. Звуковая энергия, таким образом, почти полностью отражается от границы раздела среды с большим акустическим сопротивлением. Может возникнуть вопрос, почему ныряльщиков не оглушают крики с берега? Их спасают от звуковой перегрузки изолирующие звук воздушные пробки, всегда остающиеся в слуховом проходе погруженного в воду человека. Да и рыбы, не имеющие подобных звукоизоляторов, воспринимают отчетливо лишь звуки в пределах достаточно узкого конуса. При угле падения более 13° происходит полное отражение звука от поверхности воды. Рассмотрим еще, хотя бы для контраста, что делается на границе рассматриваемой среды с другим параметром колебательного процесса -колебательной скоростью частиц. На это даст ответ средняя часть второй формулы. Поскольку в среду передалась ничтожная часть звуковой энергии, а акустическое сопротивление среды весьма велико, это может быть лишь при ничтожной колебательной скорости, значение которой в правой части формулы входит множителем в выражение акустического сопротивления. И здесь можно провести аналогию с мечущимся по комнате лектором. При всем желании он не в состоянии раскачать ногой кирпичную стену, то есть колебательная скорость во второй среде близка к нулю. У любознательного читателя мог бы возникнуть еще вопрос: а что будет наблюдаться при обратном переходе звука -- из среды с весьма большим акустическим сопротивлением в среду с малым акустическим сопротивлением? На границе среды с большим акустическим сопротивлением звуковое давление почти удваивается (хотя в нее переходит лишь ничтожная часть звуковой энергии). Кричать над поверхностью воды -- верный способ распугать рыб, слуховой аппарат которых, как и у большинства живых существ, реагирует на величину звукового давления. Можно показать, что и в этом случае перейдет лишь ничтожная часть звуковой энергии, но здесь уже колебательная скорость во второй среде будет близка к удвоенному значению, а звуковое давление в ней близко к нулю. Вот почему до нас не доносится в воздухе звук от удара одного камня о другой (хотя ныряльщик, проделывающий это, сам слышит довольно интенсивный шум, несмотря даже на изолирующие воздушные пробки в ушах), А что же наш демонстратор, может ли он предложить для этого случая какую-либо "мнемоническую модель"? Если он прикрепит вертикально к ножкам стола лист плотной бумаги (которая в данном случае будет изображать первую среду -- с большим акустическим сопротивлением) и его нога, по-прежнему представляющая звуковую волну, прорвет этот лист, то ясно, что скорость ноги в момент прорыва возрастет, но поскольку за листом нога встречает воздушную среду, не оказывающую никакого сопротивления, то нет и условий для возникновения давления в этой среде. Вот какие метаморфозы звуковой волны возможны на границах разнородных сред. КОГДА РЕЗОНАТОР УСИЛИВАЕТ И КОГДА ОСЛАБЛЯЕТ ЗВУК Резонанс -- резкое возрастание амплитуд... колебаний, наступающее при приближении частоты... внешнего воздействия к частоте одного из нормальных колебаний, свойственных данной колебательной системе. Физический словарь Некто смотрел из укрытия, как два льва вцепились в тело друг друга. На момент он отвернулся и когда вновь взглянул на место боя, то увидел, что противники исчезли: они съели друг друга. На земле виднелись лишь оставшиеся от них хвосты... Из современной сказки Кому не известно, что такое резонанс? "Резонанс -- это когда сильно мотает",-- сказал один студент, не подозревая, впрочем, что излагает житейским языком определение физического словаря. Интеллигент с большим читательским стажем уже приведет пример вредных последствий резонанса: "Знаете, почему разрушился Египетский мост в Петербурге? Потому, что воинская часть, проходившая по нему, не сменила команды "в ногу". Произошла усиленная вибрация, и вот..." Мы, в свою очередь, приведем еще один, менее известный пример последствий резонанса. 2 марта 1905 года утром в день предстоявшего заседания II Государственной думы обвалился потолок в главном зале Таврического дворца. Причина -- работа небольшого электровентилятора на чердаке, включенного для проветривания зала перед заседанием Думы, Александр Грин, которого знают как автора романтических и приключенческих повествований, был не чужд и жанру сатиры. Через несколько дней после описанного события в одной из столичных газет появилась его "Элегия", написанная в манере стихотворения Лермонтова "Когда волнуется желтеющая нива". Сатира Грина начиналась так: Когда волнуется краснеющая Дума И потолок трещит при звуке ветерка... Концовка тоже созвучна лермонтовским строкам: ...Тогда смиряется души моей тревога; И затаив мечты о воле и земле, И истребив морщины на челе, Сквозь потолок я вижу бога! ... Это едва ли не единственная стихотворная ода резонансу, хотя и порожденная главным образом политическими причинами. Но почему же все-таки мост не обрушивается и потолок не трещит в отсутствие резонанса? В простейшей упругоинерционной системе выше или ниже частоты резонанса сопротивления колебательному движению упругого или соответственно инерционного элемента достаточно велики. Лишь на частоте резонанса эти взаимно противодействующие сопротивления таинственным для непосвященного образом "съедают" друг друга (совсем как сказочные львы в эпиграфе), и остается лишь "хвостик" -- сопротивление трения, которое всегда меньше сопротивления упругости и массы. Амплитуда колебаний системы увеличивается во много раз, что и может