Затем, подводя итоги своим наблюдениям каналов, Ловелл заключает:
Таковы лишь некоторые признаки существования гигант ской системы орошения. На основании приведенных выше результатов наблюдений я прихожу к выводу о 1) общей обитаемости планеты и 2) реальном существовании там в настоящее время какой-то формы разумной жизни.
Таким образом, Ловелл пришел к убеждению о существо вании на Марсе цивилизации. Побуждаемый своим совре менником, французским астрономом Камилом Фламмарио ном (1842-1925), он изложил в популярной форме столь знакомую нам драму отважного марсианского народа, более высокоразвитого, чем мы, который борется за возможность выжить на высушенной и умирающей планете. В этих идеях Ловелл не видел ничего фантастического. В своей книге "Марс и жизнь на нем" он, в частности, писал:
При изложении собранных по крупицам сведений о Марсе мы были предельно осторожны, стараясь избежать каких-либо домыслов. Но законы физики, а также современные знания в области геологии и биологии, пополненные сведениями из астрономии, привели нас от наблюдений к осознанию наличия иной, разумной жизни.
Хотя широкая общественность восприняла с энтузиазмом идею о существовании марсианской цивилизации, ученые даже при жизни Ловелла отнеслись к ней скептически, и она
умерла вместе с ним. "Каналы", существование которых всегда вызывало большие сомнения, и которые, как теперь известно, никогда не существовали, были, вероятно, иллю зией, порожденной трудностями наблюдений. Однако ос тальные положения теории Ловелла-полярные льды, движе ние воды, растительность-не только пережили его, но и обрели новую жизнь. Освободившись от домыслов о ге роических марсианах, идея Ловелла о сходстве Марса и Земли приобрела как бы научную респектабельность и вошла в разряд разумных научных гипотез. Казалось бы, взгляды Ловелла были опровергнуты во всех существенных деталях. Тем не менее-и это самое странное в нашем рассказе-по мере дальнейших наблюдений Марса все более казалось, что Ловелл был прав. Поэтому его взгляды преобладали на протяжении большей части нашего столетия.
Эпиграф перед началом этой главы взят из книги сотруд ника Ловелла и отражает состояние вопроса на 1962 г. Оптимизм, который сквозит в заявлении Слайфера, в 1962 г. был действительно оправдан. К сожалению, полученные вскоре новые результаты покажут его необоснованность и позволят отнести нарисованную Ловеллом картину планеты с прорытыми марсианами каналами или без оных к области чистой фантазии. За несколько лет научные представления о планете в корне изменятся. Возвышению и падению в наши дни представлений Ловелла о Марсе посвящена остальная часть этой главы.
Марс до 1963 г.- представления Ловелла
Полярные шапки
Увеличение и уменьшение полярных шапок Марса зем ные наблюдатели считали доказательством наличия на этой планете атмосферы, но ее качественный и количественный состав долгое время оставался неизвестным. Диоксид угле рода, который, как мы теперь знаем, является основной составляющей марсианской атмосферы, впервые был обна ружен на Марсе в 1947 г. известным американским астроно мом, голландцем по происхождению, Джерардом П. Кюйпе ром (1905-1973). В своем исследовании Кюйпер воспользо вался методом инфракрасной спектроскопии. При спектро скопическом изучении планет солнечный свет, отраженный планетой, собирается телескопом, а затем с помощью приз мы или решетки разлагается в характеристический спектр, в данном случае-в спектр инфракрасного излучения. Далее полученный спектр сравнивают с аналогичным спектром, например Луны или, в зависимости от необходимости, дру гой части той же планеты. Различные соединения поглощают свет разных длин волн, что делает возможным их химиче скую идентификацию. Сравнивая спектр планеты, имеющей атмосферу, со спектром Луны, у которой атмосфера отсутст вует, и учитывая при этом поглощение света в земной атмосфере, можно получить истинный спектр исследуемой атмосферы. Поскольку количество поглощенной энергии за висит от массы поглощающего вещества, такой спектр несет не только качественную, но и количественную информацию. Таким образом, по спектру можно не только установить, какой газ находится на пути света, поглощая его, но и определить концентрацию этого газа.
