Весьма богатый герцог мог себе позволить обойтись в учреждении такой кафедры без чьей-либо помощи: ведь в конечном счете все упиралось в фунты стерлингов.
В октябре 1870 года герцог представил в сенат университета меморандум о своем желании построить и оснастить при Кембриджском университете физическую лабораторию. Сенат соблаговолил указанный дар принять и учредить при вновь создаваемой лаборатории должность профессора.
И вот на эту-то должность долго не могли сыскать требуемого кандидата. Избранник должен был быть талантливым экспериментатором. При высочайшем теоретическом уровне своих математических построений он должен был уметь не только ставить задачи, но и решать их на самолично созданном и рассчитанном оборудовании. И кроме того, репутация Кембриджа не вынесла бы того, чтобы на этот пост был назначен какой-то неизвестный физик. А подходящих для этого поста было известно три: Максвелл, Томсон и Гельмгольц.
Наиболее логично было бы видеть на этом посту Максвелла — ведь именно его присутствие в последние годы в Кембридже, пусть спорадическое, в те времена, когда он выезжал из своего добровольного заточения экзаменовать в математическом трайпосе, привело в конечном итоге к мысли о необходимости перестроить преподавание физики. Вопросы, которые он задавал на трайпосе, задачи, которые он составлял для соискателей, мысли, которыми обменивался с другими виднейшими профессорами, экзаменовавшими трайпос, постепенно приводили всех кембриджских университетских деятелей к одному твердому убеждению: невозможно было оставлять так дело с преподаванием физических наук.
Да, Ньютону достаточно было его комнат в Тринити-колледже, да, Стоксу было достаточно его комнат в Пемброк-колледже, но ему уже было труднее, чем Ньютону, потому что ему нужно было уже в жилых комнатах проводить сложные физические эксперименты, точные измерения. Нужны были электрические источники, цепи, системы затемнения, гальванометры, установленные на неколеблющихся фундаментах.
Да, Максвелл и сам обходился когда-то своим сараем в Гленлейре, где старая дверь служила ему столом, а на ней установлено было множество склянок с разными жидкостями, в которых плавали отравившиеся насекомые. Как-то обходился Максвелл и в Кенсингтоне, когда его жена, работая в качестве «истопника», обеспечивала в комнате нужную температуру и влажность, необходимые мужу для измерения вязкости. Но вот эти уже измерения, будучи проверены через много лет, оказались неточными, да и не могло быть иначе. Для сложных экспериментов необходимы специальные лаборатории, в которых не нужно убирать физические приборы для семейного обеда, где не нужно, ложась спать, смахивать с постели лабораторные журналы.
Развитие науки настоятельно приводило к мысли о необходимости создания новой лаборатории. И глашатаем этой мысли стал Максвелл, который на своем опыте, может быть, острее, чем кто-либо другой, поскольку он никогда не был в душе чистым теоретиком, почувствовал ее необходимость.
А люди, любившие его, люди, кому дороги были и он, и его идеи, поддержали его, и в конце концов в математический трайпос были официально введены вопросы прикладного характера.
Этим самым в течение многих лет пестовавшаяся в Кембридже «чистота» математического трайпоса была раз навсегда «осквернена» физическими материями, и математика стала не самоцелью, но прикладной наукой, родился гибрид математики и физики — математическая физика.
Именно это событие, главную роль в котором играл Максвелл, привело в конечном итоге в 1869 году к тому, что университет высказался за создание в Кембридже кафедры, на которой изучалась бы теплота, электричество и магнетизм. С собственным профессором и демонстратором. Тут же было выражено и робкое желание иметь лабораторию — робкое потому, что ориентировочные подсчеты показывали чудовищную ее стоимость — 6300 фунтов. И так бы и остались все эти благие пожелания на бумаге, если бы канцлер университета седьмой герцог Девонширский не предложил построить лабораторию на свои деньги.
Натуральная философия превращалась в две физики — математическую и экспериментальную, и Максвелл сыграл в этом разделении свою роль. Но первым, кому предложена была профессура в новой лаборатории, названной сначала Девонширской, а потом Кавендишской — в честь одновременно и Генри Кавендиша и нынешнего канцлера университета, — был не Максвелл, а сэр Вильям Томсон.
