Современная электронная библиотека ModernLib.Net

Жизнь замечательных людей (№255) - Максвелл

ModernLib.Net / Биографии и мемуары / Карцев Владимир Петрович / Максвелл - Чтение (стр. 18)
Автор: Карцев Владимир Петрович
Жанр: Биографии и мемуары
Серия: Жизнь замечательных людей

 

 


Таким образом, теория Максвелла укреплялась или рушилась в зависимости от результатов еще не осуществленных экспериментов.

Существуют ли в природе электромагнитные волны, подобные по свойствам свету?

Существует ли световое давление?

Уже после смерти Максвелла на первый вопрос ответил Герц, на второй — Лебедев.

Пока никаких доказательств новой теории не было...

Но могло существовать и еще одно доказательство справедливости электромагнитной теории света и всей теории электромагнитного поля в целом. Доказательство, правда, частное, но многозначительное.

Рассматривая условие распространения электромагнитного возмущения в однородной среде, Максвелл приходит к важному выводу о зависимости электромагнитных свойств среды от ее оптических характеристик. Например, квадрат показателя преломления должен быть равен диэлектрической постоянной среды, умноженной на ее магнитную проницаемость. Для немагнитного диэлектрика показатель преломления среды должен быть равен квадратному корню из диэлектрической постоянной.

Среди тех, кто пытался подтвердить это опытом, — обожающий Максвелла и преклоняющийся перед ним Людвиг Больцман. Он работал в те времена, в 1872 году, в Берлине, в лаборатории Гельмгольца.

Он пытался проверить зависимость, данную Максвеллом в ранних статьях, для газов. Но Больцмана подвела память. Он искал почему-то прямую пропорциональность показателя преломления и диэлектрической постоянной. Это неправильное положение засело у него в памяти, и его он доказывал. А оно не получалось. И не должно было получаться. Больцман, расстроенный тем, что ему не удалось, как ему казалось, подтвердить теорию Максвелла, бросил заниматься этими экспериментами.

Лишь позже, когда он покинул уже Берлин, он случайно заглянул в свой лабораторный журнал и заметил хорошее совпадение для случая, если бы показатель преломления был пропорционален квадратному корню из диэлектрической постоянной.

Решив проверить себя, он заглянул в статью Максвелла и обнаружил, что и там говорится как раз о квадратном корне!

К несчастью, это открытие произошло уже после выхода «Трактата» в свет и не послужило своевременным доказательством правильности новой теории.

Недостаточность доказательств Максвелл компенсировал своей гениальной физической интуицией.

На наиболее высоких ступенях научного познания вступают в силу высшие качества исследователя — способность его ума воспарить над известными данными, выйти за пределы результатов опытов, «довообразить» их. Это можно назвать интуицией, гениальностью, высшей степенью умственной деятельности ученого.

Необходимость выходить за границы доказанных положений, вырваться из рамок опыта. И способность сделать это. Но не вопреки опыту. Не вопреки зарекомендовавшим себя научным принципам. А может быть, и вопреки, если они оказываются неверными. Лишь гений, тонко чувствующий границы дозволенного, может без боязни приближаться к ним.

Как достиг он такой степени свободы? В силу врожденной гениальности? Или в силу иных причин?

— Если прямая цель всякой научной работы, — говорил Максвелл, — раскрывать тайны природы, то она оказывает и другое, не менее ценное действие на ум исследователя. Она делает его обладателем методов, и к выработке их ничто, кроме научной работы, не могло бы его привести; это ставит его в положение, с которого многие области природы, помимо тех, которые он изучал, являются перед ним в новом свете.

Его гениальность; несомненно, была врожденной. Но и тщательно лелеемой и укрепляемой в процессе каждодневных исследований.

«Трактат об электричестве и магнетизме» заканчивается обзором теорий Гаусса, Римана, Клаузиуса.

Знаменательное название имеет последний параграф трактата. Он назван:

«Идея среды неодолима».

И смысл его в том, что все непротиворечивые теории электричества «приводят к представлению об электромагнитном поле — о среде, в которой происходит распространение электрических и магнитных воздействий; если мы примем это в качестве гипотезы, она, мне кажется, должна будет занять важное место в наших исследованиях, и нам следовало бы изучить все детали ее проявления — что и было моей постоянной целью в этом „Трактате“.

