Современная электронная библиотека ModernLib.Net

Параллельные миры

ModernLib.Net / Научно-образовательная / Каку Мичио / Параллельные миры - Чтение (стр. 27)
Автор: Каку Мичио
Жанр: Научно-образовательная

 

 


Труд помогает нам обрести чувство ответственности и цели, которая представляет собой точку фокусировки наших стараний и мечтаний. Труд не только дисциплинирует и организует наши жизни, он еще дает нам чувство гордости, законченности, а также задает рамки нашей деятельности. Что же касается любви, то она является тем самым жизненно важным ингредиентом, благодаря которому мы вписываемся в структуру общества. Без любви мы потеряны, пусты и лишены корней. Мы превращаемся в странников на своей собственной земле, безучастных к тревогам других людей.
      К труду и любви я бы добавил еще два компонента, которые наполняют жизнь смыслом. Во-первых, это реализация всех талантов, данных нам при рождении. Как бы ни облагодетельствовала нас судьба различными способностями и умениями, нам следует стараться развить их в полном объеме, не позволяя им атрофироваться и зачахнуть. Мы все знаем таких людей, которые не оправдали надежд, возлагавшихся на них в детстве. И не одного из них неотступно преследует образ того, кем он мог бы стать. Я считаю, что вместо того, чтобы винить судьбу, мы должны принимать себя такими, какие мы есть, и стараться реализовать все мечты, какие только можем,
      Во-вторых, нам следует попытаться оставить мир в лучшем состоянии, нежели он был до нашего прихода. Будучи сознательными людьми, мы можем изменить мир, то ли проникая в тайны Природы) участвуя в очищении окружающей среды и работая на благо мира и социальной справедливости, то ли взращивая пытливый подвижный дух молодежи, будучи наставниками.

Переход к цивилизации первого типа

      В пьесе Антона Чехова «Три сестры» во втором действии полковник Вершинин провозглашает: «Через двести-триста, наконец, тысячу лет — дело не в сроке — настанет новая, счастливая жизнь. Участвовать в этой жизни мы не будем, конечно, но мы для нее живем теперь, работаем, ну, страдаем, мы творим ее — ив этом одном цель нашего бытия и, если хотите, наше счастье».
      Вместо отчаяния перед лицом необъятности этой вселенной меня охватывает глубокое волнение при мысли о том, что рядом с нами существуют совершенно новые миры. Мы живем в эпоху, когда только начинаем исследовать космос при помощи космических зондов и космических телескопов, теорий и уравнений.
      Я считаю, что мне очень повезло в том, что я живу во время, когда наш мир проходит исторические вехи. Мы становимся очевидцами, возможно, величайшего перехода в истории человечества — перехода к цивилизации первого типа, может быть самого значимого в истории человечества, но также и наиболее опасного.
      В прошлом нашим предкам довелось жить в жестоком и не прощающем ошибок мире. На протяжении большей части истории человечества жизнь людей была коротка и полна жестокости. Средняя продолжительность жизни составляла приблизительно двадцать лет. Люди жили в постоянном страхе перед болезнями, будучи игрушкой в руках судьбы. Изучение костей наших предков показывает, что им приходилось ежедневно носить большие тяжести; кроме того, на костях есть ясно различимые следы болезней и ужасных увечий. Даже в прошлом столетии наши прадеды жили, не пользуясь преимуществами современной санитарии, антибиотиков, реактивных самолетов, компьютеров и других чудес электроники.
      Однако наши внуки будут жить на рассвете первой земной планетарной цивилизации. Если мы не дадим нашему жестокому инстинкту саморазрушения поглотить нас, то наши внуки смогут жить в эпоху, где нужда, голод и болезни не будут более омрачать судьбу людей. Впервые за всю историю человечества мы обладаем средствами, с помощью которых можно как уничтожить все живое на Земле, так и создать рай на нашей планете.
      В детстве я часто задумывался над тем, каково было бы жить в далеком будущем. Сегодня я считаю, что, если бы мне дано было выбирать, в какой эпохе жить, я бы выбрал именно эту. Сейчас мы являемся свидетелями самого волнующего периода в истории человечества — точки соприкосновения некоторых величайших космических открытий и технологических достижений всех времен. Мы совершаем исторический переход, переставая быть пассивными наблюдателями танца природы, становимся хореографами этого танца, приобретая способность управлять жизнью, веществом и разумом. Однако вместе с этой великой силой на нас ложится огромная ответственность — сделать так, чтобы плоды наших стараний были использованы мудро и на благо всего человечества.
      Ныне живущее поколение, возможно, является самым важным из всех человеческих поколений, когда-либо ступавших по Земле. В отличие от предыдущих поколений в наших руках будущая судьба всего нашего рода: воспарим ли мы, оправдав ожидания, в качестве цивилизации первого типа или упадем в пропасть хаоса, загрязнения и войн. Принятые нами решения будут отдаваться эхом на протяжении всего этого столетия. От того, как мы разрешим проблему мировых войн, распространения ядерного оружия, религиозных и этнических конфликтов, зависит создание или разрушение основ цивилизации первого типа. Возможно, целью и смыслом жизни нынешнего поколения является именно обеспечение плавного перехода к цивилизации первого типа.
      Выбор за нами. Это наследие ныне живущего поколения. Это наша судьба.