И это довольно естественно. Слава Томсона была несравнима со славой Максвелла — его талант принадлежал своему веку точно так же, как гений Максвелла принадлежал вечности. И уже приставка «сэр» свидетельствовала о высоком признании действительно громадных заслуг будущего лорда Кельвина, друга и советчика Максвелла. Об успехах Томсона на научной, инженерной и деловой ниве свидетельствовала и красавица яхта «Лалла Рух», всегда ожидающая хозяина в месте впадения Кельвина в Клайд, и роскошная, стилизованная под древние шотландские замки усадьба в Нетерхолле. Но, может быть, больше всего удерживали Томсона в Глазго, в университете, где он с двадцати двух лет был профессором, и новая лаборатория, и старые винный и угольный подвалы, которые он когда-то очистил и превратил в демонстрационные аудитории для проведения занятий по электричеству, где иной раз не было элементарных вещей, даже катушек сопротивления... но где многое было сделано.
Короче говоря, Томсон отказался уезжать из Глазго.
Следующему профессура была предложена Гельмгольцу — и это свидетельство того, что, по мнению университетских ученых, именно Гельмгольц, а не кто-либо другой, был в то время вторым физиком мира, как Томсон — первым. Однако Гельмгольц, имевший кафедру в Берлине, не был удовлетворен низким окладом кавендишского профессора и тоже отказался.
Следующему профессура неминуемо должна была быть предложена Максвеллу, и это было так же заранее определено, как то, что в случае отказа Максвелла она была бы предложена Джону Стрэтту, будущему барону Рэлею, «старшему спорщику» и лауреату премии Смита 1865 года, восходящей звезде британской теоретической физики, ученику соперника Максвелла, Рауса. Стрэтт был той же крови, что и Максвелл. По складу своего ума он был «объяснителем». Одна его работа, казалось, буквально взята из трудов Максвелла — эссе о голубом цвете неба. Стрэтт часто работал с Максвеллом в одном забое, разрабатывая смежные проблемы, например теорию цветов. Их симпатии были полностью взаимными.
Стрэтт, узнав о колебаниях Максвелла, поспешил написать ему письмо, призванное воспрепятствовать несогласию. Стрэтт был тонок. Он прекрасно понимал, почему Максвелл мог бы не согласиться.
«В основном требуется не лектор по математике, а человек с большим опытом в экспериментировании, который смог бы направить энергию молодого поколения и бакалавров в нужное русло».
Пришло и официальное приглашение — на строгом бланке Тринити-колледжа:
«13 февраля, 1871
Тринити-колледж
Кембридж
Мой дорогой Максвелл!
В нашем университете сейчас основана кафедра экспериментальной физики, и, хотя оклад не так уж высок (500 фунтов в год), у нас всех в университете есть общее желание, чтобы эта отрасль науки велась таким образом, чтобы это делало честь университету. Многие здешние влиятельные лица решили, что именно Вы должны занять этот пост, надеясь, что в Ваших руках эта лаборатория университета займет ведущую роль в своей области. Мне кажется, что уже точно установлено, что сэр Вильям Томсон не принял бы этой кафедры. Я упоминаю об этом на случай, если бы Вы желали избежать соперничества с ним в этой области.
Поверьте, искренне Ваш
Э.В.Блор».
Максвелл немедленно ответил:
«Гленлейр, Далбетти, 15 февраля 1871
Мой дорогой Блор! Несмотря на то, что меня весьма интересует предложение занять кафедру экспериментальной физики, до получения Вашего письма у меня не было намерения подавать заявление на эту должность, и я не намереваюсь это делать до тех пор, пока я сам не поеду туда и не приду к заключению, что моя работа на этом посту позволит мне сделать что-то доброе...»
Максвелл долго колебался. В числе причин, видимо, была и природная застенчивость, неумение и нежелание находиться на виду. И прошлые неудачи с преподаванием. И необходимость пожертвовать своими научными изысканиями.
И все же кафедра и лаборатория экспериментальной физики были величайшей честью. И величайшей возможностью для производства собственных крупномасштабных экспериментов в специальном помещении. Создавая новую лабораторию с самого начала, в ней можно было бы многое предусмотреть.