ПЕРВАЯ РЕАКЦИЯ НА «ТРАКТАТ»

У книги перед статьей есть большое преимущество — ее труднее не заметить. И хотя «Трактат» в значительно меньшей степени отражал личные взгляды автора, чем его «электрические статьи», большинство физиков того времени и следующего поколения ознакомились с его взглядами именно через «Трактат».

Больше всего, конечно, волновала бы Максвелла реакция на главный труд его жизни со стороны старых друзей — виднейших английских физиков того времени — Томсона, Стокса и Тэта. И он с нетерпением и волнением ждал их приговора.

Но Томсон и Стокс не спешили высказываться, хотя оба они, особенно Томсон, с которым Максвелл вел активную переписку, были хорошо знакомы с содержанием «Трактата», а взгляды Томсона и теорема Стокса, доказанная Максвеллом еще при сдаче трайпоса, были в нем представлены весьма обстоятельно. Томсон и Стокс отмалчивались, и их молчание было многозначительным.

Уж слишком радикальными, слишком явно устремленными в грядущие века оказывались мысли Максвелла. Предсказание электромагнитных волн, распространяющихся в пространстве, должно было быть особенно не по нраву сэру Вильяму Томсону, двадцать лет назад доказавшему возможность колебательного процесса в цепи, содержащей емкость и индуктивность. Томсон был в плену величия его трансатлантической эпопеи и не мог представить себе, что колебательный разряд может существовать не только в проводах, в телеграфных кабелях. Ему была глубоко чужда идея электромагнитных возмущений, распространяющихся безо всяких проводов, в пустоте.

Не мог понять он и максвелловского светового давления; в конечном счете все упиралось в неприятие Томсоном токов смещения.

— Занятная и изобретательная, но не вполне неуязвимая гипотеза! — так он позже высказался о токах смещения. Старый друг и советчик не принял теории Максвелла...

Не принял ее и другой друг и учитель Максвелла, молчаливый, доброжелательный Стокс, отчаянно храбрый человек — его звали в детстве «Веллингтоном», шедший навстречу опасностям, ощущавший счастье как раз в те моменты, когда его шея была максимально близка к тому, чтобы стать сломанной. Но это его качество совершенно не относилось к науке — там он был излишне осмотрителен, спокоен и мудр. Он был личным другом Максвелла, особенно в последние кембриджские годы, когда сгладилась разница в возрасте, но темы их изысканий всегда были далеки. Исследования Стокса носили преимущественно уточняющий и формальный характер. Достигнув жизненного перевала, он занимался организацией науки, был президентом Королевского общества и Британской ассоциации.

Они дополняли в науке друг друга — пылкий Максвелл и сдержанный Стокс. Они продолжали дружить, несмотря на сдержанное отношение Стокса к «Трактату». Их дружба, немногословная, серьезная, иногда прорывающаяся в юмористических пассажах, столь ценимых обоими, стала особенно крепкой в последние месяцы жизни Максвелла и окончилась лишь с его смертью. Стокс стал душеприказчиком Максвелла.

Другой друг со старых времен, Тэт, поддержал Максвелла, выступив с подробной рецензией на «Трактат».

«Бывают авторы, исполненные внутренней мощи, — писал Тэт, — они движутся прямо к цели с непреодолимой силой, но не суетятся, не спешат — больше напоминая гигантских, но бесшумных крокодилов или штамповочный пресс, чем слабое человеческое существо...

Трактат, который мы взялись прорецензировать, с первых же страниц обнаруживает, что он написан именно таким автором. Ничто не принимается без оснований для этого... — это не парад безмерных ценностей даже тогда, когда автор делает действительно великие шаги. Нет попыток говорить языком сенсаций при описании встречающихся трудностей. Когда необходимо — есть спокойное признание в незнании без слишком часто встречающегося аккомпанемента болезненной фальшивой скромности...

Основной целью работы, кроме того, чтобы дать сведения об экспериментальных данных, касающихся электричества и магнетизма... было полностью развенчать теорию дальнодействия. Каждый знает или, по крайней мере, должен знать, что Ньютон считал, что ни один человек, способный разумно рассуждать на физические темы, не может признать такого абсурда. То же отрицание сквозит и во всех блестящих электрических исследованиях Фарадея, которым на протяжении всего труда Максвелл выражает свою большую признательность».