Примечания автора

      2. Когдагаз расширяется, он охлаждается. Для примера, в вашемхоло-дильнике внешнее и внутренне пространство камеры соединяется трубкой. Когда газ попадает внутрь холодильника, он расширяется, охлаждая трубку и продукты. Когда он уходит из внутренней части холодильника, трубка сокращается и нагревается. Есть также механический насос, который закачивает газ через трубку. Таким образом, задняя стенка холодильника греется, а внутреннее пространство охлаждается. В звездах все происходит в обратном порядке. Когда сила гравитации сжимает звезду, та разогревается до достижения температур, при которых начинается синтез.
      3. Ученые искали антивещество во Вселенной, и им удалось найти немного (за исключением потоков антивещества недалеко от центра Млечного Пути). Поскольку вещество и антивещество практически неразличимы, поскольку они повинуются одним и тем же законам физики и химии, различить их довольно сложно. Однако одним из способов являются поиски характерного гамма-излучения в 1,02 млн электронвольт. Это отпечаток присутствия антивещества, поскольку это минимальная освобождаемая энергия при столкновении электрона с антиэлектроном. Но когда мы сканируем Вселенную, мы не находим больших количеств гамма-лучей в 1,02 млн электронвольт, что указывает на то, что антивещество во Вселенной встречается весьма редко.
      4. Предел Чандрасекара можно вывести, рассуждая следующим образом. С одной стороны, действие гравитации сжимает белый карлик до невероятной плотности, все ближе и ближе придвигая электроны звезды друг к другу. С другой стороны, существует принцип исключения Паули, который гласит, чтоу двухэлектронов не может быть совершенно одинакового состояния. Это означает, что два электрона не могут занимать в точности одно и то же положение с одними и теми же свойствами, так что существует сила, расталкивающая электроны в стороны (в дополнение кэлектроста-тическому отталкиванию). Это означает, что существует давление, расталкивающее электроны, которое не дает им вжаться друг в друга. Таким образом, мы можем вычислить массу белого карлика, когда эти две силы (одна — отталкивающая, а вторая — притягивающая) в точности уравновешивают друг друга, именно это и будет пределом Чандрасекара в 1,4 солнечной массы.
      В случае с нейтронной звездой мы имеем дело с гравитацией, которая сжимает шар из чистых нейтронов, так что здесь будет другой предел Чандрасекара, приблизительно равный 3 солнечным массам, поскольку нейтроны также отталкиваются друг от друга вследствие этого взаимодействия. Но когда нейтронная звезда превзойдет свой предел Чандрасекара, она коллапсирует в черную дыру.
      5. Они были среди первых, кто привлек квантовую механику к физике черных дыр. Согласно квантовой теории, существует конечная вероятность того, что субатомная частица может вырваться их хватки черной дыры путем туннелирования, а отсюда следует, что черная дыра должна медленно испускать излучение. Это является примером туннелирования.
      б. Один из широко известных примеров сексуального парадокса был описан английским философом Джонатаном Харрисоном в произведении, которое было опубликовано в 1979 году в журнале «Энелисиз» (Analysis). Читателям предлагалось найти смысл в этом парадоксе.
      История начинается с того момента, как девушка по имени Джокаста Джоунс находит старую камеру глубокой заморозки. Внутри она обнаруживает привлекательного человека, которого заморозили заживо. Она отогревает его и узнает, что его зовут Дам. Дам рассказывает ей, что у него есть книга, в которой говорится, как построить камеру глубокой заморозки, которая может сохранять человека, а также как построить машину времени. Эти двое влюбляются друг в друга, женятся и вскоре у них рождается мальчик, которого они называют Ди.
      Годы спустя, когда Ди вырастает, он решает пойти по стопам отца и построить машину времени. На этот раз путешествие в прошлое совершают и Ди, и Дам; при этом они берут книгу с собой. Однако это путешествие оканчивается трагедией — они оказываются в далеком прошлом в затруднительном положении и без всяких запасов пищи. Понимая, что конец близок, Ди совершает единственную вещь, которая может помочь ему выжить, — он убивает своего отца и съедает его. Тогда Ди решает построить камеру глубокой заморозки, следуя инструкциям, приведенным в книге. Чтобы спастись, он входит в эту камеру, его замораживает, и процессы его жизнедеятельности приостанавливаются.