Там магнитные измерения можно было бы производить в комнате без единого железного предмета. Гальванометры и другие точные измерительные приборы можно было бы, наконец, установить не на каких-то трясучих столах, а на специальных фундаментах. В общем, можно было осуществить многое из того, о чем мечталось.
Максвелл выехал в Кембридж, чтобы ознакомиться с обстановкой на месте. Оказалось, что дела обстоят не так уж плохо. Сенат своим постановлением от 9 февраля определил задачи кавендишского профессора следующим образом:
«Основная задача профессора преподавать и иллюстрировать законы Тепла, Электричества и Магнетизма; самому содействовать продвижению вперед этих наук; поощрять изучение этих наук в университете».
Как раз то, что нужно!
Он согласился. С единственным условием — возможностью через год, если он почувствует себя не на месте, ретироваться обратно в Гленлейр.
Кандидатура Максвелла была оглашена 24 февраля. Стокс приветствовал решение Максвелла, своего ученика и друга:
— Я рад, что вы решили двинуться вперед.
Оппозиции не было. 8 марта 1871 года Максвелл был назначен первым кавендишским профессором экспериментальной физики в Кембридже.
СТРОИТЕЛЬСТВО ЛАБОРАТОРИИ
Главной задачей кавендишского профессора сейчас, до начала чтения лекций, и потом, до открытия лаборатории, было ее строительство и оснащение.
Уже назначен был архитектор, талантливый Фокетт из колледжа Иисуса, магистр искусств.
Уже был выделен участок земли за Корпус Кристи-колледжем — ниже и через улицу от Тринити-колледжа.
Уже поторапливал предполагаемый подрядчик, производитель работ мистер Лавдей.
Только несколько растерянный Максвелл не знал еще толком, что ему заказать, как распорядиться средствами, землей, трудом архитектора и строителя. Он не представлял еще в деталях своей будущей лаборатории.
Он едет в Глазго, к Томсону, смотрит, как выглядит его лаборатория, как там развернуты экспериментальные работы по электричеству, как студенты обучаются, экспериментируя, создавая устройства, нужные практике.
Он беседует со Стрэттом, который создает сам себе личную физическую лабораторию в бывшей отцовской конюшне.
И главное — он вспоминает отца, его строительство в Гленлейре, он вспоминает, как удивлялись поставщики и производители, когда им заказывались отцом обычные вещи, но настолько легкие, удобные и небольшие по размерам, что невольно наводили на мысли об оборудовании корабля, отправляющегося в кругосветное путешествие.
Здание лаборатории и ее оборудование, по мысли Максвелла, тоже должны были быть абсолютно продуманными.
Не было соперничества между архитектурой и целесообразностью — высокая целесообразность всего, что было запроектировано в здании, вызвала к жизни и архитектурную привлекательность.
Строительство лаборатории, проект которой был одобрен сенатом, началось.
Теперь встала задача как следует оснастить ее первоклассным оборудованием — лучшим, какое можно было купить или заказать. Денег оказалось недостаточно, и Максвеллу сначала пришлось отдать в лабораторию все свои личные приборы, а затем прикупать приборы за свой счет, соревнуясь в этом смысле с самим герцогом Девонширским.
Заказанные приборы поступали и расставлялись в светлые и просторные помещения. На почетные места вставали личные приборы Максвелла. Прибыли приборы, отданные лаборатории Британской ассоциацией, — специальное решение состоялось на Эдинбургском конгрессе. Это были довольно дорогие аппараты, на которых некогда сам Максвелл вместе с Бальфуром Стюартом и Флемингом Дженкином проводил работы по стандартизации электрических единиц, в частности — единицы сопротивления. Эти работы намечалось продолжить.
Спешно устанавливалась система для подачи горячей воды — один из последних даров герцога. Лаборатория готовилась к своему официальному открытию.
ЛЕКЦИОННЫЕ КУРСЫ В КЕМБРИДЖЕ
Нельзя сказать, что лекционная нагрузка кавендишского профессора была чрезмерной. Он должен был находиться при кафедре всего восемнадцать недель в году. Но она существовала, эта нагрузка, и Максвеллу предстояло ее нести. Максвелл не страшился лекционной работы, но всеми силами хотел бы избежать первой, инагурационной лекции, на которой, по положению, должны были присутствовать отцы университета.