Это, конечно, было важно — окончательно разделаться с дальнодействием, но не только в этом было значение Максвелловой работы. Было важно поддержать и Фарадея, но различие между Фарадеем и Максвеллом — это различие замысла и исполнения... Электромагнитное поле, его уравнения, возможность существования электромагнитных волн, электромагнитная теория света, давление света — все эти перлы человеческой мысли были неназойливо вкраплены в «Трактат», а Питер не придал им должного значения...

Итак, не приняли в Англии основных идей «Трактата». Не оценили должным образом. Даже друзья не поняли его. А ведь они-то и были самыми великими, самыми славными физиками Англии. Видимо, трудно им уже было меняться. Приспосабливаться на старости лет к новым научным веяниям.

Идеи Максвелла подхватили молодые. Уже на следующий год после выхода «Трактата» на его основе был прочтен первый лекционный курс. Это сделал молодой преподаватель Оуэн-колледжа в Манчестере, сотрудник профессора Осборна Рейнольдса, Артур Шустер. На его лекции записалось три студента. Одним из них был будущий преемник Максвелла на посту директора Кавендишской лаборатории Дж.Дж.Томсон.

Заинтересовался теорией Максвелла молодой Оливер Лодж. Его увлекли предсказанные Максвеллом электромагнитные волны. Лодж задумал обнаружить их. Его поддержал молодой Фитцджеральд. В 1878 году они встретились. Нужно было обсудить: как создать и обнаружить электромагнитные волны, предсказанные Максвеллом?

Поиски Лоджа увенчались открытием когерера — простейшего прибора для обнаружения электромагнитных волн. Когерер исправно служил потом в радиоприемнике Попова.

Поиски Фитцджеральда пошли в ином направлении — в направлении создания непротиворечивой теории эфира, в совершенствовании Максвелловой теории. Странен был его вывод: эталон метра, двигаясь с большой скоростью, должен укорачиваться! Сначала не поняли, не оценили этого вывода, сочли неверным. А потом лег он одним из краеугольных камней теории относительности!

Напрасно молодые пытались убеждать стариков. Тверды они были, как кремень. Стояли на своем. Суровыми атлантами держали на своих немолодых уже плечах храм классической физики.

Фитцджеральд писал Хевисайду уже через много лет после смерти Максвелла о своей попытке убедить Вильяма Томсона, тогда уже лорда Кельвина, в правильности максвелловской теории:

«...мне кажется, он даже до сих пор не понял идеи Максвелла о том, что токи смещения сопровождаются магнитной силой. Я пытался показать ему, что его собственные исследования проникновения переменных токов в проводники были... аналогией проникновения света, но он пугался этого сравнения, как лошадь пугается груды камней, которую она уже перепрыгивала, если эта груда на этот раз сложена в кучу другой формы».

Оливер Лодж тоже жаловался Хевисайду:

«Кельвин не верит даже в Максвеллово давление света. Он сказал, что вся эта часть неверна».

Понадобились тончайшие эксперименты П.Н.Лебедева по световому давлению, чтобы Вильям Томсон поверил в теорию своего друга. Вильям Томсон, тогда уже величественный старец лорд Кельвин, был изумлен простой доказательностью опытов Лебедева. Он сказал К.А.Тимирязеву следующую знаменательную фразу:

— Вы, может быть, знаете, что я всю жизнь воевал с Максвеллом, не признавая его светового давления, и вот ваш Лебедев заставил меня сдаться перед его опытами...

Лебедев примирил Максвелла с его другом и критиком Вильямом Томсоном, человеком, удостоившимся в английской науке самых высших почестей, более высоких, чем Ньютон, чем Фарадей и Максвелл.

Томсон верно служил своему веку и был полезен ему, может быть, так, как никто. Он умер, считая, что прекрасный храм классической физики уже построен. Что ясно небо над ним, если не считать двух маленьких облачков: необъяснимого эксперимента Майкельсона по измерению скорости света относительно «эфира» и непонятного характера излучения абсолютно черного тела. К образованию этих «облачков» приложил руку и Максвелл, и впоследствии они пролились благодатным дождем теории относительности и квантовой физики.

Королевский астроном Эйри, так восхищавшийся работой Максвелла о Сатурне, новую теорию принял в штыки. Теория Максвелла не властвовала даже в Кавендишской лаборатории, где он был директором...