      Много лет спустя Джокаста Джоунс находит эту камеру заморозки и решает отогреть Ди. Для маскировки Ди называется Дамом. Они влюбляются друг в друга, а потом у них рождается ребенок по имени Ди… и цикл продолжает повторяться.
      Предложение Харрисона вызвало с дюжину ответов. Один из читателей заявил, что «история была настолько экстравагантна в своем подтексте, что к ней придется относиться как к reductio ad abusurdum сомнительного допущения, на котором основывается эта история: возможность путешествий во времени». Обратите внимание на то, что здесь не содержится дедушкиного парадокса, поскольку Ди ни в один из моментов прошлого не совершает ничего, что сделало бы настоящее невозможным. (Однако присутствует информационный парадокс, поскольку книга, в которой содержатся секреты приостановления жизненных функций и путешествий во времени, появляется из ниоткуда. Однако не книга является самой важной частью истории.)
      Другой читатель указал на присутствие странного биологического парадокса. Поскольку у каждого человека половина ДНК от матери и половина от отца, это означает, что Ди должен иметь половину ДНК от миссис Джоунс и половину от своего отца, Дама. Однако Ди — это Дам. Таким образом, Ди и Дам должны обладать одним и тем же набором ДНК, поскольку это один и тот же человек. Но это невозможно, поскольку по законам генетики половина их генов от миссис Джоунс. Иными словами, истории о путешествиях во времени, в которых человек возвращается в прошлое, встречает свою мать и себя в качестве своего же отца, противоречат законам генетики.
      Кто-то может подумать, что в сексуальном парадоксе есть брешь. Если вы можете быть одновременно и своим отцом и своей матерью, то вся ДНК идет от вас самих. В произведении Роберта Хайнлайна «Все вы зомби» девушка идет на операцию по смене пола, а затем дважды возвращается во времени, чтобы стать своей же собственной матерью, отцом, сыном и дочерью. Однако даже в этом причудливом рассказе присутствует нарушение законов генетики.
      В рассказе «Все вы зомби» девушка по имени Джейн воспитывается в сиротском приюте. Однажды она встречает привлекательного незнакомца и влюбляется в него. Она рожает девочку, которую таинственным образом похищают. У Джейн возникают осложнения после родов, и врачи вынуждены изменить ее пол, превратив в мужчину. Год спустя этот мужчина встречает путешественника во времени, который забирает его в прошлое, где он встречает Джейн в молодости. Они влюбляются друг в друга, Джейн беременеет. Затем мужчина похищает своего собственного ребенка — девочку — и возвращается еще дальше в прошлое, оставив девочку в приюте. Затем Джейн вырастает и встречает привлекательного незнакомца. Этой истории почти удается избежать сексуального парадокса. Половина генов принадлежит девушке Джейн и половина — Джейн-незнакомцу. И все же oneрация по изменению пола не может изменить вашу Х-хромосому на Y-хромосому, а потому здесь все же присутствует сексуальный парадокс.
      7. В конечном счете для разрешения этих сложных математических вопросов необходимо обратиться к физике нового рода. Например, многие физики, такие, как Стивен Хокинг и Кип Торн, пользуются так называемой полуклассической аппроксимацией — то есть гибридной теорией. Они предполагают, что субатомные частицы повинуются квантовому принципу, но они позволяют гравитации быть плавной и неквантованной (то есть они исключают гравитоны из своихрасчетов). Поскольку все расхождения и аномалии происходят из-за гравитонов, полуклассический подход не испытывает никакихтрудностей. Однако можно математически показать, что полуклассический подход содержит противоречия, — то есть, в конечном счете, он дает неверные ответы, а потому на результаты, полученные с привлечением полуклассического подхода, опираться нельзя, особенно в самых интересных областях, таких, как центр черной дыры, вход в машину времени, а также момент Большого Взрыва. Обратите внимание, что многие «доказательства», утверждающие, что путешествия во времени невозможны или что нельзя пройти сквозь черную дыру, были сделаны при использовании полуклассической аппроксимации, а потому полагаться на них нельзя. Именно поэтому нам приходится обратиться к квантовой теории гравитации, такой, как струнная теория и М-теория.