Область длин волн, лежащая за красным концом видимо го спектра, называется инфракрасным (ИК-) излучением. В этой спектральной области находятся линии поглощения многих химических соединений. Сопоставив спектр отражен ного ИК-излучения Марса с аналогичным спектром Луны, Кюйпер обнаружил, что в марсианском спектре ослаблены линии, соответствующие некоторым длинам волн вблизи 1,6 мкм (микрон: 1 мкм = 10-" м). Известно, что эта об ласть длин волн соответствует полосе поглощения диоксида углерода. Кюйпер оценил, что количество СО^ над исследуе мой областью марсианской поверхности в два раза больше, чем над такой же (по площади) областью Земли. Исходя из
этого, он вычислил, какое давление создает на Марсе диок сид углерода, приняв во внимание, что сила тяготения на этой планете слабее, чем на Земле. Он получил, что атмо сферное давление на Марсе равно 0,26 мм Hg (ртутного столба), или 0,35 мбар*. Кюйпер ошибся: его результат оказался примерно в 16 раз ниже истинного значения. Эта ошибка имела важные последствия, так как позволила Кюй перу утверждать, что полярные шапки на Марсе не могут состоять из замерзшего диоксида углерода (сухого льда). Если бы давление диоксида углерода было столь низким, как следовало из расчетов Кюйпсра, то для вымораживания этого газа из атмосферы потребовалась бы нереально низкая температура. Несколькими годами позже выяснилось, что Кюйпер неправильно рассчитал давление СО^: однако это открытие не повлияло на общий ход событий.
Единственным другим веществом, из которого могли бы состоять марсианские полярные шапки, является вода в замерзшем состоянии: лед, снег или иней: однако поиски в атмосфере Марса паров воды. предпринятые различными астрономами, оказались безуспешными. Поэтому Кюйпер продолжал изучать северную полярную шапку непосредст венно методом ИК-спектроскопии. Вследствие малых разме ров шапки анализ результатов наблюдений вызывал нема лые трудности, по, видоизменяя спектрометр так, чтобы повысить его чувствительность, и многократно повторяя наблюдения, Кюйпер в конце концов убедил себя в том. что "марсианские полярные шапки состоят не из СОд, а почти несомненно из Н^О, замерзшей при низкой температуре". Нота осторожности, звучащая во второй части этого заклю чения, связана с тем, что спектр отражения марсианской полярной шапки не полностью соответствовал спектру зем ного снега, полученному Кюйпером.
Здесь он опять ошибся: меняющиеся в зависимости от сезона части шапок действительно образованы из замерзше го диоксида углерода, а не из воды. но эту ошибку обнаружи ли лишь почти через 20 лет. Напротив, неправильный вывод Кюйпера, казалось бы. подтверждался результатами Одуэна Дольфуса из Парижской обсерватории, который использо вал другой метод, основанный на поляризации отраженного света. Обычный неполяризованный солнечный свет представ
* 1 мбар (миллибар) давление, равное 100 Н/м^ (ньютон на квадратный метр). На Зем.ю атмосферное давление еоетанляст 101? мбар. что соответствует 760 мм Hg на уровне моря.
ляет собой электромагнитные волны, в которых векторы электрического и магнитного полей колеблются во всех направлениях в плоскости, перпендикулярной направлению распространения светового луча. Однако у света, который отражается, рассеивается или проходит через некоторые специфические вещества, эти колебания происходят в строго определенном направлении. В таком случае говорят, что свет поляризован. Степень поляризации отраженного света зави сит от угла зрения, а также от структуры, прозрачности и других физических свойств отражающей поверхности. Доль фус, обладавший большим опытом исследования планет методом измерения поляризации света, решил применить его и для изучения марсианских полярных шапок.
Как и Кюйпер, Дольфус отмечал, что размеры шапок невелики и потому их исследование связано с трудностями. Однако ему удалось сделать несколько измерений, и он обнаружил, что поляризационный эффект оказался намного меньше, чем при аналогичных измерениях на Земле поляри зации света, отраженного от лежащих на горных склонах льда, инея и снега, наблюдаемых под тем же углом зрения. Затем Дольфус провел серию лабораторных экспериментов. Они показали, что эффект поляризации, вызванный слоем инея, имел сходство с эффектом поляризации, обусловлен ным марсианскими полярными шапками, при двух условиях: во-первых, если иней осаждался на холодной поверхности при низком атмосферном давлении (как и должно было происходить на Марсе), и, во-вторых, если при этом он частично возгонялся, т. е. испарялся в твердом состоянии, под воздействием дуговой лампы. Подобное, вероятно, мог ло происходить с марсианскими полярными шапками под влиянием солнечного излучения. На основании этих резуль татов Дольфус пришел к выводу, что полярные шапки, по всей видимости, образованы инеем.