На континенте тоже не особенно жаловали заумную теорию островитянина. Особенно раздражал метод Максвелла французских ученых, воспитанных на изящных, тонкой кружевной выделки, трудах Лапласа и Ампера.

Дюгем писал о «Трактате»:

«Мы полагали, что вступаем в мирное и упорядоченное жилище дедуктивного разума, а вместо этого оказались на каком-то заводе».

«Отсутствие логики», «массивная реалистичность», «сложная и надуманная теория».

Пуанкаре, в общем доброжелатель, писал в своем труде «Электричество и оптика»:

«Все сочинение проникнуто одним и тем же духом. Подробно рассматривается только существенное, то есть общее всем возможным теориям, и почти везде обходится молчанием все, что согласуется лишь с одной частной теорией. Поэтому читатель видит перед собой форму, почти лишенную содержания, и он склонен с первого взгляда принять ее за беглую и неуловимую тень. Это вызывает у читателя усилия и новые размышления, и в конце концов читатель убеждается в искусственности теоретических построений, которые вызывали у него раньше такое восхищение».

В другой работе Пуанкаре писал:

«Система Максвелла была странна и малопривлекательна, так как он предполагал весьма сложное строение эфира: можно было подумать, что читаешь описание завода с целой системой зубчатых колес, рычагами, передающими движение и сгибающимися от усилия, центробежными регуляторами и передаточными ремнями».

В Германии к новой теории отнеслись как к интересному курьезу. Здесь теории Максвелла завоевать позиции было особенно трудно. Именно здесь великий Гаусс довел до совершенства теорию потенциала, здесь работали Вебер и Нейман, столпы дальнодействия.

Лишь немногие немецкие физики со всей серьезностью отнеслись к теории Максвелла. И прежде всего — друг и соперник Людвиг Больцман. Больцман очень переживал то, что не смог из-за нелепой случайности вовремя, к выходу «Трактата», представить одно из доказательств правильности Максвелловой теории. Плененный когда-то силой механических моделей Максвелла, он и сейчас стал пытаться свести к ним его уравнения. О моделях в «Трактате» говорилось приглушенно, и Больцман решил, что Максвелл имеет их, но прячет.

Недооценивал Максвелла столь почитавший его Больцман. Уже после смерти Максвелла он поспешил в Кембридж, в Кавендишскую лабораторию. Все спрашивал:

— Где тут у вас максвелловские механические модели, которыми он обосновал свои уравнения?

Больцман восхищался Максвеллом. Излагая на лекциях максвелловскую теорию, он предварял изложение эпиграфом из «Фауста»:

Я должен пот тяжелый лить,

чтобы научить тому,

что не понимаю сам.

Он, конечно, кокетничал. Понимал он эту теорию, как немногие. Много лет спустя со всего мира съезжались к нему люди, жаждавшие, чтобы он объяснил им смысл Максвелловых уравнений.

Восхищение Больцмана этой «книгой за семью печатями», этими уравнениями не имело предела. Он постоянно цитировал строки из «Фауста»:

Не бог ли эти знаки начертал?

Таинственен их скрытый дар!

Они природы силы раскрывают

И сердце нам блаженством наполняют.

Не понял Больцман, как можно было создать такую теорию без механической модели. Он все чаще и чаще приходил к конфликтам и непониманию. Новая физика, у колыбели которой стоял Максвелл, становилась глубоко чуждой Больцману. Он с каждым годом все яснее понимал, что конфликт этот неразрешим — нужно было родиться заново, чтобы воспринимать «эти вещи». Не в силах совладать со своими чувствами, он покончил с со бой, выбросившись из окна...

Герману Гельмгольцу теория Максвелла тоже очень нравилась. Своей формальной простотой. Но не мог он целиком встать на философские позиции Максвелла. Гельмгольц попытался найти компромисс между теориями великих немцев Гаусса, Вебера и Неймана и теорией электромагнитного поля Максвелла. Напрасна была эта попытка — примирить непримиримое, сочетать несочетаемое. И чем дальше заходил в этих попытках Гельмгольц, побуждая своего ученика Генриха Герца многократно экспериментально проверять Максвелловы уравнения, тем ясней и ясней становилась их полная справедливость. И ограниченность теорий, основанных на дальнодействии, в том числе и непоследовательной теории самого Гельмгольца...