Об инагурационной лекции полагалось дать объявление — и Максвелл вывесил его, однако так, что его лишь с малой вероятностью могли прочесть отцы университета, но могли прочесть студенты. Студенты, пробегая мимо объявления о лекции Максвелла, удивленно переглядывались: какой это Клерк Максвелл? Имя-то вроде и известное, произносится всеми с уважением. Может быть, он печатает статьи в научных журналах? Тогда другое дело — нормальным кембриджским студентам не до них, им не хватает времени для подготовки к экзаменам, в том числе к страшному математическому трайпосу, на котором, а это уже точно известно, этот Клерк Максвелл дает весьма коварные задачки.
Но предмет — экспериментальная физика — обещает быть интересным, и несколько студентов, дрожа в своих фланелевых курточках, пробегают под октябрьским дождиком, нет, не в роскошное помещение Сенат-хауса, как это надлежит быть, а в затрапезную аудиторию, где новый профессор будет читать самую важную, первую свою лекцию, в которой разъяснит свои взгляды на этот новый предмет, расскажет о том, что будет делаться в Кавендишской лаборатории после завершения строительства.
Собралось около десятка студентов. Никого из отцов университета не было. Максвелл поднялся на кафедру и после не слишком бурных приветствий приступил к своей лекции.
— Мы обсудим сегодня, — негромко сказал он, и все студенты сразу почувствовали и хрипоту его голоса, и его неистребимый шотландский акцент, — вопрос о значении эксперимента в физической теории. Кембриджский университет, — продолжал Максвелл, — в соответствии с законом своего развития, согласно которому он с большей или меньшей быстротой приспособляется к требованиям времени, недавно ввел курс экспериментальной физики.
Студенты заулыбались: им понравилась шпилька в адрес консервативных университетских властей.
— Курс этот, — продолжал Максвелл, — поддерживая способности к анализу, столь много времени культивировавшиеся в университете, требует также упражнения наших чувств в наблюдении и наших рук в общении с приборами. Привычных принадлежностей — пера, чернил и бумаги — будет теперь недостаточно, и нам потребуется большее пространство, чем пространство кафедры, и большая площадь, чем поверхность доски.
Когда мы сможем использовать при обучении науке не только сосредоточенное внимание студента и его знакомство с символическими обозначениями, но и зоркость его глаз, остроту слуха, тонкость осязания и ловкость его пальцев, мы сразу же распространим наше влияние на целую группу людей, не любящих холодных абстракций. Более того, раскрывая сразу все ворота познания, мы обеспечим ассоциирование научных доктрин с теми элементарными ощущениями, которые образуют смутный фон всех наших мыслей и придают блеск и рельефность идеям, которые, будучи представлены в чисто абстрактной форме, могут совершенно исчезнуть из памяти...
...Стали записывать...
— Характер современных экспериментов, — продолжал Максвелл, — то, что они заключаются главным об разом в измерениях, настолько бросается в глаза, что распространилось мнение о том, что через несколько лет все основные физические постоянные будут с достаточной точностью определены и единственным оставшимся для ученых занятием будет достижение при дальнейших измерениях следующих десятичных знаков.
Если таково действительное положение вещей, то наша лаборатория станет, быть может, знаменита своей добросовестной работой и совершенством экспериментального мастерства; но она в этом случае будет не на месте в университете и должна быть скорее отнесена к ряду знаменитых мастерских нашей страны, где подобное умение направлено на более полезные цели...
Возможно, что в некоторых областях великие естествоиспытатели прошлого действительно завладели почти всем ценным и оставленные ими крохи подбираются скорее из-за своей таинственной непонятности, нежели ради истинной, присущей им ценности. Но история науки показывает, что даже в течение этой фазы развития наука подготавливает материалы для подчинения областей, которые остались бы неизвестными, если бы наука довольствовалась грубыми методами своих ранних пионеров. Я мог бы привести примеры из любой отрасли науки, показывающие, как работа над тщательными измерениями была вознаграждена открытиями новых областей исследования и развитием новых научных идей...