Дольфус не проводил сравнительных экспериментов с твердым диоксидом углерода, но явное совпадение его ре зультатов с данными Кюйпера убедило многих исследовате лей Марса, что вопрос о природе полярных шапок решен. Далее мы цитируем заключение комиссии специалистов, многие из которых впоследствии сделали важный вклад в наши представления о Марсе. Эта комиссия была назначена Советом по космическим исследованиям, созданным для консультаций НАСА на ранних этапах разработки програм мы по изучению планет. Приведенная цитата дает представ ление о взглядах ученых.
Инфракрасные спектры света, отраженного от полярных шапок, убедительно свидетельствуют, что эти образования на Марсе состоят не из замерзшего диоксида углерода единствен ного поддающегося конденсации соединения, наличие которого. кроме воды, можно было бы ожидать; спектры отражения также вполне согласуются с предположением, что полярные шапки образованы льдом . . . Данные по изучению поляризации пока зывают, что полярные шапки состоят из инея. . .
Далее в своем докладе эта же комиссия настаивала на выводах, подобных тем, к которым 63 года назад, в 1898 г., пришел Ловелл. По ее мнению:
... так как полярные шапки состоят из замерзшей воды, их сезонные изменения прямо указывают на то, что в атмосфере Марса присутствуют пары воды. С учетом чередующегося изменения размеров полярных шапок в противоположных полу шариях циркуляция нижних слоев атмосферы должна быть такова, чтобы обеспечивать перемещение водяных паров из одного полушария в другое.
Атмосферное давление
Ряд взаимосвязанных ошибок послужил причиной воз никновения неправильного представления о другом важней шем параметре-атмосферном давлении. И опять это вызва но стремлением приписать Марсу большее сходство с Зем лей, чем есть на самом деле. Во времена Ловелла марсиан ское атмосферное давление измеряли двумя основными ме тодами-фотометрии и поляриметрии. Как известно, моле кулы газа рассеивают свет. В частности, именно этим объяс няется голубой цвет неба: атмосфера рассеивает падающий солнечный свет равномерно во всех направлениях, но по скольку свет с более короткими длинами волн (синяя область спектра) рассеивается гораздо сильнее, чем длинноволновый (красная область), мы видим небо голубым. Поскольку рассеяние света атмосферой влияет на яркость поверхности планеты, измерение яркости на различных длинах волн и при различной плотности атмосферы (что достигается наблюде нием планеты под разными углами) может служить средст вом для оценки величины атмосферного давления. Кроме того, поскольку рассеянный свет поляризован, измерение степени поляризации дает возможность проверить получен ные результаты.
Трудность, однако, состоит в том, что характер рассеяния света зависит не только от его длины волны и плотности атмосферы, но и от состава последней, а также наличия или отсутствия в ней пыли и других взвешенных частиц. Чтобы
обойти это и другие препятствия, обусловленные, например. поляризацией света при отражении от поверхности планеты. исследователям до 1963 г. приходилось при расчете атмо сферного давления делать некоторые неподдающиеся про верке допущения. В результате, по словам Клода Мишо и Рэя Ньюберна из Лаборатории реактивного движения, "каж дый новый исследователь, ссылаясь на "произвольные допу щения" своих предшественников, выдвигал новый набор своих собственных".
Несмотря на все трудности, со времен Ловелла было предпринято не менее десяти попыток использовать фото метрический и поляриметрический методы для определения величины давления на поверхности Марса. Результаты этих обычно вполне согласующихся друг с другом измерений были проанализированы французским астрономом Жераром де Вокулёром в его широко известной книге о Марсе. английское издание которой появилось в 1954 г. Де Вокулёр пришел к выводу, что наиболее вероятное значение атмо сферного давления у поверхност-и Марса равно 85 + 4 мбар. (Эта цифра прекрасно совпадала с величиной, ранее получен ной Ловеллом: в своей книге "Марс и жизнь на нем". опубликованной в 1908 г.. Ловелл, используя фотометриче ский метод, оценил величину давления в 64 мм Hg, что равно 85 мбар!) После повторной проверки данных упомянутая выше комиссия экспертов пришла к следующему заключе нию: "Вряд ли истинное значение давления на поверхности [Марса] отличается от 85 мбар больше чем в 2 раза". В действительности же истинное значение поверхностного дав ления отличается от 85 мбар более чем в 10 раз!