Герц писал впоследствии об уравнениях Максвелла: «Трудно избавиться от чувства, что эти математические формулы живут независимой жизнью и обладают своим собственным интеллектом, что они мудрее, чем мы сами, мудрее даже, чем их первооткрыватели, и что мы извлекаем из них больше, чем было заложено в них первоначально».

Большое впечатление теория Максвелла произвела на русских ученых. Многие из них учились в Германии и испытали на себе влияние Больцмана и Гельмгольца. Всем известна роль Умова, Столетова, Лебедева в развитии и укреплении Максвелловой теории. Русские ученые поддерживали и развивали ее еще до открытий Герца, до великого перелома, произведенного его волнами.

Одним из тех, на кого работы Максвелла произвели наиболее сильное впечатление, был молодой голландский физик Гендрик Антуан Лоренц. Он писал впоследствии:

«...»Трактат об электричестве и магнетизме» произвел на меня, пожалуй, одно из самых сильных впечатлений в жизни: толкование света как электромагнитного явления по своей смелости превзошло все, что я до сих пор знал. Но книга Максвелла была не из легких! Написанная в годы, когда идеи ученого еще не получили окончательной формулировки, она не представляла законченного целого и не давала ответа на многие вопросы. Один французский ученый, имени которого я, к сожалению, не помню, заявил по прочтении книги, что она его восхитила, но так и не ответила на вопрос, что представляет собой электрически заряженный шар...

Как бы то ни было, но в данный момент теория электромагнитного поля Максвелла представляется нам настолько красивой и простой, что мы чуть ли не с сожалением думаем о том, что в нее могут быть внесены какие-либо изменения».

Но и восхищенному Лоренцу тяжело было сразу докопаться до физического смысла уравнений. «Автор электронной теории, — пишет А.Ф.Иоффе, — рассказывал мне, что, познакомившись впервые с уравнениями Максвелла, он не смог понять их физического смысла и обратился к переводчику сочинений Максвелла. Но и этот подтвердил, что никакого физического смысла эти уравнения не имеют, понять их нельзя; их следует рассматривать как чисто математическую абстракцию».

Лоренц был первым ученым, практически применившим теорию Максвелла в своей научной работе. Свою блестящую докторскую диссертацию 1875 года по проблеме отражения и преломления света диэлектриками и металлами он построил полностью на теории Максвелла.

Лоренц впоследствии попытался применить электромагнитную теорию Максвелла к движущимся телам — и в этом труде впервые появились «преобразования Лоренца» — важнейшая предпосылка создания теории относительности.

«Трактат» постепенно становился библией новой физики — физики эпохи электричества, теории относительности, радиотехники, атомной энергии...

ОТКРЫТИЕ КАВЕНДИШСКОЙ ЛАБОРАТОРИИ

И вот настал этот день, день великий и торжественный, которого ждали столь долго, к которому готовились, 16 июня 1874 года — день торжественного открытия Кавендишской лаборатории. Это был праздник для всего Кембриджа, и Максвелл оказался в центре его, смущенный и радостный. Звонили колокола, в сторону Тринити по Кингс-парад и Сент-Джон-стрит спешили кебы, поспешали, путаясь в средневековых мантиях, великие кембриджцы, недели с трудом тащили свои булавы, а Максвелл в спешке — буквально в последние минуты налаживались калориферы — разрываясь, пожимая на ходу руки, бежит в актовый зал Тринити, затем в Тринити-чапел, где развертываются основные события дня.

На торжество прибыло много именитых гостей — и среди них сэр Чарлз Лайелл, седовласый старец, великий геолог, и тоже уже старый, шестидесятитрехлетний Урбен Жан Жозеф Леверрье, соперник Адамса в открытии Нептуна, — им в этот день, в день открытия лаборатории, будут вручены канцлером дипломы почетных докторов права Кембриджского университета. Здесь и величественный герцог — ректор, и Кейлей, и Стокс, и Адамс, много друзей Максвелла. Среди заграничных гостей — тридцатипятилетний русский профессор Александр Григорьевич Столетов: он искренне завидует Максвеллу. Все его, Столетова, усилия по созданию настоящей физической лаборатории в России пока еще были впустую. Ему и его ученикам — Умову и Жуковскому долго еще придется собираться для обсуждения сложных физических материй у него на квартире. Приходилось ездить к Кирхгофу в Геттинген и Гейдельберг, чтобы поставить несложные экспериментальные работы. А сколько идей, требующих хорошей лаборатории, было у Столетова! Максвелл особенно восхищался методом, предложенным Столетовым для измерения отношения электромагнитной единицы количества электричества к электростатической, которое по теории Максвелла должно быть равно скорости света. Столетов с искренней завистью, с радостью за Максвелла, за английскую и мировую физику ожидал вместе со всеми гостями момента, когда распахнутся двери Кавендишской лаборатории.