Я признаю, что наша умственная энергия количественно ограничена, и знаю, что много усердных студентов пытаются сделать больше, нежели это для них полезно.
Однако при обучении большая часть утомления часто возникает не от умственных усилий, с помощью которых мы овладеваем предметом, но от тех, которые мы тратим, собирая наши блуждающие мысли, и эти усилия были бы гораздо менее утомительны, если бы можно было устранить рассеянность, нарушающую умственную сосредоточенность.
Поэтому-то человек, вкладывающий в работу всю свою душу, всегда успевает больше, нежели человек, интересы которого не связаны непосредственно с его занятием. В последнем случае побуждения, которыми он пользуется для стимулирования падающих сил, сами становятся средством отвлечения его от работы.
Может быть, и существуют математики, занимающиеся своими исследованиями исключительно для собственного удовольствия. Однако большинство людей предполагает, что главная польза математики заключается в применении ее для объяснения природы.
Я знал людей, которые, обучаясь в школе, никак не могли понять пользы математики, но, поняв ее, в дальнейшем не только становились выдающимися учеными-инженерами, но и достигали больших успехов в занятиях абстрактной математикой. Если наш экспериментальный курс поможет кому-либо из вас увидеть пользу математики, это освободит нас от большого беспокойства, так как не только обеспечит успех вашего дальнейшего учения, но и сделает менее вероятным его вред для вашего здоровья.
Студенты улыбались. Им был глубоко симпатичен этот темноволосый бородач с нескладной фигурой и живыми, видимо, чуть близорукими глазами. Он говорил о том, что волновало их, и давал решения, решения мудрые и продуманные, пряча их серьезность за слегка юмористическим фасадом.
— Можно поставить вопрос, — продолжал Максвелл, — должен ли университет быть местом получения общего образования или должен посвятить себя подготовке юношей к определенным профессиям? Поэтому, хотя многие из вас сделают научные исследования главной целью своей жизни, все мы должны постоянно стремиться поддерживать живую связь между нашей работой и гуманитарными курсами Кембриджа — литературными, филологическими, историческими или философскими.
Среди ученых появляется иногда узкий профессиональный дух, такой же, какой появляется среди людей, занимающихся какой-либо другой специальностью. Но университет как раз и является тем местом, где можно преодолеть тенденцию людей разбиваться на замкнутые кружки, в которых именно благодаря их замкнутости господствуют мелкие цеховые интересы. Мы же теряем преимущество быть объединением различных специальностей, если не пытаемся до некоторой степени впитать дух науки даже со стороны тех, чья специальная отрасль знания отлична от нашей.
Не так давно еще на каждого человека, посвятившего себя геометрии или какой-либо другой науке, требующей постоянной усидчивости, смотрели как на мизантропа, отказавшегося от всяких человеческих интересов и столь преданного оторванной от мира абстракции, что он стал одинаково нечувствителен как к удовольствиям, так и к требованиям долга.
Сейчас на людей науки не смотрят уже с почтительным страхом или подозрительностью. Предполагается, что они связаны с практическим духом века и образуют передовой отряд человечества.
Лекция закончилась бурными аплодисментами немногочисленных слушателей. Максвелл был доволен вдвойне — и едва не больше всего тем, что ему удалось прочесть лекцию без лишней помпы.
Но радоваться было рано. Отцы университета увидели объявление о второй лекции! Думая, что это и есть первая, инагурационная, они все в полном составе, в мантиях и париках, явились на нее, оттеснив студентов с первых рядов. Впереди уселись великие кембриджские астрономы, философы и математики — и среди них Адамс, Кейлей, Стокс... И где-то сзади — студенты, присутствовавшие на первой лекции.
«Не повторять же снова всю инагурационную лекцию!» — решил Максвелл и приступил к следующей лекции, которая должна была открывать курс теплоты.
С озорным блеском в глазах, увлеченно и самозабвенно начал разъяснять он отцам университета и сидящим сзади студентам разницу между шкалой Фаренгейта и стоградусной шкалой.
Отцы университета покорно внимали...
Его любили и поэтому простили ему эту мальчишескую выходку.