Растительность
Убежденность Ловелла в том. что темные области на поверхности Марса покрыты растительностью, основыва лась па голубовато-зеленой окраске, которая, как показыва ли наблюдения, изменялась со сменой сезонов. Весной это. как говорил Ловелл, "весеннее движение", или "волна позе ленения". начинающееся у края темной полосы, окружающей полярную шапку, перемещалось вдоль каналов по направле нию к экватору и дальше. По оценке Ловелла, скорость распространения "волны позеленения" составляла 51 милю (82 км) в день. Согласно его схеме, волна усиления окраски свидетельствовала о развитии растительности в период. когда в низких широтах в достатке появлялась вода. что
было связано с ее регулярным перемещением в атмосфере планеты от одного полюса к другому. Ловелл понимал, что направление движения "волны потемнения" (как ее стали называть) противоположно тому, что наблюдается на Земле, где весенний рост растительности, начинаясь в умеренных широтах, распространяется к полюсу. Но он был убежден. что именно этого следует ожидать на планете, где жизнь существует в условиях дефицита воды.
Наблюдения Марса в телескоп, проведенные уже после смерти Ловелла, подтвердили наличие темной полосы во круг полярной шапки и сезонных изменений в окраске морей. В настоящее время эти явления принято объяснять переме щением облаков пыли ветрами, направление которых изме няется в зависимости от сезона. Возможно, что темная полоса вокруг полярной шапки-это просто оптический эф фект, обусловленный появлением слоя замерзшего диоксида углерода, который обнажается в результате возгонки лежа щего на нем инея. Однако на протяжении десятилетий после смерти Ловелла господствовала гипотеза о существовании па Марсе растительности, и к 1960 г. казалось, что она скоро будет окончательно доказана.
История этого вопроса берет свое начало в 1947-1948 гг., ко1да Дж.П. Кюйпер. утверждавший, что марсианские по лярные шапки состоят из водяного льда, обратил внимание на то, что он назвал "зелеными областями" Марса. Он собирался сравнить спектр света, отраженного от этих облас тей, со спектрами света, отраженного от поверхностей, по крытых высшими растениями, лишайниками и мхами. Ли шайники представляют собой симбиозы грибов и водорос лей. Они имеют зеленый или зеленоватый цвет и, подобно высшим растениям, осуществляют фотосинтез с помощью хлорофилла. Обладая чрезвычайной выносливостью, эти организмы населяют холодные, сухие, малоблагоприятные для жизни места, где редко встречаются другие виды.
Кюйпер не обнаружил сходства между спектрами света, отраженного от высших растений и лишайников. В то время как в видимой и инфракрасной областях спектра света, отраженного от высших растений, наблюдалось с десяток пиков, чередующихся с провалами, у лишайников соответст вующий спектр не имел столь характерных особенностей - он был почти ровным. Подобный спектр получили и при иссле довании мхов. По техническим причинам Кюйперу не уда лось получить полной спектральной картины зеленых облас тей Марса: он исследовал лишь отраженный от них свет на
четырех различных длинах волн. Он убедился, что эти спектры отличаются от спектров зеленых растений, но весь ма сходны со спектрами мхов и лишайников. Однако спектр, лишенный характерных особенностей, вряд ли можно было рассматривать как надежное доказательство существования на Марсе какой-либо формы жизни; поэтому "волне потем нения" дали объяснение небиологического характера. Со гласно новой гипотезе, сезонные изменения на Марсе проис ходят в то время, когда неорганические вещества на его поверхности поглощают из атмосферы водяные пары, кото рые весной перемещаются по планете, а затем теряют их осенью, когда атмосфера становится сухой. Существует мно го соединений такого рода, которые меняют цвет при погло щении или потере влаги. Известный английский астроном, эстонец по национальности, Эрнст Опик выступил в 1950 г. против этой гипотезы, указав на то, что пылевые бури-в телескоп они видны как желтые тучи, порой окутывающие всю планету,-давно засыпали бы темные области, будь они просто минеральными отложениями на поверхности. Опик высказал предположение, что, поскольку одни и те же облас ти всегда вновь появляются в поле зрения по окончании марсианских бурь, они, по-видимому, обладают способ ностью к регенерации.