      8. В принципе, можно было суммировать всю струнную теорию в условиях нашей струнной теории поля. Однако теория не была сформулирована в окончательном виде, поскольку была нарушена инвариантность относительно преобразований Лоренца. Позднее Виттену удалось построить изящную версию теории поля открытых бозонных струн, которая являлась ковариантной. Еще позже группа ученых из Массачусетского технологического института, группа Киото и я смогли построить ковариантную теорию замкнутых бозонных струн (которая, однако, была неполиномиальной, а потому работать с ней было сложно). Сегодня с приходом М-теории интерес ученых сместился к мембранам, но еще не ясно, может ли быть разработана истинная мембранная теория поля.
      9. В действительности существует несколько причин, почему десять и одиннадцать являются предпочтительными числами в струнной теории и в М-теории. Во-первых, если мы изучим представления группы Лоренца во все высших и высших измерениях, то мы обнаружим, что в целом количество фермионов возрастает экспоненциально вместе с измерением, в то время как количество бозонов увеличивается в линейной зависимости от измерения. Таким образом, лишь для малого количества измерений мы можем вывести супер симметричную теорию с равным количеством фермионов и бозонов. Если мы тщательно проанализируем теорию групп, то обнаружим, что идеальное равновесие достигается в десяти и одиннадцати измерениях (учитывая, что мы имеем дело с частицами с максимальным спином 2, а не 3 и выше). Так, на основании исключительно теории групп мы можем показать, что предпочтительными являются десять и одиннадцать измерений.
      Существуют и иные способы показать, что десять и одиннадцать являются «волшебными числами». Если мы рассмотрим диаграммы высших циклов, то обнаружим, что в целом унитарность не сохраняется, что для теории является катастрофой. Это означает, что частицы могут появляться и исчезать, словно по волшебству. Обнаруживается, что унитарность восстанавливается для теории возмущений именно в этих измерениях.
      Мы можем также показать, что в десяти и одиннадцати измерениях «призрачные» частицы можно заставить исчезнуть. Это частицы, которые не подпадают под обычные условия для физических частиц.
      В целом мы можем показать, что в этих «волшебных числах» мы можем сохранить а) суперсимметрию; б) конечность теории возмущений; в) унитарность ряда теории возмущений; г) лорен-цевскую инвариантность; д) ликвидацию аномалий.
      11. Струнная теория и М-теория представляют радикально новый подход к общей теории относительности. В то время как Эйнштейн создавал свою общую теорию относительности исходя из концепции искривленного пространства-времени, струнная теория и М-теория основаны на концепции протяженного объекта, такого, как струна или мембрана, движущегося в суперсимметричном пространстве. В конечном итоге может оказаться возможным связать эти две картины между собой, но ясное понимание в этом вопросе еще не достигнуто.
      12. носительности 0(3,1) получалась катастрофа. К примеру массы частиц внезапно становились непрерывными, а не дискретными. Это удручало, поскольку означало, что нельзя объединить гравитацию с другими взаимодействиями, уповая на существование симметрии высшего порядка. Это означало, что существование единой теории поля, скорее всего, было невозможно.