И когда пестрая толпа во главе с герцогом и Максвеллом после того, как герцог свершил официально акт дарения университету новой лаборатории, отправилась осматривать ее, Столетов поспешил вослед и с радостным ожиданием вошел в трехэтажное каменное здание со стрельчатыми дверьми и окнами, украшенное срезанной по уши оленьей головой, торчащей из стены, — дань девонширскому гербу.

Во всю ширину первого этажа простиралась лаборатория для магнитных измерений. Чтобы сделать их более точными, из помещения изгнаны все железные и стальные предметы, а трубы отопления изготовлены из меди. Столы, на которых стояли приборы, были скорее не столами, а монолитными каменными плитами, покоящимися на кирпичных колоннах, каждая из которых проходит сквозь пол через специальное отверстие, не касаясь его, — и никакая беготня по полу не могла бы теперь вызвать дрожание приборов!

На одном из каменных столов возвышался большой электродинамометр Британской ассоциации, на котором Максвелл вместе с Флемингом Дженкином и Бальфуром Стюартом занимался измерением образцового ома. На другом столе — точнейший магнитометр.

Следующий зал — царство часов, часов необычных и неожиданных, зал измерения времени. На каменном основании покоились здесь Главные часы, и там же — каменная рама для подвески экспериментального маятника.

Рядом с залом часов — комната весов и комната для тепловых измерений, в которой Максвелл разместил свои аппараты, использовавшиеся еще в Кенсингтоне для определения вязкости воздуха.

Следующая — комната для батарей, и в ней была громадная батарея Даниэля, всем на зависть и подражание.

Помещения первого этажа завершала небольшая мастерская со станками и приспособлениями — и это тоже весьма предусмотрительно, если учесть, что ближе Лондона — а это пятьдесят миль — механика не было, и во всем — в изготовлении образцов и деталей, в стеклодувных работах — необходимо полагаться только на себя. Продумано все. Даже подоконники. Каменные, широкие, как снаружи помещения, так и внутри, причем внутренняя и наружная поверхности на одном уровне, так что в случае необходимости устанавливать приборы можно даже на окнах, даже вне помещения!

Второй этаж был личной лабораторией Максвелла. На одном из шкафов в углу стоял электрометр, в аппаратной и стеклянных шкафах хранились приборы. На этом этаже была личная комната Максвелла и лекционный театр на 180 студентов.

Третий этаж занят лабораториями акустики, оптики, теплового излучения, темной комнатой с черными стенами, окрашенными, как говорили, сажей, разведенной в пиве. Здесь же выделено место для исследований электричества высокого напряжения: предусмотрена даже специальная установка для подсушивания воздуха. Под самым потолком этой комнаты — окошко в лекционный театр, и это позволяло демонстрировать опыты по высоковольтному электричеству даже в том случае, если воздух в лекционном театре был слишком влажен и не позволял непосредственно на месте использовать электростатические машины со стеклянными дисками.

На лестничной клетке было оставлено место для бунзеновского водяного насоса и манометра, имевших в высоту чуть ли не 15 метров.

Лаборатория насквозь проникнута духом усовершенствования, уточнения — Максвелл убежден, что в уточнении измерений скрываются возможности новых великих открытий.

Для того чтобы сверхточным термометрам не мешало присутствие наблюдателя, излучающего тепло, наблюдение за шкалами приборов должно было вестись из соседней комнаты через специальное окошко посредством подзорной трубы. Вообще, все стены, полы и потолки лаборатории имели подъемные дверцы, с помощью которых можно сообщаться, протягивать через них коммуникации и провода.

Максвелл ходил по лаборатории, окруженный шумной восхищенной толпой, разъяснял непонятное.

— А как же столы второго этажа, выходит, они подвержены сотрясениям пола? — спрашивали непосвященные.

— Это тоже предусмотрено, — отвечал Максвелл, — столы верхних этажей покоятся не на полу, а на особых балках, независимых от пола и укрепленных в капитальных стенах здания. Вибрация приборам не угрожает.