Проанализировав все эти факты и отдав должное аргу ментам Опика, Кюйпер пришел к выводу, что в темных областях "имеются очень хорошие" условия для существова ния жизни. Однако он считал маловероятным, что марсиан ские лишайники идентичны земным, так как это свидетельст вовало бы о параллельной эволюции, что абсолютно исклю чено, и, кроме того, наши лишайники никогда не меняют цвета осенью.
Суждение Кюйпера в лучшем случае осталось бы только предположением, если бы вскоре оно не было подтверждено поразительным результатом, полученным молодым амери канским астрономом В. М. Синтоном. Как и Кюйпер, Син тон исследовал отраженный свет Марса, но не во всем диапазоне, а лишь в узком интервале длин волн в инфракрас ной области (около 3.5 мкм), где наблюдается сильное по глощение, соответствующее углерод-водородным связям. Поскольку этот тип связей имеется в молекулах всех органи ческих веществ, Синтон считал, что если волна потемнения обусловлена растительной жизнью, то это можно будет обнаружить по поглощению света в указанной области спектра. Изучение спектров отражения лишайников, мхов и
сухих листьев подтвердило, что для них действительно ха рактерно поглощение в этом диапазоне. Затем, исследуя в течение четырех ночей отраженный свет Марса, Синтон обнаружил в его спектре полосу поглощения максимумом на волне 3,46 мкм, т. е. точно там же, где и у исследованного ранее растительного материала. Два года спустя, в 1958 г., Синтон повторил свои наблюдения, но с использованием более совершенного 200-дюймового (1 дюйм = 2,54 см) теле скопа Маунт-Паломарской обсерватории. На этот раз уче ный смог проанализировать отдельно свет, отраженный от темных и от светлых областей Марса. В спектрах темных областей были обнаружены три полосы поглощения вблизи 3,5 мкм, характерные для органических соединений. В спект рах светлых областей поглощение было слабым или вообще отсутствовало. Казалось бы, возможно ли более убедитель ное подтверждение предположений Ловелла и Кюйпера!
Но обнаруженные Синтоном полосы поглощения не убе дили комиссию Совета по космическим исследованиям, ко торая отметила, что "вероятность того, что эти полосы образуются в результате комбинации спектров неоргани ческих веществ, по-видимому, еще не исследована в доста точной мере". Однако относительно возможности существо вания жизни на Марсе комиссия сделала такой вывод:
В целом представленные доказательства позволяют предпо ложить существование жизни на Марсе. В частности, данные о наличии паров воды именно таковы, каких следовало ожидать для планеты, довольно сухой в настоящее время, но когда-то, вероятно, имевшей значительно больше воды на поверхности. Имеющиеся в нашем распоряжении немногочисленные факты могут свидетельствовать лишь о наличии микроорганизмов, о существовании же крупных организмов и животных, способных к передвижению, достоверных данных не получено.
Марс в действительности
Атмосферное давление
Снятие с Марса покрова таинственности, к чему мы сейчас приступаем, отражает истину, сформулированную много лет назад двумя учеными-философами Моррисом Коэном и Эрнстом Нагелем: "В общем можно сказать, что наука будет в безопасности до тех пор, пока существуют люди, которые заботятся о корректности используемых ими методов больше, чем о результатах, полученных с их по мощью".
"Деловеллизация" Марса началась с одной-единственной, но исключительной по качеству спектрограммы, полученной на Маунт-Вилсоновской обсерватории в апреле 1963 г., кото рую затем проанализировали Льюис Каплан. Гвидо Мюнх и Хайрон Спинард, сотрудники Лаборатории реактивного дви жения Калифорнийского технологического института. В спектрограмме атмосферы Марса обнаружились полосы по глощения в инфракрасной области, характерные для диокси да углерода и, впервые, для паров воды. Спектр СО^ пред ставлял особый интерес, поскольку в нем были как слабые линии поглощения, ширина которых зависит лишь от содер жания в атмосфере СО^, а не от общего атмосферного давления, так и сильные, ширина которых зависит от обоих этих параметров. Таким образом, наконец появилась воз можность рассчитать относительное содержание в атмосфе ре Марса СО^, а также общее атмосферное давление у поверхности. Самое важное заключалось в том, что атмо сферное давление теперь можно было вычислить, основы ваясь только на известных физических законах, не прибегая ни к каким искусственным допущениям, которые ставили бы под сомнение результаты всех предыдущих расчетов.