      Однако струнная теория решает все эти противоречивые математические проблемы при помощи самой мощной симметрии из когда-либо обнаруженных в физике — суперсимметрии. В настоящее время суперсимметрия представляет собой единственный способ, которым можно обойти теорему Коулмена — Мандулы. (Суперсимметрия пользуется маленькой, но чрезвычайно важной брешью в этой теореме. Обычно когда мы вводим числа, такие, как а и Ь, мы предполагаем, что а х b = b х а. Это по умолчанию предполагалось в теореме Коулмена — Мандулы. Но в суперсимметрии мы вводим «суперчисла», такие, для которых а х b = — b х а. Эти суперчисла обладают весьма причудливыми свойствами. Например, если а х а = 0, то тогда а может быть не нулем, что звучит нелепо для случая с обычными числами. Если мы подставим суперчисла в теорему Коулмена — Мандулы, то обнаружим, что она больше не работает.) 13. Во-первых, она решает проблему иерархии, которая обрекает на поражение ТВО. При построении единых теорий поля мы приходим к двум серьезно отличающимся шкалам масс. Некоторые из частиц, например протон, обладают той же массой, что и в повседневной жизни. Однако другие частицы довольно массивны и обладают энергиями, сравнимыми с теми, которые можно было обнаружить в момент Большого Взрыва, с энергией Планка. Эти две шкалы масс необходимо разделять. Из-за квантовых флуктуации эти два типа масс начинают смешиваться, поскольку существует конечная вероятность того, что один набор легких частиц превратится в другой набор тяжелых частиц, и наоборот. Это означает, что должен существовать континуум частиц с массами, плавно изменяющимися от привычных нам масс до невероятно больших, которые были характерны для момента Большого Взрыва и которых мы не видим в природе. Здесь вступает суперсимметрия.
      Можно показать, что в суперсимметричной теории эти две шкалы масс не смешиваются. Происходит прекрасный процесс взаимной нейтрализации, благодаря которому две эти шкалы никогда не вступают во взаимодействие друг с другом. Фермионные члены полностью аннулируются бозонными членами, что в итоге дает конечные результаты. Насколько нам известно, в суперсимметрии может заключаться единственное возможное решение проблемы иерархии.
      Кроме того, супер симметрия решает проблему, впервые поставленную в 1960-х теоремой Коулмена — Мандулы, которая доказывает, что невозможно соединить группу симметрии, действующей в кварках, такую, как SU(3), с симметрией, которая действует на пространство-время, как в теории относительности Эйнштейна. Таким образом, согласно теореме существование единой симметрии для двух этих видов представлялось невозможным. Однако суперсимметрия вскрывает крошечную брешь в этой теореме. Это один из многих теоретических прорывов, содержащихся в суперсимметрии.
      14. Точнее, Малдасена показал, что струнная теория типа II, компактифицированная до пятимерного антидеситтеровского пространства, была дуальной по отношению к четырехмерной конформной теории поля, располагающейся в ее границах. Первоначально существовала надежда на то, что между струнной теорией и четырехмерной КХД (квантовой хромодинамикой) может быть установлена модифицированная версия этой причудливой дуальности, а именно теория сильных взаимодействий. Если можно построить такую дуальность, то это стало бы прорывом, поскольку тогда можно было бы вычислить свойства частиц, участвующих в сильном взаимодействии, таких, как протон, непосредственно из струнной теории. Однако по состоянию на сегодняшний момент эти надежды еще не оправдались.
      15. Это смещение происходит в двух вариантах. Поскольку околоземные спутники движутся со скоростью приблизительно 29 ООО километров в час, то в действие вступает специальная теория относительности и время на таком спутнике замедляется. Кажется, что часы на таком спутнике идут медленнее в сравнении с часами на Земле. Но поскольку на спутник действует более слабое гравитационное поле в космосе, время также ускоряется согласно общей теории относительности. Таким образом, в зависимости от расстояния спутника от Земли, часы на нем либо замедлят свой ход (благодаря специальной теории относительности), либо убыстрят его (благодаря общей теории относительности). В сущности, на определенном расстоянии от Земли эти два эффекта в точности уравновесят друг друга, и часы на спутнике будут идти с той же скоростью, что и на Земле.
      18. Это можно также отнести к культуре первого типа. Во многих странах третьего мира элита говорит как на местном языке, так и на английском, таким путем поддерживая связь с последними достижениями западной культуры и моды. Таким образом, цивилизация первого типа может быть бикультурной: планетарная культура охватит весь земной шар, сосуществуя с местными культурами и обычаями. Поэтому существование планетарной культуры не обязательно означает разрушение местных культур.