Следующие лекции по теплоте, электричеству проходили как обычно, если не считать двух обстоятельств.
Первое: лекции читать было негде.
— Мне негде поставить свое кафедральное кресло, и я кочую, как кукушка, откладывая плоды своей мысли в химической аудитории в первом семестре, в ботанической — в Лент-семестре, в музее сравнительной анатомии — в пасхальном, — жаловался он. Для нетерпеливого Максвелла лаборатория строилась слишком медленно.
И второе: он опять стал увлекаться на своих лекциях. Студентам очень импонировали его мягкий юмор, его внезапные поэтические сравнения, его экскурсы в историю науки. Но сложная суть его лекций была ясна немногим. Лишь очень талантливые, способные люди могли смело следовать за ним в его сложнейших построениях, не обращая внимания на многочисленные вольности и ошибки, которые он позволял себе в ходе доказательств. Многих не увлекало физическое величие полученных результатов. Они с разочарованием видели у доски питающегося лектора, безнадежно тонущего в деталях мелких вычислений, которого от ошибочных выводов спасало лишь тончайшее физическое чутье.
Когда в 1873 году появился «Трактат об электричестве и магнетизме», студенты сначала образовали давку в книжной лавке, а потом — увы! — их ожидало разочарование. Книга Максвелла оказалась еще более сложной, чем его лекции. В ней было более тысячи страниц, из которых лишь десяток (!) непосредственно относился к его системе уравнений. Однако сами уравнения разбросаны по всей книге, и их довольно много — двенадцать!
Последующее изучение Герцем и Хевисайдом уравнений Максвелла показало, что некоторые из них могут быть выведены друг из друга, некоторые — вообще лишние и не отражают фундаментальных законов природы.
Кроме того, изложение и обозначения Максвелла оставляли большой простор для пожеланий их улучшения. Как пишут исследователи, «сумбурность изложения... приходится признать типичной чертой его литературного творчества». И еще: «Трактат Максвелла загроможден следами его блестящих линий нападения, его укрепленных лагерей, его битв».
Класс Максвелла таял. Десять... три... два.
Но Максвелл не унывал. Он обладал талантом читать лекции с равной увлеченностью и страстью и полной аудитории, и аудитории, состоящей всего из двух студентов.
Тех, кто оказался в состоянии осиливать и его лекции, и его «Трактат»...
«ТРАКТАТ ОБ ЭЛЕКТРИЧЕСТВЕ И МАГНЕТИЗМЕ»
«Трактат» содержал все, что знал и передумал Джеймс Клерк Максвелл об электричестве и магнетизме, причем собственные его взгляды и разработки не заняли в книге подобающего им места — стремление рассказать все об электричестве, дать систематический учебный курс привело к тому, что работы самого Максвелла несколько отошли в этом труде на задний план.
Максвелл хотел дать практическое пособие для ученых, инженеров и студентов и не заботился о том, какое место в общей картине знаний по электричеству займут его имя, его труды.
Уже в предисловии Максвелл пишет о том, что имеющиеся в библиотеках учебники и пособия по теории электромагнетизма не отвечают потребностям людей, работающих в настоящей научной лаборатории, совсем уже не учебной, людей, которым приходится делать хитроумные и точные измерения. Не без яда Максвелл упоминает о многопудовых учебниках по электричеству, лежащих без применения, пылящихся на полках библиотек, — эти учебники были далеки от практических задач и зачастую попросту непонятны.
Исправляя эту ошибку, Максвелл значительную часть «Трактата» посвятил изложению методов измерения и описанию измерительной аппаратуры.
Максвелл дал полный обзор всех до тех пор созданных теорий электричества и магнетизма. Максвелл справедлив и великодушен. Он признает их значение для развития физики и прямо говорит, что теория Ампера непревзойденна по точности, а формула Ампера, определяющая силу взаимодействия токов, навсегда останется в золотом фонде любой теории электромагнетизма.
В «Трактате» сформулированы «уравнения Максвелла».
В «Трактате» есть, по сути дела, все те же уравнения, что и в «Динамической теории». Но выведены они иным путем, более закономерным и обоснованным.