Анализ спектрограммы, сделанный Капланом. Мюнхом и Спинардом, дал неожиданный результат: атмосферное давление на Марсе оказалось намного ниже, а содержание СОд-намного выше, чем предполагалось прежде. Так, по наиболее точным оценкам этих ученых, общее атмосферное давление оказалось равным 25 мбар, а давление СО^-4 мбар, тогда как ранее они предполагались равными 85 и 2 мбар соответственно. Авторы отмечали большие погрешнос ти в своих вычислениях, обусловленные неопределенностью в результатах некоторых измерений (все расчеты производи лись на основе всего лишь одной фотографической пластин ки), но выразили надежду, что дальнейшие наблюдения позволят уточнить полученные результаты. В конечном счете было показано, что даже 25 мбар-слишком большое значе ние для атмосферного давления у поверхности Марса.
Статья Каплана, Мюнха и Спинарда, опубликованная в 1964 г., открывает "постловелловскую эру" в изучении Мар са. Большие усилия были затрачены на повторные исследо вания атмосферного давления и состава атмосферы. Это было важно не только потому, что полученные результаты интересны сами по себе, но и по той причине, что без точных данных невозможна разработка космического аппарата для посадки на планету. Когда в 1965 г. Марс в очередной раз
оказался на минимальном расстоянии от Земли, его атмо сферу тщательно исследовали в телескопы наземных обсер ваторий. а также с помощью аппарата "Маринер-4"-перво го американского космического корабля, запущенного к Марсу.
Следующую неожиданность в развернувшуюся марсиан скую эпопею принесли полные и богатые информацией результаты, полученные "Маринером-4". При этом исполь зовался метод измерения атмосферного давления, совершен но новый для исследований Марса. Прежде всего потребо вался точный расчет траектории полета космического аппа рага, которая должна была проходить таким образом, что "Маринер-4" на протяжении примерно одного часа дважды заслонялся Марсом. Приблизительно в течение 2 мин, пред шествующих действительному заходу аппарата за видимый диск планеты, радиоимпульс, посылаемый "Маринером-4" на Землю, проходил, преломляясь и искривляясь, через марсианскую атмосферу. То же самое происходило 54 мин спустя, когда космический аппарат выходил из-за диска Марса. При приеме это) о радиосигнала на Земле его прелом ление точно измерялось, а поскольку величина его зависит от плотности атмосферы, был получен полный "профиль" дав ления с внешнего края атмосферы Марса и до той точки на поверхности, где космический аппараг заходил за диск пла неты или появлялся из-за него.
Полученная таким образом величина давления оказалась удивительно низкой: 4-7 мбар в зависимости от температу ры атмосферы и реального содержания диоксида углерода (когорое к тому времени было точно известно). На Земле атмосферное давление имеет такое значение на высоте около 32 км. Сначала предполагалось, что столь низкие величины давления должны oi носиться к высоким точкам поверхности Марса, а не ко всей планете в целом. Однако от этой мысли пришлось отказаться. Начиная с 1965 г. было сделано много измерений марсианского давления, которые проводились различными методами и с разных точек наблюдения: от спектроскопических исследований с Земли всей видимой поверхности планеты до локальных измерений, осуществлен ных с помощью датчиков давления непосредственно на поверхности планеты, куда они были доставлены спус каемыми аппаратами "Викиш". Все полученные результаты хорошо согласуются в том. 410 средняя величина давления. которая может слегка варьироваться в зависимости от места и времени года, сущес'1 веппо ниже 10 мбар. Оценки, сделап
ные разными авторами, колеблюся в пределах 5-7 мбар, поэтому в качестве разумного приближения можно принять величину атмосферного давления равной 6 мбар. Давление на Равнине Эллада, одном из самых низких районов на Марсе, должно составлять примерно 8,6 мбар, а на вершине горы Олимп, самой высокой точке планеты,- около 0,5 мбар.