Благодарности

      Яхотел бы поблагодарить ученых, которые были столь любезны, что уделили мне время для беседы. Их комментарии, замечания и идеи в значительной степени обогатили эту книгу и придали ей большую глубину и ясность. Вот их имена:
      • Стивен Вайнберг, нобелевский лауреат, Техасский университет
      • Остин Мюррей Гелл-Манн, нобелевский лауреат, Институт Санта-Фе и Калифорнийский технологический институт
      • Леон Ледерман, нобелевский лауреат, Технологический институт Иллинойса
      • Джозеф Ротблат, нобелевский лауреат, Госпиталь святого Бартоломью (на пенсии)
      • Уолтер Гилберт, нобелевский лауреат, Гарвардский университет
      • Генри Кендалл (ныне покойный), нобелевский лауреат, Масса-чусетский технологический институт
      • Алан Гут (Гус), физик, Массачусетский технологический институт
      • Сэр Мартин Рис, Королевский астроном Великобритании, Кембриджский университет
      • Фриман Дайсон, физик, Институт передовых исследований, Принстонский университет
      • Джон Шварц, физик, Калифорнийский технологический институт
      • Лиза Рэндалл, физик, Гарвардский университет
      • Дж. Ричард Готт III, физик, Принстонский университет
      • Нил де Грасс Тайсон, астроном, Принстонский университет и Планетарий Хейдена
      • Пол Дэвис, физик, Университет Аделаиды
      • Кен Кросвелл, астроном, Калифорнийский университет, Беркли
      • Дон Голдсмит, астроном, Калифорнийский университет, Беркли
      • Брайан Грин, физик, Колумбийский университет
      • Кумрун Вафа, физик, Гарвардский университет
      • Стюарт Сэмьюэл, физик, Калифорнийский университет, Беркли
      • Карл Саган (ныне покойный), астроном, Корнеллский университет
      • Дэниэл Гринбергер, физик, Городской колледж Нью-Йорка
      • В. П. Нэйр, физик, Городской колледж Нью-Йорка
      • Роберт П. Киршнер, астроном, Гарвардский университет
      • Питер Д. Уорд, геолог, Вашингтонский университет
      • Джон Бэрроу, астроном, Сассекский университет
      • Марша Бартушек, научный журналист, Массачусетский технологический институт
      • Джон Касти, физик, Институт Санта-Фе
      • Тимоти Феррис, научный журналист
      • Майкл Лемоник, научный обозреватель, журнал «Тайм»
      • Фульвио Мелиа, астроном, Университет Аризоны
      • Джон Хорган, научный журналист
      • Ричард Мюллер, физик, Калифорнийский университет, Беркли
      • Лоренс Краусс, физик, Университет Западного резервного района
      • Тед Тэйлор, проектировщик атомных бомб
      • Филип Моррисон, физик, Массачусетский технологический институт
      • Ханс Моравек, робототехник, Университет Карнеги-Меллона
      • Родни Брукс, робототехник, Лаборатория искусственного интеллекта, Массачусетский технологический институт
      • Донна Ширли, астрофизик, Лаборатория реактивного движения
      • Дэн Вертхаймер, астроном, SETT@home, Калифорнийский университет, Беркли
      • ПолХоффман, научный журналист, журнал «Дискавер»
      • Френсис Эверитт, физик, Гравитационный Зонд Б, Стэнфорд-ский университет
      • Сидни Перковиц, физик, Университет Эмори
      А вот имена ученых, которым я бы хотел выразить благодарность плодотворные дискуссии на физические темы:
      • Т. Д. Ли, нобелевский лауреат, Колумбийский университет
      • Шелдон Глэшоу, нобелевский лауреат, Гарвардский университет
      • Ричард Фейнман (ныне покойный), нобелевский лауреат, Калифорнийский технологический институт
      • Эдвард Виттен, физик, Институт передовых исследований, Принстонский университет
      • Джозеф Ликкен, физик, лаборатория Ферми
      • Дэвид Гросс, физик, Институт Кавли, Санта-Барбара
      • Фрэнк Вильчек, Калифорнийский университет, Санта-Барбара
      • Пол Таунсенд, физик, Кембриджский университет
      • Питер ван Ньювенхойзен, физик, Государственный университет Нью-Йорка, Стоуни-Брук
      • Мигель Вирасоро, физик, Университет Рима
      • Бундзи Сакита (ныне покойный), физик, Городской колледж Нью-Йорка
      • Эшок Дэс, физик, Университет Рочестера
      • Роберт Маршак (ныне покойный), физик, Городской колледж Нью-Йорка
      • Фрэнк Типлер, физик, Университет Тулейна
      • Эдвард Трайон, физик, колледж Хантера
      • Митчелл Бегелман, астроном, Университет Колорадо
      Я хотел бы также поблагодарить Кена Кросвелла за его многочисленные комментарии к моей книге.
      И еще я хочу выразить благодарность моему редактору, Роджеру Шоллу, который мастерски отредактировал две мои книги. Его твердая рука во многом улучшила эти книги, а его комментарии всегда помогали разъяснить и углубить содержание и презентацию моих книг. И наконец, я бы хотел поблагодарить своего агента, Стюарта Кричевского, который занимался продвижением моих книг на протяжении всех этих лет.

  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27