Максвелл подбирается к уравнениям издалека. Неторопливо идет вначале повествование о размерностях физических величин. Затем столь же медленно и систематически даются основы векторного исчисления.
Затем — четыре части: электростатика, электрокинематика, магнетизм, электромагнетизм. Казалось бы, и здесь нет существенных различий с общепринятой методикой изложения. Каждая часть начинается со спокойного изложения исходных экспериментов и основных понятий.
Но вот метод исследования Максвелла резко отличается от методов других исследователей. Не только каждая математическая величина, но и каждая математическая операция наделяются глубоким физическим смыслом. В то же время каждой физической величине дается четкая математическая характеристика.
Одна из глав «Трактата» (девятая глава четвертой части) называется «Основные уравнения электромагнитного поля». Здесь, казалось бы, и должны быть сосредоточены основные уравнения электромагнитного поля. И действительно, нумерация уравнений здесь меняется: они начинают обозначаться не цифрами, а буквами, что, видимо, должно обратить внимание на их важность. Но читатель с удивлением может заметить, что нумерация уравнений, отмеченных буквами, начинается в этой главе сразу с D, а уравнения под номерами А, В, С были приведены уже в предыдущей главе. Таким образом, в главе «Основные уравнения» даны не все уравнения.
Но это еще не все. Уравнения, отмеченные буквами, кончаются буквой L. Их двенадцать! Их слишком много! Максвелл, чувствуя это, оправдывается перед читателем:
«Наша цель в настоящий момент состоит не в получении компактности математических формул, а в выражении каждого известного нам соотношения, и исключение величины, выражающей полезную идею, было бы скорее потерей, чем выигрышем на данной стадии исследования».
С помощью векторного исчисления Максвелл более просто сделал теперь то, что раньше сделал с помощью механических моделей, — вывел свои уравнения электромагнитного поля.
Впоследствии уравнения Максвелла были «расчищены» Герцем и Хевисайдом. Они сократили число уравнений Максвелла до четырех, самых важных. Эта система уравнений употребляется до сих пор.
Трудно поверить, что в области электричества и магнетизма не существует ни одного факта, противоречащего или не ложащегося в рамки этой системы четырех уравнений.
Уравнения Максвелла при простой форме записи очень сложны. Их не всякий сможет решить или применить к нужному случаю. Но смысл уравнений прозрачен, и в их содержании сравнительно просто разобраться.
Первое уравнение означает, что электрическое поле образуется зарядами и силовые линии этого поля начинаются и кончаются на зарядах.
Второе уравнение постулирует замкнутость магнитных силовых линий, отсутствие свободных магнитных зарядов. Магнитные силовые линии нигде не начинаются, нигде не кончаются — они замкнуты.
Третье уравнение говорит о том, что магнитное поле создается током, включающим в себя открытый Максвеллом ток смещения. Это обобщение и дополнение всей электродинамики Ампера.
Четвертое уравнение отражает закон электромагнитной индукции Фарадея — возникновение электрического поля за счет изменения индукции магнитного поля. Любое изменение магнитного поля приводит в соответствии с этим уравнением к возникновению в пространстве особого, вихревого электрического поля.
Два последних уравнения привели Максвелла к предсказанию существования электромагнитных волн. Вокруг магнитных силовых линий возникают тут же электрические силовые линии, вокруг которых, в свою очередь, создаются магнитные — и за счет этого в пространстве, от точки к точке, передается электромагнитное возбуждение.
Если попытаться вычислить из уравнений скорость распространения электромагнитной волны, то получится, что она равна отношению электромагнитной и электростатической единицы измерения. Совпадение этой величины со скоростью света было известно давно, со времен Кольрауша и Вебера, но никто до Максвелла не смог усилием мысли придать этому, казалось, случайному совпадению глубокий физический смысл. Исследовательский метод Максвелла проявил в доказательстве электромагнитной природы света свое высшее достижение.
Важнейшим следствием электромагнитной теории света было предсказанное Максвеллом давление света. Ему удалось подсчитать, что в случае, когда «в ясную погоду солнечный свет, поглощаемый одним квадратным метром, дает 123,1 килограммометра энергии в секунду, он давит на эту поверхность в направлении своего падения с силой 0,41 миллиграмма».