Максвелл ходил между этими людьми, пожимал руки, здоровался, прощался, кому-то что-то объяснял, а мысли его были уже дома, на Скруп-террас, куда ему было доставлено еще одно пожертвование герцога, приманка, троянский конь, пожиратель времени и истощитель мысли — двадцать пакетов манускриптов достопочтенного Генри Кавендиша, чьим именем была названа лаборатория и чьим внучатым племянником был теперешний канцлер университета.

«МАТЕРИЯ И ДВИЖЕНИЕ». РЕЦЕНЗИЯ ТЭТА

На фоне «Трактата» совершенно потерялась вышедшая в том же 1873 году «небольшая книжка на большую тему», первый серьезный опыт Максвелла в области популяризации науки. Хотел ли он расширить узкий круг признания?

По-видимому, нет, ибо «Материя и движение» хотя и содержала множество глубоких его собственных мыслей, не выражала только его личных взглядов, а если и выражала, то в еще меньшей степени, чем «Трактат».

Для нас, потомков, эта книга интересна потому, что раскрывает точку зрения Максвелла на некоторые принципиальные вопросы строения материи.

Как устроен атом?

Как его представлял Максвелл до открытия электронов, до расщепления атома? Смог ли он и в этой области продемонстрировать глубину своей физической интуиции, «неспособность думать о физике неправильно»? Ясна ли была ему сложность строения «элементарного» атома?

В те годы издавалась знаменитая «Британская энциклопедия», в авторы которой были приглашены виднейшие специалисты в своей области. Был приглашен и Максвелл. Он написал для нового издания несколько статей. Среди них — «Атом», «Притяжение», «Эфир».

В статье «Атом» — категоричное заявление: «Атом есть тело, которое нельзя рассечь пополам!»

Точно то же заявление, что и в его речи под названием «Молекулы», произнесенной в Бредфорде, на встрече Британской ассоциации, в 1873 году. Та тоже начиналась с утверждения:

«Атом есть тело, которое нельзя рассечь пополам». Чувствуя излишнюю категоричность такого заявления, Максвелл не удовлетворяется им. В популярной книжке «Материя и движение» он делится своими сомнениями:

«Даже атом, если мы рассматриваем его как нечто способное к вращению, должен быть представляем состоящим из многих материальных частичек».

Нет, не мог Максвелл думать о физике неправильно. Он понимал ограниченность общепринятой тогда в науке версии «неделимого атома», но, не будучи в состоянии экспериментально или теоретически доказать это, не будучи в состоянии предложить альтернативное решение, не может молчать и делится сомнениями в книге, к которой трудно «придраться», — в популярной «Материи».

Здесь же — раздумья Максвелла о соотношении прерывного и непрерывного в природе. Изгнав из «Трактата» дискретные заряды, но будучи вынужденным вводить пресловутые «молекулы электричества» в главу об электролизе, Максвелл все-таки где-то в глубине души, видимо, жалел физически довольно ясные заряды. В «Материи и движении» Максвелл рассматривает понятия дискретности и непрерывности, не отдавая предпочтения ни тому, ни другому, допуская возможность и одного, и другого.

«Всякое наше знание как о времени, так и о месте, в сущности, относительно», — писал Максвелл. Свобода от оков предубежденности позволяла ему выходить за рамки известных фактов, делать глубочайшие догадки, прогнозы, предположения. «Великой задачей ученых нашего века является распространение наших знаний о движении вещества от тех случаев, в которых мы можем видеть и измерять движение, к тем, в которых наши чувства не могут его обнаружить».

Старый дружище Питер Тэт написал на «Материю и движение» рецензию в «Природе».



Тэт противопоставляет эту непритязательную популярную книжку некоторым вышедшим за последнее время толстым трактатам.

«...Работа Клерка Максвелла — это просто сама природа, такая, как мы понимаем ее. Вершины, пропасти, глубокие трещины ледников — все они здесь в их естественной красоте и величии. Те, кто хочет увидеть их вблизи, может попробовать приблизиться к ним с той стороны, что ему больше нравится. Когда он приближается к тому, что, как он боится, может оказаться опасным или непроходимым местом, он найдет здесь ступени, прорубленные в скале, или предусмотрительно привязанную вспомогательную веревку... которые оставлены здесь искусной рукой того, кто проложил свои собственные дороги во всех направлениях...»


  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22