привести к печальным последствиям. О явлениях резонанса в механических системах уже говорилось выше. Перейдем к устройству, в котором осуществляется резонанс акустических элементов. Это простейший резонатор Гельмгольца -- сосуд, подобный колбе. Воздушная пробка в горле сосуда является акустическим элементом массы, внутренняя полость резонатора -- элементом упругости. При резонансе увеличиваются колебания воздушной пробки, в такт этому возрастает колебательное давление во внутренней полости резонатора по сравнению с давлением в свободном поле. Звуковую энергию для усиленных колебаний резонатор отбирает из окружающего его звукового поля. Если к полости резонатора подвести трубку, другой конец которой приложить к уху, то можно убедиться в усиливающем действии резонатора. Такое устройство применялось для помощи людям с ослабленным слухом. Наборы резонаторов использовались в первых анализаторах звуковых спектров. Каждый из резонаторов был настроен на свою частоту и выделял в сложном звуковом спектре соответствующую спектральную составляющую. Пещера с узким наружным входом тоже служит резонатором. Он усиливает звуки особенно низких частот; туристы и спелеологи знают, как сильно отдаются удары грома в подобных пещерах. Впрочем, для осуществления резонанса совсем не обязательно иметь узкий и длинный вход. Резонатором может служить любая достаточно глубокая ниша, пусть даже одинакового поперечного сечения. Дальняя, примыкающая к жесткой стенке часть ее служит упругостью, а объем, граничащий с наружным пространством, -- массой. Переход от массы к упругости здесь более плавный, чем в колбообразном сосуде. Любая бутылка, не заполненная жидкостью,-- тоже резонатор; убедиться в этом нетрудно. Один современный английский акустик, в частности, рассмотрел ее резонансные свойства в монографин "Акустика винной бутылки". Несмотря на игривое название, это -- серьезная научная работа, возможно, не столь значительная, как творение великого Кеплера "Стереометрия винных бочек", но уже не уступающая исследованию почти нашего современника Ч. Бойса "Мыльные пузыри", которое считается классическим. Итак, резонатор усиливает звук, это совершенно ясно, не правда ли? Однако, как бы это странно ни звучало для некоторых, резонатор прежде всего... поглощает, то есть ослабляет звук. Противоречие здесь кажущееся. Все дело в том, о каком параметре колебательного процесса вести речь. Да, в полости резонатора усиливается в той или иной степени звуковое давление. Но при этом в нем всегда поглощается определенная звуковая энергия. В какой-то мере в этом смысле резонатор можно сравнить с электрическим трансформатором. Во вторичной обмотке повышающего трансформатора увеличивается электрическое напряжение по сравнению с напряжением в первичной обмотке. Но в то же время трансформатор, к сожалению, поглощает часть электрической энергии вследствие нагрева обмоток, вихревых токов в сердечнике и т. п. Электрики стараются, насколько возможно, уменьшить эти потери. То же делали и акустики, создавая резонаторы с очень высокой добротностью для выделения отдельных составляющих в спектре анализируемого звука. Но вот кому-то пришла в голову идея увеличить поглощение в акустическом резонаторе с целью ослабления звука вблизи резонатора. Так родилось новое направление в теории и технике звукопоглощения -- резонансное звукопоглощение. Целый ряд ученых в разных странах отдал ему дань: в СССР -- С. Н. Ржевкин, М. С. Анцыферов, В. С. Нестеров и другие, в США -- У. Мак Нэйр, в Англии -- Е. Пэрис, в Дании -- Ф. Ингерслев. Резонансное звукопоглощение осуществляется в более или менее узкой области относительно низких частот. Можно расширить ее, применив набор резонаторов, настроенных на различную частоту. Но если потребуется ослаблять звук на более высоких частотах, придется применить поглотители другого рода, о которых еще будет сказано ниже. Как же практически осуществлять устройство резонансного поглощения для ослабления звука в помещениях? Неужели вмазывать в стены колбо- или бутылкообразные сосуды? Нет, современная строительная практика нашла более удобные конструкции. На некотором расстоянии от стены или потолка помещения устанавливается более или менее толстый перфорированный лист. Отверстия в листе играют роль горлышек резонаторов Гельмгольца, а пространство между листом и стенкой -- роль полостей. Теперь возникает следующий вопрос: где разместить дополнительный звукопоглощающий элемент, увеличивающий потери в резонаторе? В районе горлышка резонатора колебательная скорость частиц среды наибольшая и, следовательно, наибольшими будут потери на трение. Здесь и помещают слой волокнистого материала или толстой ткани, который с успехом выполняет функцию поглотителя звука. Такими или подобными системами резонансного поглощения можно оборудовать стены или потолки помещений. Вместо перфорированных панелей иногда устанавливают наборы вертикальных реек с зазором относительно друг друга. Получается так называемый щелевой резонансный поглотитель, которому можно придать очень красивый вид, соответствующий современным архитектурным тенденциям. Известно, что для хорошего восприятия музыки и речи зал должен иметь ту или иную степень гулкости; акустики в этом случае говорят о "времени реверберации помещения". Время реверберации можно менять, устанавливая дополнительные звукопоглотители, в том числе резонансные.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9
|