Состав атмосферы и полярных шапок;
Результаты, полученные с помощью аппарата "Мари нер-4", недвусмысленно свидетельствуют о том, что диоксид углерода, давление которого, по оценке Каплана, Мюнха и Спинарда, составляет на Марсе 4 мбар, должен быть глав ным, а не второстепенным компонентом марсианской атмо сферы, как считали, исходя из величины давления 85 мбар. (Впоследствии в результате полета "Викингов" было уста новлено, что содержание диоксида углерода в атмосфере Марса достигает 95%.) Кроме того, еще до полета "Викин гов" в атмосфере Марса были обнаружены пары воды (их наличие установлено по спектрам, полученным на фотоплас тинке и проанализированным Капланом и его коллегами), а также небольшие количества кислорода, озона, атомарного водорода и монооксида углерода, образовавшихся в резуль тате фотолиза из воды и диоксида углерода под действием солнечного света. Содержание паров воды в атмосфере соответствовало 14 мкм осадочной воды. Это значит, что если бы все пары воды в атмосфере планеты сконденсирова лись, то образовался бы слой воды толщиной в 14 мкм. При такой концентрации водяных паров их давление у поверх ности равно '/gooo давления диоксида углерода, т.е. 0,5 мкбар*; на поверхности Земли давление паров воды в сред нем в 10000 раз больше. Подобное несоответствие приводит к важным биологическим последствиям, о которых мы расскажем подробнее в следующих главах.
Значительная концентрация диоксида углерода в марси анской атмосфере побудила Роберта Лейтона и Брюса Мюр рея, сотрудников Калифорнийского технологического инсти тута, пересмотреть вопрос о составе полярных шапок. В 1966 г. Лейтон и Мюррей опубликовали результаты теорети
* Масса слоя воды толщиной 14 мкм равна 0,0014 г/см^. Умно жая эту величину на ускорение силы тяжести (на Марсе оно равно 373 см/с"), можно найти давление паров воды у поверхности-оно составляет 0,522 мкбар.
ческого исследования теплового баланса Марса, что позво лило им предсказать температуру на любой широте планеты в любое время года. Предполагалось, что Марс в среднем холоднее Земли, поскольку он находится дальше от Солнца, поток солнечного излучения, приходящийся на единицу его поверхности, составляет только 43% от того, что получает Земля. Кроме того, из-за разреженности марсианской атмо сферы парниковый эффект там выражен очень слабо. Изме рения, проведенные с Земли, показали, что температура на марсианском экваторе днем достигает 25"С, но ночью падает на 100 С и даже больше. Поскольку на Марсе нет океана, который мог бы смягчать подобные перепады температуры, предполагалось, что они весьма велики. Хотя температуру полярных шапок не измеряли, считалось, что она не настоль ко низка, чтобы вымерз диоксид углерода из атмосферы.
Анализ, проведенный Лейтоном и Мюрреем, показал, что зимние температуры в высоких широтах обоих полушарий Марса вполне могут опускаться ниже -128"С, т.е. точки замерзания диоксида углерода при давлении 4 мбар. Разме ры и скорость исчезновения полярных шапок, предсказывае мые при условии, что они состоят из твердого диоксида углерода, хорошо согласовались с результатами наблюдений реальных марсианских шапок. Как видим, все сказанное о Марсе не дает оснований утверждать, что марсианские по лярные шапки могли сформироваться из паров воды, хотя предполагается, что в их составе есть небольшие количества водяного льда. Поэтому Лейтон и Мюррей сделали вывод, что полярные шапки почти полностью состоят из замерзше го диоксида углерода.
Это предположение подтвердилось в 1969 г., когда к Марсу приблизились еще два космических аппарата: "Мари нер-6" и "Маринер-7". Когда "Маринер-7" проходил над южной полярной шапкой, на его борту работали два инфра красных детектора. Один из этих приборов, радиометр, измерял тепловое излучение поверхности Марса; эти данные позволяли рассчитать температуру поверхности. Другой прибор, спектрометр, регистрировал как температуру, так и спектр отраженного инфракрасного излучения, который можно было использовать для изучения химического состава полярной шапки и атмосферы планеты. Как это принято, первые научные результаты, полученные с аппаратов "Мари нер", были оглашены на пресс-конференции, состоявшейся в Лаборатории реактивного движения в Пасадене вскоре после